Fundamental Parameters of Wolf-Rayet Stars VI
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The AAVSO DSLR Observing Manual
The AAVSO DSLR Observing Manual AAVSO 49 Bay State Road Cambridge, MA 02138 email: [email protected] Version 1.2 Copyright 2014 AAVSO Foreword This manual is a basic introduction and guide to using a DSLR camera to make variable star observations. The target audience is first-time beginner to intermediate level DSLR observers, although many advanced observers may find the content contained herein useful. The AAVSO DSLR Observing Manual was inspired by the great interest in DSLR photometry witnessed during the AAVSO’s Citizen Sky program. Consumer-grade imaging devices are rapidly evolving, so we have elected to write this manual to be as general as possible and move the software and camera-specific topics to the AAVSO DSLR forums. If you find an area where this document could use improvement, please let us know. Please send any feedback or suggestions to [email protected]. Most of the content for these chapters was written during the third Citizen Sky workshop during March 22-24, 2013 at the AAVSO. The persons responsible for creation of most of the content in the chapters are: Chapter 1 (Introduction): Colin Littlefield, Paul Norris, Richard (Doc) Kinne, Matthew Templeton Chapter 2 (Equipment overview): Roger Pieri, Rebecca Jackson, Michael Brewster, Matthew Templeton Chapter 3 (Software overview): Mark Blackford, Heinz-Bernd Eggenstein, Martin Connors, Ian Doktor Chapters 4 & 5 (Image acquisition and processing): Robert Buchheim, Donald Collins, Tim Hager, Bob Manske, Matthew Templeton Chapter 6 (Transformation): Brian Kloppenborg, Arne Henden Chapter 7 (Observing program): Des Loughney, Mike Simonsen, Todd Brown Various figures: Paul Valleli Clear skies, and Good Observing! Arne Henden, Director Rebecca Turner, Operations Director Brian Kloppenborg, Editor Matthew Templeton, Science Director Elizabeth Waagen, Senior Technical Assistant American Association of Variable Star Observers Cambridge, Massachusetts June 2014 i Index 1. -
Luminous Blue Variables
Review Luminous Blue Variables Kerstin Weis 1* and Dominik J. Bomans 1,2,3 1 Astronomical Institute, Faculty for Physics and Astronomy, Ruhr University Bochum, 44801 Bochum, Germany 2 Department Plasmas with Complex Interactions, Ruhr University Bochum, 44801 Bochum, Germany 3 Ruhr Astroparticle and Plasma Physics (RAPP) Center, 44801 Bochum, Germany Received: 29 October 2019; Accepted: 18 February 2020; Published: 29 February 2020 Abstract: Luminous Blue Variables are massive evolved stars, here we introduce this outstanding class of objects. Described are the specific characteristics, the evolutionary state and what they are connected to other phases and types of massive stars. Our current knowledge of LBVs is limited by the fact that in comparison to other stellar classes and phases only a few “true” LBVs are known. This results from the lack of a unique, fast and always reliable identification scheme for LBVs. It literally takes time to get a true classification of a LBV. In addition the short duration of the LBV phase makes it even harder to catch and identify a star as LBV. We summarize here what is known so far, give an overview of the LBV population and the list of LBV host galaxies. LBV are clearly an important and still not fully understood phase in the live of (very) massive stars, especially due to the large and time variable mass loss during the LBV phase. We like to emphasize again the problem how to clearly identify LBV and that there are more than just one type of LBVs: The giant eruption LBVs or h Car analogs and the S Dor cycle LBVs. -
14476 (Stsci Edit Number: 4, Created: Wednesday, September 7, 2016 4:28:02 PM EST) - Overview
Proposal 14476 (STScI Edit Number: 4, Created: Wednesday, September 7, 2016 4:28:02 PM EST) - Overview 14476 - A collision reversal in HD 5980 Cycle: 24, Proposal Category: GO (Availability Mode: SUPPORTED) INVESTIGATORS Name Institution E-Mail Dr. Yael Naze (PI) (ESA Member) (Contact) Universite de Liege [email protected] Dr. D. John Hillier (CoI) University of Pittsburgh [email protected] Dr. Gloria Koenigsberger (CoI) (Contact) Universidad Nacional Autonoma de Mexico (UNAM) [email protected] Dr. Julian M. Pittard (CoI) (ESA Member) University of Leeds [email protected] Dr. Michael F. Corcoran (CoI) Universities Space Research Association [email protected] Dr. Gregor Rauw (CoI) (ESA Member) Universite de Liege [email protected] VISITS Visit Targets used in Visit Configurations used in Visit Orbits Used Last Orbit Planner Run OP Current with Visit? 01 (1) HD-5980 STIS/CCD 2 07-Sep-2016 17:28:00.0 yes CCDFLAT STIS/FUV-MAMA 2 Total Orbits Used ABSTRACT HD 5980 provides a unique laboratory for studying the properties of wind-wind collisions. It contains one of only two binary systems having a WR- star in orbit with a LBV. The latter star has been observed to undergo major changes in its wind structure over the past 35 years, implying changes in the geometry and emitting conditions of the wind-wind collision region. Ten years ago, when the LBV wind was very strong, XMM observations revealed X-ray emission consistent with the shock cone wrapping around the WR component. Since then, the wind strength has significantly declined, implying that the collision shock cone may be inverting its orientation. -
