An X-Ray Investigation of the NGC346 Field in the SMC (1): the LBV

Total Page:16

File Type:pdf, Size:1020Kb

An X-Ray Investigation of the NGC346 Field in the SMC (1): the LBV An X-ray investigation of the NGC 346 field in the SMC (1) : the LBV HD 5980 and the NGC 346 cluster Y. Naz´e1,8, J.M. Hartwell2, I.R. Stevens2, M. F. Corcoran3, Y.-H. Chu4, G. Koenigsberger5, A.F.J. Moffat6, V.S. Niemela7 ABSTRACT We present results from a Chandra observation of the NGC 346 cluster. This cluster contains numerous massive stars and is responsible for the ionization of N66, the most luminous H ii region and the largest star formation region in the SMC. In this first paper, we will focus on the characteristics of the main objects of the field. The NGC 346 cluster itself shows only relatively unabs 34 −1 faint X-ray emission (with LX ∼ 1.5 × 10 erg s ), tightly correlated with the core of the cluster. In the field also lies HD 5980, a LBV star in a binary (or possibly a triple system) that is detected for the first time at X-ray energies. The star is X-ray bright, with an unabsorbed unabs 34 −1 luminosity of LX ∼ 1.7 × 10 erg s , but needs to be monitored further to investigate its X-ray variability over a complete 19 d orbital cycle. The high X-ray luminosity may be associated either with colliding winds in the binary system or with the 1994 eruption. HD 5980 is surrounded by a region of diffuse X-ray emission, which is a supernova remnant. While it may be only a chance alignment with HD 5980, such a spatial coincidence may indicate that the remnant is indeed related to this peculiar massive star. Subject headings: (galaxies:) Magellanic Clouds–X-rays: individual (NGC 346, HD 5980) 1. Introduction 1Institut d’Astrophysique et de G´eophysique, Universit´e de Li`ege, All´ee du 6 Aoˆut 17, Bat. B5c, B 4000 - Li`ege The Small Magellanic Cloud (SMC) is an irreg- (Belgium); [email protected] ular galaxy at a distance of 59 kpc (Mathewson, 2 School of Physics & Astronomy, University of Ford, & Visvanathan 1986) that forms a pair Birmingham, Edgbaston, Birmingham B15 2TT (UK); [email protected], [email protected] with the Large Magellanic Cloud (LMC). Both 3 are satellites of our own Galaxy. The interstellar arXiv:astro-ph/0208289v1 15 Aug 2002 Universities Space Research Association, High En- ergy Astrophysics Science Archive Research Center, God- extinction towards the Magellanic Clouds is low, dard Space Flight Center, Greenbelt, MD 20771; corco- allowing studies of the X-ray sources to be under- [email protected] taken with clarity. 4Astronomy Department, University of Illinois, 1002 W. Green Street, Urbana, IL 61801; [email protected] 5Instituto de Astronom´ıa, Universidad Nacional Previous X-ray observations of the SMC have Aut´onoma de Mexico, Apdo. Postal 70-264, 04510, Mexico been made with the Einstein Observatory, ASCA D.F. (Mexico); [email protected] and ROSAT. These observations included surveys 6 D´epartement de physique, Universit´e de Montreal, of the point source population (Kahabka et al. C.P. 6128, Succ. Centre-Ville, Montreal, QC, H3C 3J7 (Canada); moff[email protected] 1999; Schmidtke et al. 1999; Haberl et al. 2000; 7Facultad de Ciencias Astron´omicas y Geof´ısicas, Sasaki, Haberl, & Pietsch 2000; Yokogawa et al. Universidad Nacional de la Plata, Paseo del 2000) and in particular studies of the properties Bosque S/N, B19000FWA La Plata (Argentina); of the X-ray binary population (Haberl & Sasaki [email protected] 8 2000). The recent launch of Chandra, however, Research Fellow F.N.R.S. provides an opportunity to study the SMC with a far greater sensitivity and spatial resolution than 1 ever before. 2. The Observations and Data Analysis 2.1. X-ray Observations We have obtained a Chandra observation of the giant H ii region N66 (Henize 1956), the NGC 346 was observed with Chandra for the largest star formation region in the SMC, in XMEGA9 consortium on 2001 May 15–16 for order to study the young cluster NGC 346 and 100 ks (98.671 ks effective, ObsID = 1881, its interaction with the surrounding interstellar JD∼2452045.2d). The data were recorded by medium. This cluster contains numerous massive the ACIS-I0, I1, I2, I3, S2 and S3 CCD chips stars (Massey, Parker & Garmany 1989), of spec- maintained at a temperature of −120◦C. The data tral types as early as O2 (Walborn et al. 2002). were taken with a frame time of 3.241s in the faint The large number of massive stars is not the only mode. The exposure was centered on the cluster, feature of interest in this field. On the outskirts of with HD 5980 lying 1.9′ to the north-east of the NGC 346 lies the remarkable star HD 5980, which aimpoint on ACIS-I3. Our faintest sources have underwent a Luminous Blue Variable (LBV)-type fluxes of about 2 × 1032 erg s−1 (see paper II), eruption in 1994. This massive binary (or triple?) assuming a distance of 59 kpc for the SMC. system has been monitored and analysed for its varying spectral and photometric properties in We excluded bad pixels from the analysis, us- visible and UV wavelengths since the early 80’s ing the customary bad-pixel file provided by the (Koenigsberger et al. 2000; Sterken & Breysacher Chandra X-ray Center (CXC) for this particular 1997, and references therein). Previous X-ray ob- observation. We have searched the data for back- servations of NGC 346 (Inoue, Koyama, & Tanaka ground flares, which are known to affect Chandra 1983; Haberl et al. 2000) detected a bright ex- data, by examining the lightcurve of the total tended source around HD5980 which has been count rate, but no flares were found. Event Pulse attributed to a supernova remnant (SNR); how- Invariant (PI) values and photon energies were ever, the crude instrumental resolution prohibited determined using the FITS Embedded File (FEF) unambiguous detections of a point source associ- acisD2000-01-29fef piN0001.fits. ated with HD5980. In addition to HD5980, the young massive stars of NGC 346 and their inter- For long exposures, removing the afterglow acting winds are likely to produce X-ray emission, events can adversely affect the science analysis but have not been detected previously. The sen- (underestimation of the fluxes, alteration of the sitive, high-resolution Chandra observation of the 10 spectra and so on) . We thus computed a new NGC 346 field thus provides an excellent oppor- level 2 events file by filtering the level 1 file and tunity to study a variety of phenomena involving keeping the events with ASCA grades of 0, 2, 3, emission at X-ray energies. 4 and 6, but without applying a status=0 filter. Throughout this paper, we will use this new file In this paper, we will describe in § 2 the ob- for all scientific analysis. servations used in this study, then discuss the available data on NGC346, HD5980, and the ex- Further analysis was performed using the CIAO tended emission in § 3, 4, and 5, respectively. v2.1.2 software provided by the CXC and also Finally, conclusions are given in § 6. The second with the FTOOLS tasks. The spectra were anal- part of this work (Naz´eet al., paper II) will de- ysed and fitted within XSPEC v11.0.1 (Arnaud scribe the properties of the other sources detected 1996). In Fig. 1, we show a 3 color image of the in the field. Chandra data of the NGC 346 cluster, HD 5980 and its surroundings. We will discuss the features of this image further in later sections. 9http://lheawww.gsfc.nasa.gov/users/corcoran/xmega/xmega.html 10see caveat on http://asc.harvard.edu/ciao/caveats/acis cray.html 2 We have investigated problems due to Charge NGC 346 cluster has not been detected in X- Transfer Inefficiency (CTI). To remove these CTI rays until this Chandra observation. Even though effects, we used the algorithm of Townsley et al. NGC 346 lies near the joint of the four ACIS-I (2000). Checking several sources on different chips CCD chips and part of the cluster is lost in the and/or at different positions on each CCD, we con- gaps between CCDs, the X-ray emission from the cluded that the impact of the CTI was small and core of NGC 346 is unambiguously detected in the that it did not change significantly the spectral corner of the ACIS-I3 chip. The X-ray emission parameters found by using non-corrected data. appears extended with multiple peaks correspond- When a difference was apparently found, we dis- ing to the bright blue stars MPG 396, 417, 435, covered that the best fits found on corrected and 470, and 476(Fig. 3). As only ∼300 counts are de- non-corrected data gave similar χ2. As the work tected and the X-ray peaks are not well-resolved, of Townsley et al. (2000)is not yet an official we will analyze only the overall emission from the CXC product11, we chose to present here only the cluster. results of the non-corrected data. The total count rate of this emission in the 0.3 − 10.0 keV band is 3.04 ± 0.36 × 10−3 cnts s−1. 2.2. HST WFPC2 Images The spectrum of the NGC346 cluster was ex- ′′ ′′ Two HST WFPC2 observations of the N66 tracted from a square aperture of ∼45 ×45 with / NGC 346 region in Hα are available from the a carefully chosen background region, as close as STScI archives. They were taken on 1998 Sept.
