Fundamental Parameters of Wolf-Rayet Stars VI

Total Page:16

File Type:pdf, Size:1020Kb

Fundamental Parameters of Wolf-Rayet Stars VI Astron. Astrophys. 320, 500–524 (1997) ASTRONOMY AND ASTROPHYSICS Fundamental parameters of Wolf-Rayet stars VI. Large Magellanic Cloud WNL stars? P.A.Crowther and L.J. Smith Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK Received 5 February 1996 / Accepted 26 June 1996 Abstract. We present a detailed, quantitative study of late WN Key words: stars: Wolf-Rayet;mass-loss; evolution; fundamen- (WNL) stars in the LMC, based on new optical spectroscopy tal parameters – galaxies: Magellanic Clouds (AAT, MSO) and the Hillier (1990) atmospheric model. In a pre- vious paper (Crowther et al. 1995a), we showed that 4 out of the 10 known LMC Ofpe/WN9 stars should be re-classified WN9– 10. We now present observations of the remaining stars (except the LBV R127), and show that they are also WNL (WN9–11) 1. Introduction stars, with the exception of R99. Our total sample consists of 17 stars, and represents all but one of the single LMC WN6– Quantitative studies of hot luminous stars in galaxies are im- 11 population and allows a direct comparison with the stellar portant for a number of reasons. First, and probably foremost, parameters and chemical abundances of Galactic WNL stars is the information they provide on the effect of the environment (Crowther et al. 1995b; Hamann et al. 1995a). Previously un- on such fundamental properties as the mass-loss rate and stellar published ultraviolet (HST-FOS, IUE-HIRES) spectroscopy are evolution. In the standard picture (e.g. Maeder & Meynet 1987) presented for a subset of our programme stars. mass-loss significantly affects the evolution of massive O stars We find observational evidence for lower metallicities in as they proceed through an Of phase, then an unstable Luminous LMC WNL stars compared to the Galaxy, though this is not re- Blue Variable (LBV) phase, before becoming late WN (WNL) flected in their stellar properties. For Galactic and LMC stars we stars. The current theory of driving mass-loss through radiation find: (i) a similar range in temperature and luminosity, in contrast pressure predicts mass-loss to scale as the square-root of the metallicity (Kudritzki et al. 1989). The evolution of massive to evolutionary. predictions; (ii) comparable wind performance values (Mv∞/[L/c]) and hydrogen composition, with a broad stars should therefore be strongly dependent on the local envi- correlation between increasing helium content and wind perfor- ronment (Maeder 1991; Maeder & Meynet 1994). Thus stud- mance number; (iii) a general trend to lower wind velocities at ies of massive stars at different metallicities should enable a lower stellar temperature, with possibly slower winds for LMC direct comparison of observations with evolutionary and radia- WN9–11 stars. Some 30 Dor WNL stars show exceptional prop- tion driven wind theory. The question of exactly how mass-loss erties: Brey 89 (HD 38282, WN6h) has the highest luminos- scales with metallicity is of enormous importance. For exam- . −1 ity (log (L/L )∼6.25) and mass-loss rate (log (M/(M yr )) ple, it affects the early chemical enrichment of galaxies, and ∼−3.6) known for any WR star, while Brey 80 (R135, WN7h) the evolution of starbursts containing many thousands of O and has an enormous wind performance number of 50. The observed Wolf-Rayet (WR) stars (e.g. Leitherer & Heckman 1995). physical properties of our sample of LMC WNL stars supports In this series of papers we have studied the physical and the Crowther et al. (1995c) evolutionary scheme for Galactic chemical nature of predominantly Galactic Wolf-Rayet stars by stars, in that the most massive O stars, exclusive to 30 Dor, combining detailed model atmosphere calculations with high evolve directly to O3 If/WN6 and subsequently WN6–7 stars quality, multi-wavelength observations. In particular, we have (e.g. Brey 89), without passing through an intermediate LBV investigated WNL stars (Crowther et al. 1995a,b,c, hereafter phase. In contrast, lower initial mass stars evolve through a Papers I–III), weak-lined, early WN (WNE) stars (Crowther et LBV phase, encompassing a WN9–11 stage (e.g. BE294), with al. 1995d) and intermediate WN/C stars (Crowther et al. 1995e). WN8 stars being their immediate successors. Other related studies have been conducted on LBVs (L.J. Smith et al. 1994), Of stars (Crowther & Bohannan 1997), an M33 Send offprint requests to: P.A.Crowther ([email protected]) WR star (L.J. Smith et al. 1995), and strong-lined WNE stars ? Based on observations collected at the Anglo-Australian and Mount in the infrared (Crowther & Smith 1996). WC and WNE stars Stromlo