Multiwavelength Observations of AB Doradus
Publications of the Astronomical Society of Australia (PASA), Vol. 31, e021, 18 pages (2014). C Astronomical Society of Australia 2014; published by Cambridge University Press. doi:10.1017/pasa.2014.16 Multiwavelength Observations of AB Doradus O.B. Slee1,5, N. Erkan2, M. Johnston-Hollitt3 and E. Budding3,4 1Australia Telescope National Facility, CSIRO, Australia 2Canakkale Onsekiz Mart University, Canakkale, TR 17020, Turkey 3School of Chemical and Physical Sciences, Victoria University of Wellington, New Zealand 4Carter Observatory, Wellington, New Zealand 5Email: [email protected] (Received September 4, 2013; Accepted January 28, 2014) Abstract We have observed the bright, magnetically active multiple star AB Doradus in a multiwavelength campaign centring around two large facility allocations in November 2006 and January, 2007. Our observations have covered at least three large flares. These flares were observed to produce significant hardening of the X-ray spectra during their very initial stages. We monitored flare-related effects using the Suzaku X-ray satellite and the Australia Telescope Compact Array (ATCA) at 3.6 and 6 cm. Observations at 11 and 21 cm were also included, but they were compromised by interference. Optical monitoring was also provided by broadband B and V photometry and some high-dispersion spectrograms. From this multiwavelength coverage we find that the observed flare effects can be mainly associated with a large active region near longitude zero. The second major X-ray and microwave flare of Jan 8, 2007 was observed with a favourable geometry that allowed its initial high-energy impulsive phase to be observed in the higher frequency range of Suzaku’s XIS detectors. -
ESO Annual Report 2004 ESO Annual Report 2004 Presented to the Council by the Director General Dr
ESO Annual Report 2004 ESO Annual Report 2004 presented to the Council by the Director General Dr. Catherine Cesarsky View of La Silla from the 3.6-m telescope. ESO is the foremost intergovernmental European Science and Technology organi- sation in the field of ground-based as- trophysics. It is supported by eleven coun- tries: Belgium, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Sweden, Switzerland and the United Kingdom. Created in 1962, ESO provides state-of- the-art research facilities to European astronomers and astrophysicists. In pur- suit of this task, ESO’s activities cover a wide spectrum including the design and construction of world-class ground-based observational facilities for the member- state scientists, large telescope projects, design of innovative scientific instruments, developing new and advanced techno- logies, furthering European co-operation and carrying out European educational programmes. ESO operates at three sites in the Ataca- ma desert region of Chile. The first site The VLT is a most unusual telescope, is at La Silla, a mountain 600 km north of based on the latest technology. It is not Santiago de Chile, at 2 400 m altitude. just one, but an array of 4 telescopes, It is equipped with several optical tele- each with a main mirror of 8.2-m diame- scopes with mirror diameters of up to ter. With one such telescope, images 3.6-metres. The 3.5-m New Technology of celestial objects as faint as magnitude Telescope (NTT) was the first in the 30 have been obtained in a one-hour ex- world to have a computer-controlled main posure. -
Gas and Dust in the Magellanic Clouds
Gas and dust in the Magellanic clouds A Thesis Submitted for the Award of the Degree of Doctor of Philosophy in Physics To Mangalore University by Ananta Charan Pradhan Under the Supervision of Prof. Jayant Murthy Indian Institute of Astrophysics Bangalore - 560 034 India April 2011 Declaration of Authorship I hereby declare that the matter contained in this thesis is the result of the inves- tigations carried out by me at Indian Institute of Astrophysics, Bangalore, under the supervision of Professor Jayant Murthy. This work has not been submitted for the award of any degree, diploma, associateship, fellowship, etc. of any university or institute. Signed: Date: ii Certificate This is to certify that the thesis entitled ‘Gas and Dust in the Magellanic clouds’ submitted to the Mangalore University by Mr. Ananta Charan Pradhan for the award of the degree of Doctor of Philosophy in the faculty of Science, is based on the results of the investigations carried out by him under my supervi- sion and guidance, at Indian Institute of Astrophysics. This thesis has not been submitted for the award of any degree, diploma, associateship, fellowship, etc. of any university or institute. Signed: Date: iii Dedicated to my parents ========================================= Sri. Pandab Pradhan and Smt. Kanak Pradhan ========================================= Acknowledgements It has been a pleasure to work under Prof. Jayant Murthy. I am grateful to him for giving me full freedom in research and for his guidance and attention throughout my doctoral work inspite of his hectic schedules. I am indebted to him for his patience in countless reviews and for his contribution of time and energy as my guide in this project. -