Recommended publications
  • Wolf-Rayet Stars in the Small Magellanic Cloud II
    A&A 591, A22 (2016) DOI: 10.1051/0004-6361/201527916 Astronomy c ESO 2016 & Astrophysics Wolf-Rayet stars in the Small Magellanic Cloud II. Analysis of the binaries T. Shenar1, R. Hainich1, H. Todt1, A. Sander1, W.-R. Hamann1, A. F. J. Moffat2, J. J. Eldridge3, H. Pablo2, L. M. Oskinova1, and N. D. Richardson4 1 Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany e-mail: [email protected] 2 Département de physique and Centre de Recherche en Astrophysique du Québec (CRAQ), Université de Montréal, CP 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7, Canada 3 Department of Physics, University of Auckland, Private Bag, 92019 Auckland, New Zealand 4 Ritter Observatory, Department of Physics and Astronomy, The University of Toledo, Toledo, OH 43606-3390, USA Received 8 December 2015 / Accepted 30 March 2016 ABSTRACT Context. Massive Wolf-Rayet (WR) stars are evolved massive stars (Mi & 20 M ) characterized by strong mass-loss. Hypothetically, they can form either as single stars or as mass donors in close binaries. About 40% of all known WR stars are confirmed binaries, raising the question as to the impact of binarity on the WR population. Studying WR binaries is crucial in this context, and furthermore enable one to reliably derive the elusive masses of their components, making them indispensable for the study of massive stars. Aims. By performing a spectral analysis of all multiple WR systems in the Small Magellanic Cloud (SMC), we obtain the full set of stellar parameters for each individual component.
    [Show full text]
  • Luminous Blue Variables
    Review Luminous Blue Variables Kerstin Weis 1* and Dominik J. Bomans 1,2,3 1 Astronomical Institute, Faculty for Physics and Astronomy, Ruhr University Bochum, 44801 Bochum, Germany 2 Department Plasmas with Complex Interactions, Ruhr University Bochum, 44801 Bochum, Germany 3 Ruhr Astroparticle and Plasma Physics (RAPP) Center, 44801 Bochum, Germany Received: 29 October 2019; Accepted: 18 February 2020; Published: 29 February 2020 Abstract: Luminous Blue Variables are massive evolved stars, here we introduce this outstanding class of objects. Described are the specific characteristics, the evolutionary state and what they are connected to other phases and types of massive stars. Our current knowledge of LBVs is limited by the fact that in comparison to other stellar classes and phases only a few “true” LBVs are known. This results from the lack of a unique, fast and always reliable identification scheme for LBVs. It literally takes time to get a true classification of a LBV. In addition the short duration of the LBV phase makes it even harder to catch and identify a star as LBV. We summarize here what is known so far, give an overview of the LBV population and the list of LBV host galaxies. LBV are clearly an important and still not fully understood phase in the live of (very) massive stars, especially due to the large and time variable mass loss during the LBV phase. We like to emphasize again the problem how to clearly identify LBV and that there are more than just one type of LBVs: The giant eruption LBVs or h Car analogs and the S Dor cycle LBVs.
