Goolsby, Charles M.; Obasun, Dan A

Total Page:16

File Type:pdf, Size:1020Kb

Goolsby, Charles M.; Obasun, Dan A DOCUMENT RESUME ED 114 296 95 SE 019 977 AUTHOR Goolsby, Charles M.; Obasun, Dan A. TITLE Teacher's Guide to Laboratory Activities'for Biology. INSTITUTION Institute for Services to Education, Inc., Washington, D.C. SPONS AGENCY National Inst. of Education (DREW), Washington, D.C.; National Science Foundatimi, Washington, 'D.C.`; Office of Education (DHEW), Washington, D.C. Bureau of Research. BUREAU NO BR-7-0867 PUB DATE CONTRACT 0EC-0-8-070867-0001 NOTE 165p.; Appendix material frOm FD 084 936. Related documents are SE 019 (475 and 976 FDPS PRICE MF-$0.76 HC-$8.24 Plus Postage DESCRIPTORS *Biology; *College, Science; Higher Education; Instructional Materials; Laboratory Experiments; *Laboratory Manuals; *SCience Activities';'Science Education; *Teaching Guides; UndergtaduateStudy IDENTIFIERS National Science Foundation; *Thirteen College. Curriculum Program ABST ?ACT This guide is prepared for teachers who have students using the laboratory manual, "Laboratory Activities for Biology:" The publication cbntains some introductory remarks for teachers, lists of materials and equipment, methods of making solutions and other preparations, suggestions for introductory discussions with the class, and procedures for doing the various exercises. The second section of this work is devoted to a guide to the individual student experiments. (Author/CP) .1 *********************************************************************** Documents acquired by ERIC include many informal unpublished * materials not available from other sources. ERIC makes every effort * * to obtain +he best copy available. Nevertheless, items of marginal * * reproducibility are often encountered and this affects the quality * * of the microfiche and hardcopy reproductions ERIC makes available * * via the EPIC Document Reproduction Service (ED?S). EDRS is not * responsible for the quality of the original document. Reproductions * * supplied by'EDPS are the best that can be made from the original. * *********************************************************************** I ".1 1.1.wk,,,,f 0. .4 4. J , Iv . Jf Copyright 1970 by the Ins.titue for Services to Education,2001 S Street, washington, D.C. No part of this material may be reproduced inany form whatsoever without the Opress written consent of the Institutefor Services,to Education. The preparation of this manual was"supported inpart, by the National Science Foundation and the United States Office Of Education. , 4 . INSTITUTEFOR SERVICESPTO EDUCATION,INC. 4 . TEACHER'S GUIDE TO LABORATORY ACTIVITIES FOR BIOLOGY The Thirteen Colleges Curriculum PrOgrani The Five College Consortium r CHARLES M. GOOLSBY, SeniorProgram Msociate for Biology Institute'for Services to 'Education Washington, D, C. and Professor of Biology, Northeastern University, Boston, Ma&s. DAN A: OBASUN, M.S. Program Associate for Biology institute for Services to Education Washington, D. C. 1 .1-970 4 Me ABOUT THE INSTITUTE FOR SERVICES TO EbUCATION k \ The Institute for Services to Educationas incorporated as a non -profit organization in 1965 and rece"ived'a basic graYh.from the Carnegie Corporation , of New York. The organization is founded on the principle that:education today requires a fresh examination of what .is worthteaching and bow to teach It. ISE undertakes a variety of educational, tasks, working cooperativelywith other educational institutions, und grantsfrom government agenc4es And pri'ate foundations. ISE is a catalyst for change. It doesnotjust produce educational materials or techniques thatare innovative; it develops, jn c'oopqra ion with teachers and administrators, procedures for effectivein:- stallat ion of successful ma,terialsted techniquesin the colleges,' ISE is headed by Dr. Elias Blake, Jr.,,a forMer teacherand f staffed by'college teachers with experience in working withdisadvantaged -youth and Bla,ck youth in educational settings both in predomiriantlyBlack and predominantly white colleges' and schools. I ISE's Board of:Directorp consists ofpersons in the higher education system with histories of involvement in curriculum change. The Board members are: Hermah Branson President, Lincoln University Kingman Brewster, President, Yale University Donald, Brown The Center for Research on Learning and Teaching, University of Michigan Arthur P. Davis Graduate Professor, English, Howard University Alexander Heard Chancellor, Vanderbilt, University Vivian Henderson President, Clark College. C. Vann Woodward Professor of History, Yale University Carl J. Dolce Dean, School of Education, North Caro- lina ,State University Martin Jenkins Director, Urban Affairs, American Council on Education \Herbert Longnecker President, 'Mane University Samuel Nabrit Executive Director, Southern Fellow- . ship Fund, Atlanta, Georgia Otis Singletary Ch_irman of the Board.; TheBoston COPT: pany, Boston, Massachusetts Franklin Ford Dean, Faculty of Arts and Sciences, Harvard University Arthur Singer President, Sloah Fpndation, New York, New York Stephen Wright Consultant to Preident of CEEB, Jerrold Zacharias Professor of Physics, Nssa.chusetts Institute of Technology .1 I i ABOUT THE THIRTEEN COLLEGE CURRICULUM PROGRAM From 1967 to-the present, ISE has been working cooperatively, with the Thilt..,n4ollege Consortium in developinc the Thirteen-College Curriculum rograr.,The Thirteen- College CurriCulas Program is an educational experiment -A includes developing new curricular materials for the entire freshmen v.ar of college in the areas of English, mathematics, social science, physical ,c.Lencc,\and biolooy and two sophomore year courses, humanities and philosophy. f,rogram is designed to reduce the attrition rate of.enteeing freshmen , "trough well thought-out, new curricular materials, new teaching styles, and new,faculty arrangements for instruction. In addition, the program seeks to alter the educational pattern of the'institutions*involved by changing blocks pf courses rdther.than by developing single cOurses. In this sense, the Thirteen College Curriculum Program is "viewed not only as a curriculum program with a consistent set of-academic goals for the separate courses, but also as a vehicle to produce new and pertinent educational' changes within the consortium institutions. At ISE, the prograis directed. by Dr. Frederick S. Humphries, Vice-President. The curricular developments for the specific. courses of the progrAm are provided by the followingyersons: Course ISE STAFF Jo English Miss Carolyn Fitchett Miss Joan Murrell Social ScienCe Dr. George King Mathematics , Dr. Beauregard Stubblefield Mr. Bernis Barnes Physical ,Science Dr: Leroy Colquitt Biology, Dr. Charles Goolsby Mr. Daniel Obasun Humanities Mr. Clifford Johnson Philosophy Mr. Conrad Snowden Miss Valerie Simiiis The curriculum staff is assisted in the generation of new educational ideas and teaching strategies by teachers in the participating colleges and outside consultants. E4ch of the curriculuni areas has its own advisory committee, with members drawn from distinguished scholars in the field but outside the program. The number of colleges participating in the program has grown from the original thirteen of 1967 to nineteen in 1970. The original thirteen tolleges are: Alabama A and M College Huntsville, Alabama Bennett College Greensboro, North Carolina Bishop College Dallas, Texas Clark College Atlanta, Georgia Florida A and M University TallahassId., Florida Jackson State College Jackson, Mississippi Lncoln University Lincoln University, Pennsylvania I h. Norfolk State College Norfolk, Virginia North Carblina A and T State UnWersity Greensboro, North Carolina Southern UDiversity' Baton Rouge, Louisiana Talla:degaTollege Talladega,rAlabama Tennessee State University Nashville, Tennessee Voorhees. College 'Denmark, South Carolina' A fourteenth college joined this consortium in 1968', although,lt is still called the Thirteen-College Consortium. The fourteenth rnember.is Mary Holmes Junior College West Point, Mississippi -In 1970, five more colleges joined the effort although linkingup as a separate consortium. The members of the Five-College Consortium are: Elizdbeth City State University Elizabeth City, North Carolina' Langston University Langston, Oklahoma Southern University at Shreveport Shrevepok., Louisiana Saint Augustine's College Raleigh, North Carolina Texas Southern-University Houston, Texas 4 Po, 140 4 494 PARTICIPATING TEACHERS The biology teachers who have particpated in this development through the summer of 1970 are: 'ALABAMA A & M COLLEGE:Jimmie L. Cal, M.Ed. (1967-1970), Rather Brown. M.S. (1970- ), George Grayson; M.S. (1970S) 'BENNETT COLLEGE: Perry V. Mack,M.S. (1967-' ) BISHOP COLLEGE: Willie M. Clark, M.S. (1967-1970)*, Mrs. Versia Lindsay Lacy, M.S. (1970- ), In the Modified-ISE course: Wasi M. Siddillui, Ph.D. (1969- ), Herbert Alexander, M.S. (1969-), Ehsan A. Syed, M.S., M.S. (1969- ), Mrs. Rose W. Burke, M.A. (1969 - 1970). CLARK COLLEGE: Martin. J. Carey, M.S. (1967- ), F. Rusinko, M.S. .(1970S) FLORIDA A & M UNIVERSITY: L6Uig'Stallworth, AA.S. (1967-1969), Purcell B. Bowser,. M.S. (1969-1970), Mrs. Irene R. Clark, M.Ed. (1970- ) JACKSON STATE COLLEGE: Robert J. Anthony,, M.S., M.Ed. (1967- ), Mrs. B. Henderson, M.S. (1970S) 'LINCOLN UNIVERSITY: Harold C. Banks, M.S. (1967-1968, 1969- ) NORFOLK STATE COLLEGE: Ruth E. Churwin, M.A. (1967-1969),Mrs. Irene R. Clark, M./Ed. (1969-1970), Mrs. Robin M. Griffith, M.A.:. M.A.T. (1970- ) NORTH CAROLINA A & T STATE UNIVERSITY: 'Mrs.-Elizabeth D. Clark, M.S. (1967- ) SOUTHERN UNIVERSITY1 Bacon Rouge,
Recommended publications
  • Origin of Life Characteristics of Life Lab Wax Paper Toothpicks Hand
    Unit 1: Origin of Life Characteristics of Life Lab Wax paper Toothpicks Hand lens Sugar Warm Water Plastic bottles Balloons (15 inch) Measuring spoons Measuring cups Plastic funnels Glucose strips Watches or timers Yeast Food coloring Unit 2: Large Biological Molecules Organic Compounds Lab Unlabeled sucrose, lactose or glucose Water Hot plate Vegetable oil Butter or margarine Iodine (IKI) Sudan stain Biuret reagent Assortment of foods containing starch, sugar and/or lipids Unit 3: Membranes & Enzymes Diffusion Lab Clear cups Plastic funnels Dialysis tubing 15% glucose/1% starch solution Medicine cups or small beakers Plastic pipets Glucose strips String Distilled water Starch indicator (IKI) Osmosis Lab Clear cups Dialysis tubing Medicine cup or small beaker String Distilled water 0.2 M sucrose solution 0.4 M sucrose solution 0.6 M sucrose solution 0.8 M sucrose solution 1.0 M sucrose solution Marking pencils Labeling tape Calculators Paper towels Balances Unit 4: Genes DNA Extraction Lab Plastic cups Sports drink, such as gatorade 15 ml test tube 3 ml graduated plastic pipets Microcentrifuge tubes String Liquid soap 70% ethanol Bucket of ice or freezer Scissors Marking pencil or labels Test tube racks Unit 5: Energy Processing Cellular Respiration Lab Plastic cups At least 2 carbohydrates, such as sucrose, glucose, lactose and/or starch Balloons Yeast Hot plates Balances Beakers Water Thermometers String Rulers Photosynthesis Lab pH paper 50 ml test tubes Elodea 250 ml graduated cylinders Sodium bicarbonate (baking soda) Balances Plastic funnels Distilled water Light source Beakers Stopwatches Test tube racks Weighing dishes or weigh paper Unit 6: Prokaryotes & Viruses Gram Stain Lab Microscopes Microscope slides and cover slips Marking pencils Inoculation loops Bunsen burners Bacterial colonies Agar plates Small washbasins or bowls Crystal violet stain Gram’s iodine Safranin stain Alcohol decolorizing agent Blotting paper Unit 7: Eukaryotes & Gene Expression Animal vs.
    [Show full text]
  • STAINING TECHNIQUES — Staining Is an Auxiliary Technique Used in Microscopy to Enhance Contrast in the Microscopic Image
    STAINING TECHNIQUES Staining is an auxiliary technique used in microscopy to enhance contrast in the microscopic image. Stains or dyes are used in biology and medicine to highlight structures in biological tissues for viewing with microscope. Cell staining is a technique that can be used to better visualize cells and cell components under a microscope. Using different stains, it is possible to stain preferentially certain cell components, such as a nucleus or a cell wall, or the entire cell. Most stains can be used on fixed, or non-living cells, while only some can be used on living cells; some stains can be used on either living or non-living cells. In biochemistry, staining involves adding a class specific (DNA, lipids, proteins or carbohydrates) dye to a substrate to qualify or quantify the presence of a specific compound. Staining and fluorescence tagging can serve similar purposes Purposes of Staining The most basic reason that cells are stained is to enhance visualization of the cell or certain cellular components under a microscope. Cells may also be stained to highlight metabolic processes or to differentiate between live and dead cells in a sample. Cells may also be enumerated by staining cells to determine biomass in an environment of interest. Stains may be used to define and examine bulk tissues (e.g. muscle fibers or connective tissues), cell populations (different blood cells) or organelles within individual cells. Biological staining is also used to mark cells in flow cytometry, flag proteins or nucleic acids on gel electrophoresis Staining is not limited to biological materials, it can also be used to study the morphology (form) of other materials e.g.
    [Show full text]
  • Us 2017 / 0372471 A1
    US 20170372471A1 ( 19) United States ( 12 ) Patent Application Publication (10 ) Pub. No. : US 2017 /0372471 A1 EURÈN (43 ) Pub . Date : Dec . 28 , 2017 ( 54 ) METHOD AND SYSTEM FOR DETECTING (52 ) U . S . CI. PATHOLOGICAL ANOMALIES IN A CPC .. .. .. G06T 7 /0012 (2013 . 01 ) ; G06K 9 /628 DIGITAL PATHOLOGY IMAGE AND ( 2013 .01 ) ; G06K 9 /6256 ( 2013 .01 ) ; G06T METHOD FOR ANNOTATING A TISSUE 2207 /20132 ( 2013 .01 ) ; G06K 2209 / 05 SLIDE ( 2013 .01 ) ; GO6T 2207 /30024 ( 2013 . 01 ) ; GO6T 2207 / 30096 ( 2013. 01 ) ; G06T 2200 / 24 ( 71 ) Applicant: ContextVision AB , LINKOPING (SE ) ( 2013 .01 ) (57 ) ABSTRACT ( 72 ) Inventor: Kristian EURÈN , VASTERAS (SE ) A method for annotating a tissue slide image , a system and a method performed by a computing system for detecting ( 73 ) Assignee : ContextVision AB , LINKOPING (SE ) pathological anomalies in a digital pathology image are disclosed . The method performed by a computing system for detecting pathological anomalies in a digital pathology (21 ) Appl . No .: 15 /195 ,526 image includes providing a digital pathology image to the computing system and analyzing the digital pathology ( 22 ) Filed : Jun . 28 , 2016 image using an identification module arranged on the com puting system . The identification module uses a machine learning module to execute recognizing an object containing Publication Classification an abnormal image pattern using an identification model (51 ) Int. CI. loaded in said identification module and identifying whether GOOT 7700 ( 2006 .01 ) the abnormal image
    [Show full text]
  • Snomed Ct Dicom Subset of January 2017 Release of Snomed Ct International Edition
    SNOMED CT DICOM SUBSET OF JANUARY 2017 RELEASE OF SNOMED CT INTERNATIONAL EDITION EXHIBIT A: SNOMED CT DICOM SUBSET VERSION 1.
    [Show full text]
  • Microtechnique I Presented by Dr: Safia Mohammed Hassan What Is Cellular Staining?
    Microtechnique I Presented by Dr: Safia Mohammed Hassan What is Cellular Staining? Cell staining is a technique that can be used to better • visualize cells and cell components under a microscope, one can preferentially stain certain cell components, such as a nucleus or a cell wall, or the entire cell. Most stains can be used on fixed, or non- living cells, while only some can be used on living cells; some stains can be used on either living or non- living cells. Why Stain Cells Biological tissue has very little variation in colures/shades when viewed using either an ordinary light (optical) microscope or an electron microscope. So staining biological tissues is done to both: increase the contrast of the tissue also highlight some specific features of interest Depending on the type of tissue and the stain used Dye Structure and Colour The components involved in histological staining are dyes and proteins. * The fundamental process involved is the chemical bonding between the carboxyl groups of one and the amino groups of the other. * The commonest bonds involved are ionic bonds, although there are exceptions especially in the case of nuclear staining of DNA. & The use of colour to identify individual components of tissue sections. Why dyes are coloured Colour in dyes is invariably explained as a • consequence of the presence of aChromophore. Since, by definition, dyes are aromatic compounds their structure includes aryl rings which have delocalised electron systems. These are responsible for the absorption of electromagnetic radiation of varying wavelengths, depending on the energy of the electron clouds. An aryl group is a functional group derived from a simple aromatic ring compound where one hydrogen atom is removed from the ring –C=C– –C=N– –C=O– –N=N– –NO2 Quinoid rings Auxochrome; Auxochromes are groups which attach to non • ionising compounds yet retain their ability to ionise –NH3 –COOH –HSO3 –OH While this definition is largely correct, • it is also inadequate.
    [Show full text]
  • Special Stains Iron/Hemosiderin Prussian Blue
    Special stains Iron/Hemosiderin Prussian blue Lipids Sudan stain (Sudan II, Sudan III, Sudan IV, Oil Red O, Sudan Black B) Carbohydrates Periodic acid-Schiff stain Amyloid Congo red Gram staining (Methyl violet/Gentian violet, Safranin) · Ziehl-Neelsen Bacteria stain/acid-fast (Carbol fuchsin/Fuchsine, Methylene blue) · Auramine- rhodamine stain (Auramine O, Rhodamine B) trichrome stain: Masson's trichrome stain/Lillie's trichrome (Light Green SF yellowish, Biebrich scarlet, Phosphomolybdic acid, Fast Green Connective tissue FCF) Van Gieson's stain H&E stain (Haematoxylin, Eosin Y) · Silver stain (Gömöri methenamine Other silver stain, Warthin–Starry stain) · Methyl blue · Wright's stain · Giemsa stain · Gömöri trichrome stain · Neutral red · Janus Green B Hematoxylin + Eosin (H & E ) הצביעה השגרתית המבוצעת בחתכי רקמה המטוקסילין – צבע בסיסי המתחבר לחומצות הגרעין אאוזין – צבע חומצי המתחבר לקצה הבסיסי של החלבונים בציטופלסמה Pas stain Demonstrate : • Glycogen • Basement membranes • Neutral mucosubstance The GMS Staining Kit is used to demonstrate polysaccharides in the cell walls of fungi and other organisms. This stain is primarily used to distinguish pathogenic fungi such as Aspergillus and Blastomyces and other opportunistic organisms such as Pneumocystis carinii Giemsa Stain The Giemsa is used to differentiate leukocytes in bone marrow and other hematopoietic tissue (lymph nodes) as well as some microorganisms (Helicobacter pylori). The Elastic Staining Kit is used to demonstrate elastic fibers in tissue sections The Mucicarmine Staining
    [Show full text]
  • Histochemical Reactions in Vertebrate Testes Larry Fred Cavazos Iowa State College
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1954 Histochemical reactions in vertebrate testes Larry Fred Cavazos Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Animal Sciences Commons, Physiology Commons, and the Veterinary Physiology Commons Recommended Citation Cavazos, Larry Fred, "Histochemical reactions in vertebrate testes " (1954). Retrospective Theses and Dissertations. 13607. https://lib.dr.iastate.edu/rtd/13607 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps.