2013 Version
Citizen Science with Variable Stars Brought to you by the AAVSO, Astronomers without Borders, the National Science Foundation and Your Universe Astronomers need your help! Many bright stars change in brightness all the time and for many different reasons. Some stars are too bright for professionals to CitizenSky is a collaboration of the look at with most large telescopes. So, we American Association of need your help to watch these stars as they Variable Star Observers (AAVSO), the University of dim and brighten over the next several years. Denver, the Adler Planetarium, the Johns Hopkins University and the California Academies of This guide will help you find these bright Science with support from the National Science Foundation. stars, measure their brightness and then submit the measurements to assist professional astronomers. Participate in one of the largest and longest running citizen science projects in history! Thousands of people just like you are helping o ut. Astronomers need large numbers of people to get the amount of precision they need to do their research. You are the key. Header artwork is reproduced with permission from Sky & Telescope magazine (www.skyandtelescope.com) Betelgeuse – Alpha Orionis From the city or country sky, from almost any part of the world, the majestic figure of Orion dominates the night sky with his belt, sword, and club. Low and to the right is the great red pulsating supergiant, Betelgeuse (alpha Orionis). Recently acquiring fame for being the first star to have its atmosphere directly imaged (shown below), alpha Orionis has captivated observers' attention for centuries. At minimum brightness, as in 1927 and 1941, its magnitude may drop below 1.2. -
Characterization of Solar X-Ray Response Data from the REXIS Instrument Andrew T. Cummings
Characterization of Solar X-ray Response Data from the REXIS Instrument by Andrew T. Cummings Submitted to the Department of Earth, Atmospheric, and Planetary Sciences in partial fulfillment of the requirements for the degree of Bachelor of Science in Earth, Atmospheric, and Planetary Sciences at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2020 ○c Massachusetts Institute of Technology 2020. All rights reserved. Author................................................................ Department of Earth, Atmospheric, and Planetary Sciences May 18, 2020 Certified by. Richard P. Binzel Professor of Planetary Sciences Thesis Supervisor Certified by. Rebecca A. Masterson Principal Research Scientist Thesis Supervisor Accepted by . Richard P. Binzel Undergraduate Officer, Department of Earth, Atmospheric, and Planetary Sciences 2 Characterization of Solar X-ray Response Data from the REXIS Instrument by Andrew T. Cummings Submitted to the Department of Earth, Atmospheric, and Planetary Sciences on May 18, 2020, in partial fulfillment of the requirements for the degree of Bachelor of Science in Earth, Atmospheric, and Planetary Sciences Abstract The REgolith X-ray Imaging Spectrometer (REXIS) is a student-built instrument that was flown on NASA’s Origins, Spectral Interpretation, Resource Identification, Safety, Regolith Explorer (OSIRIS-REx) mission. During the primary science ob- servation phase, the REXIS Solar X-ray Monitor (SXM) experienced a lower than anticipated solar x-ray count rate. Solar x-ray count decreased most prominently in the low energy region of instrument detection, and made calibrating the REXIS main spectrometer difficult. This thesis documents a root cause investigation intothe cause of the low x-ray count anomaly in the SXM. Vulnerable electronic components are identified, and recommendations for hardware improvements are made to better facilitate future low-cost, high-risk instrumentation. -
Origins of Type Ibn Sne 2006Jc/2015G in Interacting Binaries and Implications for Pre-SN Eruptions
This is a repository copy of Origins of Type Ibn SNe 2006jc/2015G in interacting binaries and implications for pre-SN eruptions. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/154958/ Version: Published Version Article: Sun, N.-C. orcid.org/0000-0002-4731-9698, Maund, J.R. orcid.org/0000-0003-0733-7215, Hirai, R. et al. (2 more authors) (2019) Origins of Type Ibn SNe 2006jc/2015G in interacting binaries and implications for pre-SN eruptions. Monthly Notices of the Royal Astronomical Society, 491 (4). pp. 6000-6019. ISSN 0035-8711 https://doi.org/10.1093/mnras/stz3431 This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ MNRAS 491, 6000–6019 (2020) doi:10.1093/mnras/stz3431 Advance Access publication 2019 December 6 Origins of Type Ibn SNe 2006jc/2015G in interacting binaries and implications for pre-SN eruptions Ning-Chen Sun,1‹ Jusytn R. -