    [Show full text]
  • 14476 (Stsci Edit Number: 4, Created: Wednesday, September 7, 2016 4:28:02 PM EST) - Overview
    Proposal 14476 (STScI Edit Number: 4, Created: Wednesday, September 7, 2016 4:28:02 PM EST) - Overview 14476 - A collision reversal in HD 5980 Cycle: 24, Proposal Category: GO (Availability Mode: SUPPORTED) INVESTIGATORS Name Institution E-Mail Dr. Yael Naze (PI) (ESA Member) (Contact) Universite de Liege [email protected] Dr. D. John Hillier (CoI) University of Pittsburgh [email protected] Dr. Gloria Koenigsberger (CoI) (Contact) Universidad Nacional Autonoma de Mexico (UNAM) [email protected] Dr. Julian M. Pittard (CoI) (ESA Member) University of Leeds [email protected] Dr. Michael F. Corcoran (CoI) Universities Space Research Association [email protected] Dr. Gregor Rauw (CoI) (ESA Member) Universite de Liege [email protected] VISITS Visit Targets used in Visit Configurations used in Visit Orbits Used Last Orbit Planner Run OP Current with Visit? 01 (1) HD-5980 STIS/CCD 2 07-Sep-2016 17:28:00.0 yes CCDFLAT STIS/FUV-MAMA 2 Total Orbits Used ABSTRACT HD 5980 provides a unique laboratory for studying the properties of wind-wind collisions. It contains one of only two binary systems having a WR- star in orbit with a LBV. The latter star has been observed to undergo major changes in its wind structure over the past 35 years, implying changes in the geometry and emitting conditions of the wind-wind collision region. Ten years ago, when the LBV wind was very strong, XMM observations revealed X-ray emission consistent with the shock cone wrapping around the WR component. Since then, the wind strength has significantly declined, implying that the collision shock cone may be inverting its orientation.
    [Show full text]
  • Fundamental Parameters of Wolf-Rayet Stars VI
    Astron. Astrophys. 320, 500–524 (1997) ASTRONOMY AND ASTROPHYSICS Fundamental parameters of Wolf-Rayet stars VI. Large Magellanic Cloud WNL stars? P.A.Crowther and L.J. Smith Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK Received 5 February 1996 / Accepted 26 June 1996 Abstract. We present a detailed, quantitative study of late WN Key words: stars: Wolf-Rayet;mass-loss; evolution; fundamen- (WNL) stars in the LMC, based on new optical spectroscopy tal parameters – galaxies: Magellanic Clouds (AAT, MSO) and the Hillier (1990) atmospheric model. In a pre- vious paper (Crowther et al. 1995a), we showed that 4 out of the 10 known LMC Ofpe/WN9 stars should be re-classified WN9– 10. We now present observations of the remaining stars (except the LBV R127), and show that they are also WNL (WN9–11) 1. Introduction stars, with the exception of R99. Our total sample consists of 17 stars, and represents all but one of the single LMC WN6– Quantitative studies of hot luminous stars in galaxies are im- 11 population and allows a direct comparison with the stellar portant for a number of reasons. First, and probably foremost, parameters and chemical abundances of Galactic WNL stars is the information they provide on the effect of the environment (Crowther et al. 1995b; Hamann et al. 1995a). Previously un- on such fundamental properties as the mass-loss rate and stellar published ultraviolet (HST-FOS, IUE-HIRES) spectroscopy are evolution. In the standard picture (e.g. Maeder & Meynet 1987) presented for a subset of our programme stars.
    [Show full text]
  • The Wolf-Rayet + of Star Binary AB7: a Warmer in the Small Magellanic Cloud+)
    The Wolf-Rayet + Of star binary AB7: A Warmer in the Small Magellanic Cloud+) Manfred W. Pakull1) & Luciana Bianchi2) 1) Observatoire de Besançon, 25044 Besançon Cedex, France 2) Osservatorio Astronomico di Turino, 10025 Pino Torinese, Italy Summary Strong nebular Hell λ4686 recombination radiation (λ4686/Ηβ = 0.2) has recently been detected in the bright HII region N76 in the Small Magellanic Cloud by Testor & Pakull (1989). The rather symmetric intensity distribution suggests a nebular morphology which consists of a thick outer shell comprising the He*"1* and H+ ionization fronts and a central region of warm, highly ionized gas which is surrounded by a hollow inner shell. The source of the high nebular ionization is identified with the peculiar Wolf-Rayet + Of star spectroscopic binary AB7. Optical and UV spectra (cf. Figure) show in addition to hydrogen and helium absorption lines and the NIII λλ4634-41 complex from the Of star, only broad He II and weak NVemission lines due to the Wolf-Rayet companion. The absence of other diagnostic features qualifies the evolved component as a rare, high-excitation WN star (WN2 or WN1). Subtracting from the optical spectrum of AB7 suitably scaled spectra of SMC Ο stars up to the point that the absorption lines disappeared, suggests that the WN 1 component contributes about 30 % to the total optical light. ' 4000 4500 5000 5500 °' üoö ' iioö t7Ö5 üoö" Wavelength (A) WAVELENGTH (AI Optical and IUE spectra of the 06 IIIf+ WN1 binary AB 7 From the nebular λ4686 flux and the optical brightness of the WN1 star a black body Zanstra temperature of about 80 000 Κ and a luminosity of 106 Lo are derived.
    [Show full text]
  • The Wolf-Rayet + of Star Binary AB7: a Warmer in the Small Magellanic Cloud+)
    The Wolf-Rayet + Of star binary AB7: A Warmer in the Small Magellanic Cloud+) Manfred W. Pakull1) & Luciana Bianchi2) 1) Observatoire de Besançon, 25044 Besançon Cedex, France 2) Osservatorio Astronomico di Turino, 10025 Pino Torinese, Italy Summary Strong nebular Hell λ4686 recombination radiation (λ4686/Ηβ = 0.2) has recently been detected in the bright HII region N76 in the Small Magellanic Cloud by Testor & Pakull (1989). The rather symmetric intensity distribution suggests a nebular morphology which consists of a thick outer shell comprising the He*"1* and H+ ionization fronts and a central region of warm, highly ionized gas which is surrounded by a hollow inner shell. The source of the high nebular ionization is identified with the peculiar Wolf-Rayet + Of star spectroscopic binary AB7. Optical and UV spectra (cf. Figure) show in addition to hydrogen and helium absorption lines and the NIII λλ4634-41 complex from the Of star, only broad He II and weak NVemission lines due to the Wolf-Rayet companion. The absence of other diagnostic features qualifies the evolved component as a rare, high-excitation WN star (WN2 or WN1). Subtracting from the optical spectrum of AB7 suitably scaled spectra of SMC Ο stars up to the point that the absorption lines disappeared, suggests that the WN 1 component contributes about 30 % to the total optical light. ' 4000 4500 5000 5500 °' üoö ' iioö t7Ö5 üoö" Wavelength (A) WAVELENGTH (AI Optical and IUE spectra of the 06 IIIf+ WN1 binary AB 7 From the nebular λ4686 flux and the optical brightness of the WN1 star a black body Zanstra temperature of about 80 000 Κ and a luminosity of 106 Lo are derived.
    [Show full text]
  • Characterization of Solar X-Ray Response Data from the REXIS Instrument Andrew T. Cummings
    Characterization of Solar X-ray Response Data from the REXIS Instrument by Andrew T. Cummings Submitted to the Department of Earth, Atmospheric, and Planetary Sciences in partial fulfillment of the requirements for the degree of Bachelor of Science in Earth, Atmospheric, and Planetary Sciences at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2020 ○c Massachusetts Institute of Technology 2020. All rights reserved. Author................................................................ Department of Earth, Atmospheric, and Planetary Sciences May 18, 2020 Certified by. Richard P. Binzel Professor of Planetary Sciences Thesis Supervisor Certified by. Rebecca A. Masterson Principal Research Scientist Thesis Supervisor Accepted by . Richard P. Binzel Undergraduate Officer, Department of Earth, Atmospheric, and Planetary Sciences 2 Characterization of Solar X-ray Response Data from the REXIS Instrument by Andrew T. Cummings Submitted to the Department of Earth, Atmospheric, and Planetary Sciences on May 18, 2020, in partial fulfillment of the requirements for the degree of Bachelor of Science in Earth, Atmospheric, and Planetary Sciences Abstract The REgolith X-ray Imaging Spectrometer (REXIS) is a student-built instrument that was flown on NASA’s Origins, Spectral Interpretation, Resource Identification, Safety, Regolith Explorer (OSIRIS-REx) mission. During the primary science ob- servation phase, the REXIS Solar X-ray Monitor (SXM) experienced a lower than anticipated solar x-ray count rate. Solar x-ray count decreased most prominently in the low energy region of instrument detection, and made calibrating the REXIS main spectrometer difficult. This thesis documents a root cause investigation intothe cause of the low x-ray count anomaly in the SXM. Vulnerable electronic components are identified, and recommendations for hardware improvements are made to better facilitate future low-cost, high-risk instrumentation.
    [Show full text]
  • The Stellar Parameters of the SMC WR Binary HD 5980
    Wolf-Rayet Phenomena in Massive Stars and Starburst Galaxies Proceedings [AU Symposium No. 193, @1999 [AU K.A. van der Hucht, G. Koenigsberger & P.R.J. Eenens, eds. The stellar parameters of the SMC WR binary HD 5980 Jorg Schweickhardt' and Werner Schmutz/ 1Landessternwarte Koniqstuhl, D-69117 Heidelberg, Germany 2Institut fur Astronomie, ETH-Zentrum, CH-8092 Zurich, Switzerland Abstract. We present the temporal variation of the stellar parameters of the erupting star in HD 5980. We derive the effective temperature and radius from the observed changes of the visual magnitude. Our analysis is based on the assumption that the luminosity of the erupting star remained constant and that the brightness of the second star did not vary. 1. The determination of the stellar parameters T* and R* A simple method to derive the changes of the parameters T* and R* of a star is to analyze the variations of the visual magnitude My. Using Stefan-Boltzmann's law and the dependence of the observed flux, fA' on distance one gets oo 4 _ F Jo fAdA aT*- 1[' A fA . (1) Knowing the luminosity L ex Jooo fAdA and the visual magnitude My ex log fA' A == 5555 A, only the theoretical knowledge of the astrophysical flux FA emitted in the V band is needed to derive the temperature and the radius with equation (1). As a simple approximation we use here the Planck function BA(T*) for FA' If we want to apply this method to the binary system HD 5980, we need additional assumptions: (a) the LBV-like outburst in 1994 is the result of the eruption of only one star (star A, classified as an 071 star before eruption); (b) the luminosity of the erupting star remains constant with time; and (c) there is no variability of the companion (star B, WN 4).
    [Show full text]
  • Wolf-Rayet Spin at Low Metallicity and Its Implication for Black Hole
    Astronomy & Astrophysics manuscript no. vink-wr c ESO 2021 July 27, 2021 Wolf-Rayet spin at low metallicity and its implication for Black Hole formation channels Jorick S. Vink1, Tim J. Harries2 1 Armagh Observatory and Planetarium, College Hill, Armagh BT61 9DG, Northern Ireland, UK 2 Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK Preprint online version: July 27, 2021 ABSTRACT Context. The spin of Wolf-Rayet (WR) stars at low metallicity (Z) is most relevant for our understanding of gravitational wave sources such as GW 150914, as well as the incidence of long-duration gamma-ray bursts (GRBs). Two scenarios have been suggested for both phenomena: one of them involves rapid rotation and quasi-chemical homogeneous evolution (CHE), the other invokes classical evolution through mass loss in single and binary systems. Aims. The stellar spin of Wolf-Rayet stars might enable us to test these two scenarios. In order to obtain empirical constraints on black hole progenitor spin we infer wind asymmetries in all 12 known WR stars in the Small Magellanic Cloud (SMC) at Z = 1/5Z⊙, as well as within a significantly enlarged sample of single and binary WR stars in the Large Magellanic Cloud (LMC at Z = 1/2Z⊙), tripling the sample of Vink (2007). This brings the total LMC sample to 39, making it appropriate for comparison to the Galactic sample. Methods. We measure WR wind asymmetries with VLT-FORS linear spectropolarimetry, a tool uniquely poised to perform such tasks in extra- galactic environments. Results. We report the detection of new line effects in the LMC WN star BAT99-43 and the WC star BAT99-70, as well as the famous WR/LBV HD 5980 in the SMC, which might be evolving chemically homogeneously.