    [Show full text]
  • Findings from a Hedgehog Paola Cazzini1
    Findings from a Hedgehog Paola Cazzini1 Contributors: Sheryl Coutermarsh-Ott1, Laila Proença2, Stephen Divers2, Uriel Blas-Machado1-3, Bridget Garner1 1. Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States; 2. Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, United States; 3. Georgia Laboratory Animal Diagnostic Services, Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA, United States; SIGNALMENT: 3-year-old African pigmy hedgehog HISTORY AND CLINICAL FINDINGS: History of anorexia, weakness, weight loss, behavioral change, ataxia, and cervical and abdominal masses. Skin mites were observed. LABORATORY DATA: Table 1 CBC 3/8 Pre-treatment 3/12 Post-treatment Reference interval* Units Hct 36.7 31.9 36 +/- 7 (22-64) % Hgb 13.7 11.1 12 +/- 2.8 (7-21.1) g/dl Rbc 4.3 3.67 6+/- 2 (3-16) x106/µl MCV 85.3 87 67 +/- 9 (41-94) fl MCHC 37.3 34.9 34 +/- 5 (17-48) g/dl Ptl 137 142 226 +/- 108 (60-347) x103/µl MPV 11.6 10 n/a fl WBC 85.4 2.0 11 +/- 6 (3-43) x103/µl Seg (30%) 25.6 (11%) 0.220 5.1 +/- 5.2 (0.6-37.4) x103/µl Band (9%) 7.7 (0%) 0 n/a x103/µl Lymph (3%) 2.6 (32%) 0.6 4 +/- 2.2 (0.9-13.1) x103/µl Mono (0%) 0 (6%) 0.1 0.3 +/- 0.3 (0-1.6) x103/µl Eos (9%) 7.7 (17%) 0.3 1.2 +/- 0.9 (0-5.1) x103/µl Baso (3%) 2.562 (2%) 0.04 0.4 +/- 0.3 (0-1.5) x103/µl Others (46%) 39.284 (32%) 0.6 0 x103/µl nRBC 2 3 n/a /100 WBC * Reference intervals are from “Exotic animal formulary”, by Carpenter J.W., Elsevier 4th ed.
    [Show full text]
  • The Importance of Stool Tests in Diagnosis and Follow-Up of Gastrointestinal Disorders in Children
    Review / Derleme The importance of stool tests in diagnosis and follow-up of gastrointestinal disorders in children Çocuklarda sindirim sistemi hastalıklarının tanı ve izleminde dışkı incelemelerinin yeri Erhun Kasırga Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Celal Bayar University Faculty of Medicine, Manisa, Turkey Cite this article as: Kasırga E. The importance of stool tests in diagnosis and follow-up of gastrointestinal disorders in children. Turk Pediatri Ars 2019; 54(3): 141–8. Abstract Öz Stool is not just a simple waste material. Some stool tests can be Dışkı yalnızca basit bir atık değildir. Bazı dışkı testleri sindirim sistemi easily used in primary care in the differential diagnosis of disorders enfeksiyonları, malabsorpsiyon sendromları ve inflamatuvar bağırsak such as gastrointestinal infections, malabsorption syndromes, and hastalıkları gibi hastalıkların ayırıcı tanısında birinci basamak sağlık inflammatory bowel diseases. Stool tests can prevent unnecessary hizmetlerinde kolaylıkla kullanılabilir. Dışkı testleri sayesinde gerek- laboratory investigations. Stool analyses include microscopic ex- siz laboratuvar incelemeleri önlenebilir. Dışkı incelemeleri arasında amination, chemical, immunologic, and microbiologic tests. Stool mikroskobik inceleme, kimyasal, immünolojik ve mikrobiyolojik test- samples can be examined for leukocytes, occult blood, fat, sugars ler vardır. Dışkı örneği; lökosit, gizli kan, yağ, indirgeyici maddeler (reducing substances), pH, pancreatic enzymes, alpha-1 antitrypsin, olarak adlandırılan şekerler, pH, pankreas enzimleri, alfa-1 antitripsin, calprotectin, and infectious causes (bacteria, viruses, and parasites). kalprotektin ve enfeksiyöz nedenler (bakteri, virüs ve parazitler) açı- Stool should also be macroscopically checked in terms of color, con- sından incelenebilir. Dışkı renk, kıvam, miktar, şekil, koku ve mukus sistency, quantity, shape, odor, and mucus. varlığı açısından da makroskobik olarak kontrol edilmelidir.