The Stellar Parameters of the SMC WR Binary HD 5980
Wolf-Rayet Phenomena in Massive Stars and Starburst Galaxies Proceedings [AU Symposium No. 193, @1999 [AU K.A. van der Hucht, G. Koenigsberger & P.R.J. Eenens, eds. The stellar parameters of the SMC WR binary HD 5980 Jorg Schweickhardt' and Werner Schmutz/ 1Landessternwarte Koniqstuhl, D-69117 Heidelberg, Germany 2Institut fur Astronomie, ETH-Zentrum, CH-8092 Zurich, Switzerland Abstract. We present the temporal variation of the stellar parameters of the erupting star in HD 5980. We derive the effective temperature and radius from the observed changes of the visual magnitude. Our analysis is based on the assumption that the luminosity of the erupting star remained constant and that the brightness of the second star did not vary. 1. The determination of the stellar parameters T* and R* A simple method to derive the changes of the parameters T* and R* of a star is to analyze the variations of the visual magnitude My. Using Stefan-Boltzmann's law and the dependence of the observed flux, fA' on distance one gets oo 4 _ F Jo fAdA aT*- 1[' A fA . (1) Knowing the luminosity L ex Jooo fAdA and the visual magnitude My ex log fA' A == 5555 A, only the theoretical knowledge of the astrophysical flux FA emitted in the V band is needed to derive the temperature and the radius with equation (1). As a simple approximation we use here the Planck function BA(T*) for FA' If we want to apply this method to the binary system HD 5980, we need additional assumptions: (a) the LBV-like outburst in 1994 is the result of the eruption of only one star (star A, classified as an 071 star before eruption); (b) the luminosity of the erupting star remains constant with time; and (c) there is no variability of the companion (star B, WN 4). -
Seeing the Light: the Art and Science of Astronomy
Chapter 1 Seeing the Light: The Art and Science of Astronomy In This Chapter ▶ Understanding the observational nature of astronomy ▶ Focusing on astronomy’s language of light ▶ Weighing in on gravity ▶ Recognizing the movements of objects in space tep outside on a clear night and look at the sky. If you’re a city dweller Sor live in a cramped suburb, you see dozens, maybe hundreds, of twin- kling stars. Depending on the time of the month, you may also see a full Moon and up to five of the eight planets that revolve around the Sun. A shooting star or “meteor” may appear overhead. What you actually see is the flash of light from a tiny piece of comet dust streaking through the upper atmosphere. Another pinpoint of light moves slowly and steadily across the sky. Is it a space satellite, such as the Hubble Space Telescope, or just a high-altitude airliner? If you have a pair of binoculars, you may be able to see the difference. Most air- liners have running lights, and their shapes may be perceptible. If you liveCOPYRIGHTED in the country — on the seashore MATERIAL away from resorts and develop- ments, on the plains, or in the mountains far from any floodlit ski slope — you can see thousands of stars. The Milky Way appears as a beautiful pearly swath across the heavens. What you’re seeing is the cumulative glow from millions of faint stars, individually indistinguishable with the naked eye. At a great observation place, such as Cerro Tololo in the Chilean Andes, you can see even more stars. -
Planetesimals Around Stars with TESS (PAST) – I. Transient Dimming of a Binary Solar Analogue at the End of the Planet Accreti
MNRAS 488, 4465–4476 (2019) doi:10.1093/mnras/stz1942 Advance Access publication 2019 July 12 Planetesimals around stars with TESS (PAST) – I. Transient dimming of a binary solar analogue at the end of the planet accretion era Downloaded from https://academic.oup.com/mnras/article-abstract/488/4/4465/5531782 by California Institute of Technology user on 26 September 2019 E. Gaidos ,1,2‹ T. Jacobs,3 D. LaCourse,4 A. Vanderburg,5 S. Rappaport,6 T. Berger,2,7 L. Pearce,5 A. W. Mann,8 L. Weiss,2,7† B. Fulton,9 A. Behmard ,10 A. W. Howard,9 M. Ansdell,11,12 G. R. Ricker,13 R. K. Vanderspek,13 D. W. Latham,14 S. Seager,13,15,16 J. N. Winn17 and J. M. Jenkins18 1Department of Earth Sciences, University of Hawai’i at Manoa,¯ Honolulu, HI 96822, USA 2Kavli Institute for Theoretical Physics, UC Santa Barbara, Santa Barbara, CA 93106, USA 312812 SE 69th Place Bellevue, WA 98006, USA 47507 52nd Place NE Marysville, WA 98270, USA 5Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712, USA 6Department of Physics, Kavli Institute for Astrophysics and Space Research, MIT, Cambridge, MA 02139, USA 7Institute for Astronomy, University of Hawaii at Manoa,¯ Honolulu, HI 96822, USA 8Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255, USA 9Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA 10Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA