Moerenuma Park Space-Time Chronology

Total Page:16

File Type:pdf, Size:1020Kb

Moerenuma Park Space-Time Chronology GJ 179 GJ 317 77 Psc << Regulus Psi Vel << 10 Tau Mu Vel Zet Dor >> 38 Cas to HIP 34511 to HIP 33277 : 37 Geminorum Iot Hor 31Eta Cet HIP 26335 : Gliese 208 Gliese : 26335 HIP HR 810 Ruchbah eta Cet HD 6434 3Pi 1UMa Alp Hyi HD 7199 HD 92788 2M 0746+20 48Ome And Hamal 53Chi Cet 31Tau1Hya Alp For alf Ari to HIP 11767 : Polaris 80 Psc 9Iot UMa HD 69830 Alp Men WISE 0458+6434 A 39 Leo 37Mu And 60 Leo 37 UMa HD 93083 1Tau1Eri Pollux 93Rho Psc HD 62509 2Alp Tri Dubhe Zet2RetZet1Ret 40 Leo 36 And 55 Cnc HIP 43587 : 55 Cancri 13Gam Lep GJ 176 54Chi1Ori Chi EriSheratan HD 87883 46 LMi 25The UMa Moerenuma Park 1983: Development of Lawn Area and Cherry Forest begins. 芝生広場、サクラの森造成開始。 Iot Per 1Pi 3Ori Rho Tuc 20 LMi 23Del Eri HD 10647 37 Cet 13The Per 96Kap1Cet 63Chi Leo 1977: As part a cleaning project, the site acquisition begins for the establishment of the Moere Waste Disposal Center (terminal waste disposal site) on the premise that it can be used as a park in the future. HD 98649 Kap Tuc 1969: Apollo 11 manned moon landing. 11 LMi 1995: A part of Moerenuma Park opened. Moerenuma Park Urban Park Ordinance announced. “City of Sapporo Greenery Promotion Ordinance” established. Voyager 1 and 2 were launched. アポロ11号有人月面着陸。 モエレ沼公園一部オープン。モエレ沼公園都市公園条例告示。 清掃事業でモエレ処理場(ゴミの最終処分場)として跡地の公園化を前提に用地買収をはじめる。「札幌市緑化推進条例」制定。 HD 4208 Space-Time Chronology WISE J0720-0846 Merak 8Del Tri 18 Cet HD 85512 GJ 86 HD 7924 HD 96700 Diphda 50Upsups AndAnd 31Del And 1997: Development of Aqua Plaza begins. Lam2Phe GJ 3634 GJ 1132 アクアプラザ造成開始。 1989: “Outline of Moerenuma Park Design Concept” prepared. 64 Psc HIP 7918 : Gliese 67 モエレ沼公園 時空年表 36 UMa 「モエレ沼公園設計コンセプト概要」作成。 Nu Phe Teen Age Message ( 2001 ) Xi Hya HD 20794 268 G. Cet K2-18 40Omi2Eri BD-17 63 HD 97658 1973: "Sapporo City Afforestation Policy Outline" developed. ) 2003 ( 2 Call Cosmic HD 4308 Current Moerenuma Park positioned as an urban environmental park (waterfront recreation place) in this outline. HD 4747 15Gam Crt 「札幌市緑化政策大綱」策定。この中で現在のモエレ沼公園が都市環境公園(水辺レクリエーションの場)として位置づけられる。 Kapteyn's 1982: Developed of the site for Moerenuma Park begins. 78Iot Leo 47 UMaHIP 53721 : 47 Ursae Majoris Zosma 47 Uma Decision made to develop Moerenuma Park as a city planning park. Former “City of Sapporo Greenery Basic Plan” developed. 1987: Development of full-scale foundation begins. GJ 273 Luyten's Star Teen Age Message ( 2001 ) 2004: Mt. Moere completed. p Eridani As a result of the combination of Shinoro-Shinkawa River and Kariki-Shinkawa River19Phi2Cet into one first-class river, 62 UMa 本格的な基盤造成に着手。 モエレ山オープン。 107 Psc Moerenuma becomes a temporary storm-water reservoir with a capacity of 1.92 million tons of water due to a water-control project. 13 Cet Cosmic Call 2 ( 2003 ) Procyon 89 Leo モエレ沼公園敷地造成開始。モエレ沼公園、都市計画公園として計画決定。 TWA 5 A (AB) Ankaa 88 Leo 「(旧)札幌市緑の基本計画」策定。治水事業によりモエレ沼が一級河川となり、洪水時の一時雨水貯留池となる。 Wow! Reply ( 2012 ) Kap Phe Wow! Reply ( 2012 ) HD 8399492 Leo 1993: An athletic track field and tennis courts developed. eps Eridani HIP 4872 Lam Mus 24Iot Crt 2Xi Vir 陸上競技場、テニスコート造成開始。 