    [Show full text]
  • Oil Red O Staining Protocol Paraffin
    Oil Red O Staining Protocol Paraffin Is Taddeo always imbibitional and divisionary when deceive some ascidians very virtually and antisocially? operatingBefuddled Teador or muscular, bathing Moises quite humblynever shop but bottlenecksany katakana! her Combining divings gloriously. Maynard still routinizes: hulky and Intended for paraffin and oil red o staining protocol paraffin sections prepared by oil red. Duke university health and oil red o staining protocol paraffin. FFPE sections of truth human condition were dewaxed, rehydrated and concept to antigen retrieval. Clipboard, Search easily, and supply other advanced features are temporarily unavailable. Oil Red O Staining Solution. It overall the combination of wish these factors that leads to the improvement in consistent quality described here. Also, useful plasma stain. Why do I explode a TMA? Observations on site you refer your free cholesterol levels and oil red o staining protocol paraffin sections to consider multiple rinses and interpreting pathologist to be sure not limited samples and tissue samples, uams center for? Movat stain is could when studying the reserve, blood vessels, and connective tissues. PRINCIPLE Staining with oil-soluble dyes is based on the greater solubility of large dye. Staining Fresh, Unfixed, Unembedded and Undercalcified Bone Sections. However, the cellular origin in adult cardiac fat wife is unknown. Browsers that do my support TLS may make be accessible. Improving the Method for the Demonstration of Adenosine Triphosphatase. Oil red magenta color imparted to reddish purple due to the flavonoid quercetin, like confocal microscopy including immersion fixation step sections for individual users in the. FC levels, and increased the collagen fibers in atherosclerotic plaques.
    [Show full text]
  • S. S. College, Jehanabad Department: Zoology Class: M.Sc
    S. S. College, Jehanabad Department: Zoology Class: M.Sc. Semester II Subject: Zoology Topic: Principles and Methods of Staining Mode of teaching: Google classroom & WhatsApp Date & Time: 22.07.2020 & 10:30 Teacher: Praveen Deepak To join Department’s group, students can use following link https://chat.whatsapp.com/EHuHNfQzoAzJBMFNJvsjQx or scan QR Code WhatsApp No.: +91 75360 68068 PRINCIPLE AND METHODS OF STAINING ____________________________________________________________ Staining of histological slides is an important technique that is used for the visualization of biological structures. As such, it is concerned with the identification and distribution of various chemical components of tissues through the use of stains, indicators as well as microscopy. Without the proper use of histochemistry techniques, it is hard and even, somewhere almost impossible to study structural details of cells, localization of subcellular structures and localization of different subcellular granules under microscope. Only fixation of tissue specimen is not enough to visualize the structure and chemical characteristics of that tissue specimen, the process only fixes the tissue in their almost natural state with least deterioration. Normal, tissue section is colourless as the fixed protein has the same refractive index as that of glass. Dyes are used to impart colour to the different components of the tissue for the interpretation. A chromogenic dye absorbs the light of particular wavelength of the white light representing a specific colour and emits the light containing the rest of the colour. Therefore we see a coloured light from the dye that helps in imparting contrast to the substance which is a subject of study from their background.
    [Show full text]
  • Roles of Thrombus and Collagen Remodeling in Intramural Healing of Dissecting Aortic Aneurysms
    Biomechanical Characterization of the Atherosclerotic Burden in Genetically Modified Mice with a special focus on the Roles of Thrombus and Collagen Remodeling in Intramural Healing of Dissecting Aortic Aneurysms A FINAL REPORT TO THE AUSTRIAN MARSHALL PLAN FOUNDATION by D.I. ANDREAS JÖRG SCHRIEFL for receiving funding for a Visiting Assistant in Research position from June – September 2011 at the Biomedical Engineering Faculty at the Yale School of Engineering & Applied Science Graz, Austria, November 2011 TABLE OF CONTENTS PREFACE ............................................................................................................. 3 ACKNOWLEDGEMENTS ......................................................................................... 4 PAPER TITLE PAGE ............................................................................................... 6 ABSTRACT ........................................................................................................... 7 INTRODUCTION ................................................................................................... 8 METHODS .......................................................................................................... 10 RESULTS ........................................................................................................... 13 DISCUSSION ...................................................................................................... 19 REFERENCES ....................................................................................................
    [Show full text]