    [Show full text]
  • The Electric Sun Hypothesis
    Basics of astrophysics revisited. II. Mass- luminosity- rotation relation for F, A, B, O and WR class stars Edgars Alksnis [email protected] Small volume statistics show, that luminosity of bright stars is proportional to their angular momentums of rotation when certain relation between stellar mass and stellar rotation speed is reached. Cause should be outside of standard stellar model. Concept allows strengthen hypotheses of 1) fast rotation of Wolf-Rayet stars and 2) low mass central black hole of the Milky Way. Keywords: mass-luminosity relation, stellar rotation, Wolf-Rayet stars, stellar angular momentum, Sagittarius A* mass, Sagittarius A* luminosity. In previous work (Alksnis, 2017) we have shown, that in slow rotating stars stellar luminosity is proportional to spin angular momentum of the star. This allows us to see, that there in fact are no stars outside of “main sequence” within stellar classes G, K and M. METHOD We have analyzed possible connection between stellar luminosity and stellar angular momentum in samples of most known F, A, B, O and WR class stars (tables 1-5). Stellar equatorial rotation speed (vsini) was used as main parameter of stellar rotation when possible. Several diverse data for one star were averaged. Zero stellar rotation speed was considered as an error and corresponding star has been not included in sample. RESULTS 2 F class star Relative Relative Luminosity, Relative M*R *eq mass, M radius, L rotation, L R eq HATP-6 1.29 1.46 3.55 2.950 2.28 α UMi B 1.39 1.38 3.90 38.573 26.18 Alpha Fornacis 1.33
    [Show full text]
  • The Messenger
    Czech Republic joins ESO The Messenger Progress on ALMA CRIRES Science Verification Gender balance among ESO staff No. 128 – JuneNo. 2007 The Organisation The Czech Republic Joins ESO Catherine Cesarsky The XXVIth IAU General Assembly, held This Agreement was formally confirmed (ESO Director General) in Prague in 2006, clearly provided a by the ESO Council at its meeting on boost for the Czech efforts to join ESO, 6 December and a few days thereafter by not the least in securing the necessary the Czech government, enabling a sign- I am delighted to welcome the Czech public and political support. Thus our ing ceremony in Prague on 22 December Republic as our 13th member state. From Czech colleagues used the opportunity (see photograph below). This was impor- its size, the Czech Republic may not be- to publish a fine and very interesting pop- tant because the Agreement foresaw long to the ‘big’ member states, but the ular book about Czech astronomy and accession by 1 January 2007. With the accession nonetheless marks an impor- ESO, which, together with the General signatures in place, the agreement could tant point in ESO’s history and, I believe, Assembly, created considerable media be submitted to the Czech Parliament in the history of Czech astronomy as well. interest. for ratification within an agreed ‘grace pe- The Czech Republic is the first of the riod’. This formal procedure was con- Central and East European countries to On 20 September 2006, at a meeting at cluded on 30 April 2007, when I was noti- join ESO. The membership underlines ESO Headquarters, the negotiating teams fied of the deposition of the instrument of ESO’s continuing evolution as the prime from ESO and the Czech Republic arrived ratification at the French Ministry of European organisation for astronomy, at an agreement in principle, which was Foreign Affairs.
    [Show full text]
  • The Shortest-Period Wolf-Rayet Binary in the Small Magellanic Cloud: Part of a High-Order Multiple System Spectral and Orbital Analysis of SMC AB 6
    Astronomy & Astrophysics manuscript no. paper c ESO 2018 May 4, 2018 The Shortest-period Wolf-Rayet binary in the Small Magellanic Cloud: Part of a high-order multiple system Spectral and orbital analysis of SMC AB 6 T. Shenar1, R. Hainich1, H. Todt1, A. F. J. Moffat2, A. Sander1, L. M. Oskinova1, V. Ramachandran1, M. Munoz3, H. Pablo5, H. Sana4, and W.-R. Hamann1 1Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam, Germany e-mail: [email protected] 2Département de physique and Centre de Recherche en Astrophysique du Québec (CRAQ), Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7, Canada 3Queen’s University 99 University Ave, Kingston, Ontario, Canada 4Institute of Astrophysics, KU Leuven, Celestijnenlaan 200 D, 3001, Leuven, Belgium 5American Association of Variable Star Observers, 49 Bay State Road, Cambridge, MA 02138, USA Received ? / Accepted ? ABSTRACT Context. SMC AB 6 is the shortest-period (P=6:5 d) Wolf-Rayet (WR) binary in the Small Magellanic Cloud. This binary is therefore a key system in the study of binary interaction and formation of WR stars at low metallicity. The WR component in AB 6 was previously found to be very luminous (log L=6:3 [L ]) compared to its reported orbital mass ( 8 M ), placing it significantly above the Eddington limit. ≈ Aims. Through spectroscopy and orbital analysis of newly acquired optical data taken with the Ultraviolet and Visual Echelle Spectrograph (UVES), we aim to understand the peculiar results reported for this system and explore its evolutionary history.
    [Show full text]