LHS 1140 30Mu Cas HD 101930 1935: The balloon of US Navy reached an altitude of 22km. 9 Cet 23 And Cosmic Call 2 ( 2003 ) アメリカ海軍の気球が高度22kmに到達。 53Xi UMa HD54 Psc 3651 HD 1461 HD 102195 HD 95872 2015: SIAF LAB. started. HIP 57274 1984: The site preparation. 1970: Launch of Japanese first artificial satellite "Ohsumi". WISE 0855-0714 SIAFラボ活動開始。 Across the Universe 52Tau ( 2008 Cet ) 敷地造成。 96 G. Psc 日本初の人工衛星「おおすみ」打ち上げ。 Teen Age Message ( 2001 ) Cosmic Call 2 ( 2003 ) 24Eta Cas GJ 3021 Wow! Reply ( 2012 ) 1981: Basic design of Moerenuma Park developed. The Scl Alpheratz HIP 57050 Cosmic Call 2 ( 2003 ) GJ 433 Van Maanen's Star モエレ沼公園基本設計の策定。 6 Cet 33 Psc 61 UMa Bet Hyi GJ 436 Zet Tuc Phad 1999: Ball Park completed. 2005: Sea Fountain completed. Grand Opening Ceremony held. HD 103720 Lalande 21185 Caph Denebola HD 102365 野球場完成。 海の噴水完成。グランドオープン式典開催。 HD 142 5Bet Vir 2006: "New Horizons" was launched. 32 Psc Groombridge 1830 A Simple Response to an Elemental Message ( 2016 ) GJ 15 A 「ニュー・ホライズンズ」打ち上げ。 HD 104067 85 Peg Sol 2017: Space-moere project started. Sapporo International Art Festival 2017 opening. 130 120 110 100 90 80 70 60 50 40 30 20 10 (Light Years) 28Ome Psc Space-moereプロジェクト始動。札幌国際芸術祭2017開催。 67 UMa 1985: Sapporo Area Urban Plan Greenery master Plan developed. 1992: Hokkaido Regional Development Bureau completes the dredging operation of Moerenuma. Black Slide Mantra set up at Odori Park, Sapporo. 1Alp Crv 2010: ARTSAT project started. ARTSATプロジェクト開始。 Eta Cru 札幌圏都市計画緑のマスタープラン策定。 2001: Development of Mt. Moere begins. Proxima Centauri モエレ沼しゅんせつ工事終了。大通公園に《ブラック・スライド・マントラ》設置。 WISE 1217+16 A Lacaille 9352 モエレ山の造成に着手。 2014: Sapporo International Art Festival 2017 opening. Lone Signalalpha ( 2013 Cen ) B 札幌国際芸術祭2014開催。 1904: Isamu Noguchi was born in Los Angeles. 1976: Local citizens request that the interior part of Moerenuma be made into a park. 1996: Play Mountain, Tetra Mound and Music Shell completed. 17Iot Psc 8Bet CVn gamma35Gam CepheiCep イサム・ノグチ、ロサンゼルスで生まれる。 地元市民からモエレ沼内陸部を公園化して欲しいとの要望。 プレイマウンテン、テトラマウンド、ミュージックシェル完成。 GJ 876 HD 219134 2013: JAXA's stratospheric balloon achieved Kruger 60 Megrez the world record of 53.7km altitude. 1991: Development of Play Area begins. 1990: The Moere Waste Disposal Center closed. JAXAの成層圏気球が高度53.7kmの世界記録を達成。Eps Ind 遊具エリア造成開始。 Development of Play Mountain begins. Barnard's Star Hello From Earth ( 2009 ) Fomalhaut Porrima モエレ処理場閉鎖。プレイマウンテン造成に着手。 Fomalhaut HD 106252 29Gam Vir HD 106515 A Teen Age Message ( 2001 ) HIP 67155 : Wolf 498 Teen Age Message ( 2001 ) 8Eta Crv Lacaille 8760 2000: Amphitheater completed. Constructions of the Glass Pyramid begin. 16Lam And 18Lam Psc 1947: Model for sculpture to be seen from Mars, Isamu Noguchi. 43Bet Com 野外ステージ完成。ガラスのピラミッド建設に着手。 6161 Vir Vir TRAPPIST-1 17 Vir イサム・ノグチ「火星から見るための彫刻」。 VHS 1256-1257 Teen Age Message ( 2001 ) GJ 832 Ross 458 (AB) 16 Psc 1998: Aqua Plaza and Moere Beach completed. First Opening ceremony of Moerenuma Park held. 10 CVn A Message From Earth ( 2008 ) Algorab アクアプラザ、モエレビーチ完成。モエレ沼公園1次オープン式。 Gacrux 94 Aqr GJ 570 ABC Wolf 1061 51 Peg 51 Peg GJ 849 Gam Tuc HD 108147 42Alp Com 2003: The Glass Pyramid completed. A ceremony to celebrate the completion of the Glass Pyramid held. HD 113538 Construction of Sea Fountain begins. Omi Gru 37Xi Boo GJ 687 HIP 74995 : Gliese 581 ガラスのピラミッド完成。記念式典の開催。海の噴水の造成に着手。 GJ 674 Cosmic Call 1 ( 1999 ) 1988: Isamu Noguchi visits Sapporo. Begins Master plan for Moerenuma Park, Sapporo. Dies in New York on December 30. Cosmic Call 1 ( 1999 ) イサム・ノグチ札幌へ。札幌市の進めるモエレ沼公園造成計画に参画することが決まる。 Cosmic Call 1 ( 1999 ) GJ 581 70 Oph 7 And GJ 536 マスタープランを完成させたのち、ニューヨーク市立大学病院にて死去。 46Xi Peg Cosmic Call 1 ( 1999 ) HD 217107 42Alp Com 61Sig Dra Mufrid 1979: Moere Waste Disposal Center begins operation. Carry-in of non-burnable waste commences. 24Iot Peg Basic Plan of Morenuma Park made. Hokkaido Regional Development Bureau starts dredging operation of 59 Vir Gam Pav GJ 504 36 Oph 36 Oph Alioth Moerenuma as part of comprehends water-control project of Fushiko River. 6 And HD 219077 HIP 65407 モエレ処理場として利用開始。不燃ゴミの搬入はじまる。 GJ 625 96 Aqr HD 111232 Iot Cen モエレ沼公園基本計画の策定。モエレ沼しゅんせつ工事開始。Arcturus HD 114783 Phi Gru 49Del Cap Tau Cen 30Rho Vir 78 UMa HD 114613 HD 218566 70 Vir GJ 667 C 8 Dra 4Tautau Boo Boo 1994: Development of Moere Beach begins. HD 215152 Gam Cen Pi PsA Iot Cru モエレビーチ造成開始。 Del Mus GJ 785 38 Vir HDRho 216437 Ind Vega 5 And 53 Aqr 49Sig Peg 1957: Launch of the world's first artificial satellite Sputnik 1. 44Chi Dra 53 Aqr 世界初の人工衛星「スプートニク1号」打ち上げ。 59Ups Aqr 70 Vir 86Mu Her 15Tau PsA Cor Caroli HD 114386 Zet Gru 23The Boo 79Zet UMa 1 Cen 12Alp1CVn Vindemiatrix 1972: Pioneer 10 was launched.44 Boo The balloon of NASA reached an altitude of 51.8km. HR 8799 Alcor 79Zet Vir 12 Oph パイオニア10号打ち上げ。NASAの気球が高度51.8kmに到達。 1954: Pencil Rocket development started. Tau1Gru The Gru Mizar ペンシルロケット開発開始。Menkent HD 216435 41Gam Ser Alderamin 48Mu Peg Markab HD 113337 28Sig Boo HD 210277 GJ 649 27Lam Ser 40Zet Her HIP 70319 HN Peg 53 Vir to HIP 98819 : 15 Sagittae HD 128311 to HIP 98767 : Gliese 777 Bet TrA to HIP 96895 : 16 Cygni HD 216770 3Eta Cep 32Iot Cep 66 Vir Alp Cir 55Zet1Aqr HD 114729 16Psi Cap to HIP 93966 Zet TrA to HIP 100017 to HIP 102040 NuHD 2Lup 136352 23Eps Cep Nu Ind 77 Aqr HD 147513 NGC 6205 : Messier 13 (M13) to 7Alp Lac 107Mu Vir >> >> >> >> Alshain >> >> Arecibo message ( 1974 ) Nu Oct HD 215456 23Psi Ser << Eps Gru HD 114762 7Del Equ 55 Vir 99Iot Vir 78Mu 1Cyg 57 Vir HD 117207 18 Sco 78Mu 2Cyg GJ 1214 2M 2206-20 HIP 79431 26The Peg.
Recommended publications
  • The Planetary Systems Imager for TMT Astro2020 APC White Paper Optical and Infrared Observations from the Ground Corresponding Author: Michael P
    The Planetary Systems Imager for TMT Astro2020 APC White Paper Optical and Infrared Observations from the Ground Corresponding Author: Michael P. Fitzgerald (University of California, Los Angeles; mpfi[email protected]) Co-authors: Diego) Vanessa Bailey (Jet Propulsion Laboratory) Takayuki Kotani (Astrobiology Center/NAOJ) Christoph Baranec (University of Hawaii) David Lafreniere` (Universite´ de Montreal)´ Natasha Batalha (University of California Santa Michael Liu (University of Hawaii) Cruz) Julien Lozi (Subaru) Bjorn¨ Benneke (Universite´ de Montreal)´ Jessica R. Lu (University of California, Berkeley) Charles Beichman (California Institute of Jared Males (University of Arizona) Technology) Mark Marley (NASA Ames Research Center) Timothy Brandt (University of California, Santa Christian Marois (NRC Canada) Barbara) Dimitri Mawet (California Institute of Jeffrey Chilcote (Notre Dame) Technology/JPL) Mark Chun (University of Hawaii) Benjamin Mazin (University of California Santa Ian Crossfield (MIT) Barbara) Thayne Currie (NASA Ames Research Center) Maxwell Millar-Blanchaer (Jet Propulsion Kristina Davis (University of California Santa Laboratory) Barbara) Soumen Mondal (SN Bose National Centre for Richard Dekany (California Institute of Technology) Basic Sciences) Jacques-Robert Delorme (California Institute of Naoshi Murakami (Hokkaido University) Technology) Ruth Murray-Clay (University of California, Santa Ruobing Dong (University of Victoria) Cruz) Rene Doyon (Universite´ de Montreal)´ Norio Narita (Astrobiology Center) Courtney Dressing
    [Show full text]
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • BRAS Newsletter August 2013
    www.brastro.org August 2013 Next meeting Aug 12th 7:00PM at the HRPO Dark Site Observing Dates: Primary on Aug. 3rd, Secondary on Aug. 10th Photo credit: Saturn taken on 20” OGS + Orion Starshoot - Ben Toman 1 What's in this issue: PRESIDENT'S MESSAGE....................................................................................................................3 NOTES FROM THE VICE PRESIDENT ............................................................................................4 MESSAGE FROM THE HRPO …....................................................................................................5 MONTHLY OBSERVING NOTES ....................................................................................................6 OUTREACH CHAIRPERSON’S NOTES .........................................................................................13 MEMBERSHIP APPLICATION .......................................................................................................14 2 PRESIDENT'S MESSAGE Hi Everyone, I hope you’ve been having a great Summer so far and had luck beating the heat as much as possible. The weather sure hasn’t been cooperative for observing, though! First I have a pretty cool announcement. Thanks to the efforts of club member Walt Cooney, there are 5 newly named asteroids in the sky. (53256) Sinitiere - Named for former BRAS Treasurer Bob Sinitiere (74439) Brenden - Named for founding member Craig Brenden (85878) Guzik - Named for LSU professor T. Greg Guzik (101722) Pursell - Named for founding member Wally Pursell
    [Show full text]
  • 100 Closest Stars Designation R.A
    100 closest stars Designation R.A. Dec. Mag. Common Name 1 Gliese+Jahreis 551 14h30m –62°40’ 11.09 Proxima Centauri Gliese+Jahreis 559 14h40m –60°50’ 0.01, 1.34 Alpha Centauri A,B 2 Gliese+Jahreis 699 17h58m 4°42’ 9.53 Barnard’s Star 3 Gliese+Jahreis 406 10h56m 7°01’ 13.44 Wolf 359 4 Gliese+Jahreis 411 11h03m 35°58’ 7.47 Lalande 21185 5 Gliese+Jahreis 244 6h45m –16°49’ -1.43, 8.44 Sirius A,B 6 Gliese+Jahreis 65 1h39m –17°57’ 12.54, 12.99 BL Ceti, UV Ceti 7 Gliese+Jahreis 729 18h50m –23°50’ 10.43 Ross 154 8 Gliese+Jahreis 905 23h45m 44°11’ 12.29 Ross 248 9 Gliese+Jahreis 144 3h33m –9°28’ 3.73 Epsilon Eridani 10 Gliese+Jahreis 887 23h06m –35°51’ 7.34 Lacaille 9352 11 Gliese+Jahreis 447 11h48m 0°48’ 11.13 Ross 128 12 Gliese+Jahreis 866 22h39m –15°18’ 13.33, 13.27, 14.03 EZ Aquarii A,B,C 13 Gliese+Jahreis 280 7h39m 5°14’ 10.7 Procyon A,B 14 Gliese+Jahreis 820 21h07m 38°45’ 5.21, 6.03 61 Cygni A,B 15 Gliese+Jahreis 725 18h43m 59°38’ 8.90, 9.69 16 Gliese+Jahreis 15 0h18m 44°01’ 8.08, 11.06 GX Andromedae, GQ Andromedae 17 Gliese+Jahreis 845 22h03m –56°47’ 4.69 Epsilon Indi A,B,C 18 Gliese+Jahreis 1111 8h30m 26°47’ 14.78 DX Cancri 19 Gliese+Jahreis 71 1h44m –15°56’ 3.49 Tau Ceti 20 Gliese+Jahreis 1061 3h36m –44°31’ 13.09 21 Gliese+Jahreis 54.1 1h13m –17°00’ 12.02 YZ Ceti 22 Gliese+Jahreis 273 7h27m 5°14’ 9.86 Luyten’s Star 23 SO 0253+1652 2h53m 16°53’ 15.14 24 SCR 1845-6357 18h45m –63°58’ 17.40J 25 Gliese+Jahreis 191 5h12m –45°01’ 8.84 Kapteyn’s Star 26 Gliese+Jahreis 825 21h17m –38°52’ 6.67 AX Microscopii 27 Gliese+Jahreis 860 22h28m 57°42’ 9.79,
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
    Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i,
    [Show full text]
  • Biosignatures Search in Habitable Planets
    galaxies Review Biosignatures Search in Habitable Planets Riccardo Claudi 1,* and Eleonora Alei 1,2 1 INAF-Astronomical Observatory of Padova, Vicolo Osservatorio, 5, 35122 Padova, Italy 2 Physics and Astronomy Department, Padova University, 35131 Padova, Italy * Correspondence: [email protected] Received: 2 August 2019; Accepted: 25 September 2019; Published: 29 September 2019 Abstract: The search for life has had a new enthusiastic restart in the last two decades thanks to the large number of new worlds discovered. The about 4100 exoplanets found so far, show a large diversity of planets, from hot giants to rocky planets orbiting small and cold stars. Most of them are very different from those of the Solar System and one of the striking case is that of the super-Earths, rocky planets with masses ranging between 1 and 10 M⊕ with dimensions up to twice those of Earth. In the right environment, these planets could be the cradle of alien life that could modify the chemical composition of their atmospheres. So, the search for life signatures requires as the first step the knowledge of planet atmospheres, the main objective of future exoplanetary space explorations. Indeed, the quest for the determination of the chemical composition of those planetary atmospheres rises also more general interest than that given by the mere directory of the atmospheric compounds. It opens out to the more general speculation on what such detection might tell us about the presence of life on those planets. As, for now, we have only one example of life in the universe, we are bound to study terrestrial organisms to assess possibilities of life on other planets and guide our search for possible extinct or extant life on other planetary bodies.
    [Show full text]
  • Dynamical Stability and Habitability of a Terrestrial Planet in HD74156
    A dynamic search for potential habitable planets amongst the extrasolar planets 1,2 1 1 1,3 1, 4 P. Hinds , A. Munro , S. T. Maddison , C. Tan , and M. C. Gino [1] Swinburne University, Australia [2] Pierce College, USA [3] Methodist Ladies’ College, Australia [4] Dudley Observatory, USA ABSTRACT: While the detection of habitable terrestrial planets around nearby stars is currently beyond our observational capabilities, dynamical studies can help us locate potential candidates. Following from the work of Menou & Tabachnik (2003), we use a symplectic integrator to search for potential stable terrestrial planetary orbits in the habitable zones of known extrasolar planetary systems. A swarm of massless test particles is initially used to identify stability zones, and then an Earth-mass planet is placed within these zones to investigate their dynamical stability. We investigate 22 new systems discovered since the work of Menou & Tabachnik, as well as simulate some of the previous 85 extrasolar systems whose orbital parameters have been more precisely constrained. In particular, we model three systems that are now confirmed or potential double planetary systems: HD169830, HD160691 and eps Eridani. The results of these dynamical studies can be used as a potential target list for the Terrestrial Planet Finder. Introduction Numerical Technique Results & Discussion To date 122 extrasolar planets have been detected around 107 stars, with 13 of them To follow the evolution of the planetary systems, we use the SWIFT integration software package1. This The systems we have investigated broadly fall in four categories: (1) unstable being multiple planet systems (Schneider, 2004). Observational evidence for the allows us to model a planetary system and a swarm of massless test particles in orbit around a central star.
    [Show full text]
  • Arxiv:0809.1275V2
    How eccentric orbital solutions can hide planetary systems in 2:1 resonant orbits Guillem Anglada-Escud´e1, Mercedes L´opez-Morales1,2, John E. Chambers1 [email protected], [email protected], [email protected] ABSTRACT The Doppler technique measures the reflex radial motion of a star induced by the presence of companions and is the most successful method to detect ex- oplanets. If several planets are present, their signals will appear combined in the radial motion of the star, leading to potential misinterpretations of the data. Specifically, two planets in 2:1 resonant orbits can mimic the signal of a sin- gle planet in an eccentric orbit. We quantify the implications of this statistical degeneracy for a representative sample of the reported single exoplanets with available datasets, finding that 1) around 35% percent of the published eccentric one-planet solutions are statistically indistinguishible from planetary systems in 2:1 orbital resonance, 2) another 40% cannot be statistically distinguished from a circular orbital solution and 3) planets with masses comparable to Earth could be hidden in known orbital solutions of eccentric super-Earths and Neptune mass planets. Subject headings: Exoplanets – Orbital dynamics – Planet detection – Doppler method arXiv:0809.1275v2 [astro-ph] 25 Nov 2009 Introduction Most of the +300 exoplanets found to date have been discovered using the Doppler tech- nique, which measures the reflex motion of the host star induced by the planets (Mayor & Queloz 1995; Marcy & Butler 1996). The diverse characteristics of these exoplanets are somewhat surprising. Many of them are similar in mass to Jupiter, but orbit much closer to their 1Carnegie Institution of Washington, Department of Terrestrial Magnetism, 5241 Broad Branch Rd.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • Ghost Imaging of Space Objects
    Ghost Imaging of Space Objects Dmitry V. Strekalov, Baris I. Erkmen, Igor Kulikov, and Nan Yu Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109-8099 USA NIAC Final Report September 2014 Contents I. The proposed research 1 A. Origins and motivation of this research 1 B. Proposed approach in a nutshell 3 C. Proposed approach in the context of modern astronomy 7 D. Perceived benefits and perspectives 12 II. Phase I goals and accomplishments 18 A. Introducing the theoretical model 19 B. A Gaussian absorber 28 C. Unbalanced arms configuration 32 D. Phase I summary 34 III. Phase II goals and accomplishments 37 A. Advanced theoretical analysis 38 B. On observability of a shadow gradient 47 C. Signal-to-noise ratio 49 D. From detection to imaging 59 E. Experimental demonstration 72 F. On observation of phase objects 86 IV. Dissemination and outreach 90 V. Conclusion 92 References 95 1 I. THE PROPOSED RESEARCH The NIAC Ghost Imaging of Space Objects research program has been carried out at the Jet Propulsion Laboratory, Caltech. The program consisted of Phase I (October 2011 to September 2012) and Phase II (October 2012 to September 2014). The research team consisted of Drs. Dmitry Strekalov (PI), Baris Erkmen, Igor Kulikov and Nan Yu. The team members acknowledge stimulating discussions with Drs. Leonidas Moustakas, Andrew Shapiro-Scharlotta, Victor Vilnrotter, Michael Werner and Paul Goldsmith of JPL; Maria Chekhova and Timur Iskhakov of Max Plank Institute for Physics of Light, Erlangen; Paul Nu˜nez of Coll`ege de France & Observatoire de la Cˆote d’Azur; and technical support from Victor White and Pierre Echternach of JPL.
    [Show full text]
  • Useful Constants
    Appendix A Useful Constants A.1 Physical Constants Table A.1 Physical constants in SI units Symbol Constant Value c Speed of light 2.997925 × 108 m/s −19 e Elementary charge 1.602191 × 10 C −12 2 2 3 ε0 Permittivity 8.854 × 10 C s / kgm −7 2 μ0 Permeability 4π × 10 kgm/C −27 mH Atomic mass unit 1.660531 × 10 kg −31 me Electron mass 9.109558 × 10 kg −27 mp Proton mass 1.672614 × 10 kg −27 mn Neutron mass 1.674920 × 10 kg h Planck constant 6.626196 × 10−34 Js h¯ Planck constant 1.054591 × 10−34 Js R Gas constant 8.314510 × 103 J/(kgK) −23 k Boltzmann constant 1.380622 × 10 J/K −8 2 4 σ Stefan–Boltzmann constant 5.66961 × 10 W/ m K G Gravitational constant 6.6732 × 10−11 m3/ kgs2 M. Benacquista, An Introduction to the Evolution of Single and Binary Stars, 223 Undergraduate Lecture Notes in Physics, DOI 10.1007/978-1-4419-9991-7, © Springer Science+Business Media New York 2013 224 A Useful Constants Table A.2 Useful combinations and alternate units Symbol Constant Value 2 mHc Atomic mass unit 931.50MeV 2 mec Electron rest mass energy 511.00keV 2 mpc Proton rest mass energy 938.28MeV 2 mnc Neutron rest mass energy 939.57MeV h Planck constant 4.136 × 10−15 eVs h¯ Planck constant 6.582 × 10−16 eVs k Boltzmann constant 8.617 × 10−5 eV/K hc 1,240eVnm hc¯ 197.3eVnm 2 e /(4πε0) 1.440eVnm A.2 Astronomical Constants Table A.3 Astronomical units Symbol Constant Value AU Astronomical unit 1.4959787066 × 1011 m ly Light year 9.460730472 × 1015 m pc Parsec 2.0624806 × 105 AU 3.2615638ly 3.0856776 × 1016 m d Sidereal day 23h 56m 04.0905309s 8.61640905309
    [Show full text]