Observatories, Australia have not been widely investigated to date since we anticipate P.A.Crowther & L.J. Smith: Fundamental parameters of Wolf-Rayet stars. VI 501 that their parameters will be the most susceptible to the effects Table 1. A complete list of LMC WN6–8 and Ofpe/WN9 stars (exclud- of line blanketing, given their dense winds and high excitation. ing O3 If/WN6 stars). We preferentially use Breysacher (1981, Brey), In this, the final paper of the current series, we present a study Henize (1956, S) and Bohannan & Epps (1974, BE) catalogue numbers, of WNL stars in the Large Magellanic Cloud (LMC). These stars as indicated with an underline. Other catalogue references are Feast et have the distinct advantage over their Galactic counterparts in al. (1960, R), Westerlund & Smith (1964, WS), Sanduleak (1969, Sk), that they lie at a known distance and suffer only moderate in- Fehrenbach et al. (1976, FD), Azzopardi & Breysacher (1985, AB) terstellar extinction. It is thus much easier to determine reliable and Melnick (1985, Mk). WR spectral classifications are taken from absolute fluxes and mass-loss rates. A direct comparison with L.F. Smith et al. (1996), Melnick (1985) and herein Galactic WNL stars (Papers I–III) will allow us to investigate any differences in fundamental properties and evolution, as a result of the lower metallicity of the LMC, by a factor of 2– Brey HD(E) WS FD BE S R Sk/other Sp Type Note 3 (Spite & Spite 1991). The first quantitative comparison of 10b 9 −66◦40 WN10h ◦ the properties of LMC and Galactic WR stars was performed 13 33133 8 12 14 −66◦51 WN8h • by L.J. Smith & Willis (1983) who found no differences ex- 18 269227 12 17 543 91 84 −69◦79 WN9h ◦ cept that the LMC WN stars had stronger He ii emission lines. 24 18 23 28 −65◦55 WN6h • More recently, Koesterke et al. (1991) suggested that, while the 269445 261 30 99 −68◦73 Of/WN∗ • LMC WN stars showed no clear differences from their Galactic 26 36063 19 24 569 161 −71◦21 WN6(h)+? •† counterparts in mass-loss rates or wind velocities, they do have 36 27 32 280 108 −69◦141 WN8h • ◦ ∗ lower stellar luminosities. Nevertheless, it is well known that 269582 294 −69 142a Of/WN • 44a AB18 WN8–9∗ • our Galaxy and the LMC exhibit quite different WN:WC ratios; ◦ ∗ in the solar neighbourhood this ratio is 1:1 and in the LMC it is 269687 335 119 −69 175 Of/WN • 47 42 −68◦115 WN6h • 5:1. It has been suggested that this difference may be directly 57 53 WN7h+? (4) † attributed to metallicity effects (e.g. L.F. Smith 1991). It is also 58 AB4 WN5–6 (1) interesting to note that the frequency distribution of WN stars 64 381 WN9h ◦ among the subtypes is different between the two galaxies; in 65 269828 38 55 383 −69◦209a WN7+.. (2) † the Galaxy there is a broad peak between WN5–6 whereas the 269858f 397 128 127 −69◦220 Of/WN LMC shows a sharp peak at WN4 (L.F. Smith et al. 1996). 71 269883 60 −69◦233 WN7h • Our previous Galactic studies (Papers I–III; Crowther & Bo- 73 AB10 WN7+OB? (2) † hannan 1997) have led to the discovery of different evolutionary 75 63 134 WN6(h) • routes for the formation of WNL stars. In particular, we find 76a Mk37Wa WN7? (3) † 79 Mk49 WN6(h)+? (4) † that very massive early Of stars (≥ 60 M ) evolve to WN6–7 stars with an Ofpe or WNL+abs (hereafter WNLha following 80 64 135 WN7h • 81 Mk53 WN8(h)+? •† L.F. Smith et al. 1996) intermediate stage. For less massive pro- ◦ 82c 38268c 66 609 136c −69 241c WN7o?+OB (3) † genitors, evolution instead proceeds through an intermediate 89 38282 46 70 420 133 144 −69◦246 WN6h • LBV stage to the WN8 spectral type, with WN9–11 stars rep- 90 269928 47 71 421 145 −69◦248 WN6(h)+? •† resenting either dormant or post-LBVs. This evolutionary sce- 91 269927c −69◦249c WN9h ◦ nario naturally explains the observed dichotomy among WNL 470 142 −69◦297 Of/WN∗ • stars (Moffat 1989). However, this scenario is based principally 153 61 −67◦266 Of/WN∗ • on studies of Galactic objects, and it is therefore of interest to examine if it is viable in lower metallicity environments such •: programme star as the LMC. ◦: star previously studied in Paper I 00 In Sects. 2–3 we present and discuss new ultraviolet and op- †: object considered to be multiple at a spatial resolution ≥1 tical observations of a substantial sample of LMC WNL stars. ∗: programme Of/WN stars and AB18 are re-classified in Sect. 3 The fundamental parameters of our sample are derived and dis- References: (1) Breysacher (1981); (2) Walborn et al. (1995b); (3) Parker (1993); (4) see text cussed in Sect. 4. Finally in Sect. 5, we compare the results of this analysis with our Galactic sample and discuss the implica- tions of our results for radiatively-driven winds and evolutionary theories of massive stars.
Recommended publications
  • The AAVSO DSLR Observing Manual
    The AAVSO DSLR Observing Manual AAVSO 49 Bay State Road Cambridge, MA 02138 email: [email protected] Version 1.2 Copyright 2014 AAVSO Foreword This manual is a basic introduction and guide to using a DSLR camera to make variable star observations. The target audience is first-time beginner to intermediate level DSLR observers, although many advanced observers may find the content contained herein useful. The AAVSO DSLR Observing Manual was inspired by the great interest in DSLR photometry witnessed during the AAVSO’s Citizen Sky program. Consumer-grade imaging devices are rapidly evolving, so we have elected to write this manual to be as general as possible and move the software and camera-specific topics to the AAVSO DSLR forums. If you find an area where this document could use improvement, please let us know. Please send any feedback or suggestions to [email protected]. Most of the content for these chapters was written during the third Citizen Sky workshop during March 22-24, 2013 at the AAVSO. The persons responsible for creation of most of the content in the chapters are: Chapter 1 (Introduction): Colin Littlefield, Paul Norris, Richard (Doc) Kinne, Matthew Templeton Chapter 2 (Equipment overview): Roger Pieri, Rebecca Jackson, Michael Brewster, Matthew Templeton Chapter 3 (Software overview): Mark Blackford, Heinz-Bernd Eggenstein, Martin Connors, Ian Doktor Chapters 4 & 5 (Image acquisition and processing): Robert Buchheim, Donald Collins, Tim Hager, Bob Manske, Matthew Templeton Chapter 6 (Transformation): Brian Kloppenborg, Arne Henden Chapter 7 (Observing program): Des Loughney, Mike Simonsen, Todd Brown Various figures: Paul Valleli Clear skies, and Good Observing! Arne Henden, Director Rebecca Turner, Operations Director Brian Kloppenborg, Editor Matthew Templeton, Science Director Elizabeth Waagen, Senior Technical Assistant American Association of Variable Star Observers Cambridge, Massachusetts June 2014 i Index 1.
    [Show full text]
  • Luminous Blue Variables
    Review Luminous Blue Variables Kerstin Weis 1* and Dominik J. Bomans 1,2,3 1 Astronomical Institute, Faculty for Physics and Astronomy, Ruhr University Bochum, 44801 Bochum, Germany 2 Department Plasmas with Complex Interactions, Ruhr University Bochum, 44801 Bochum, Germany 3 Ruhr Astroparticle and Plasma Physics (RAPP) Center, 44801 Bochum, Germany Received: 29 October 2019; Accepted: 18 February 2020; Published: 29 February 2020 Abstract: Luminous Blue Variables are massive evolved stars, here we introduce this outstanding class of objects. Described are the specific characteristics, the evolutionary state and what they are connected to other phases and types of massive stars. Our current knowledge of LBVs is limited by the fact that in comparison to other stellar classes and phases only a few “true” LBVs are known. This results from the lack of a unique, fast and always reliable identification scheme for LBVs. It literally takes time to get a true classification of a LBV. In addition the short duration of the LBV phase makes it even harder to catch and identify a star as LBV. We summarize here what is known so far, give an overview of the LBV population and the list of LBV host galaxies. LBV are clearly an important and still not fully understood phase in the live of (very) massive stars, especially due to the large and time variable mass loss during the LBV phase. We like to emphasize again the problem how to clearly identify LBV and that there are more than just one type of LBVs: The giant eruption LBVs or h Car analogs and the S Dor cycle LBVs.
    [Show full text]
  • 14476 (Stsci Edit Number: 4, Created: Wednesday, September 7, 2016 4:28:02 PM EST) - Overview
    Proposal 14476 (STScI Edit Number: 4, Created: Wednesday, September 7, 2016 4:28:02 PM EST) - Overview 14476 - A collision reversal in HD 5980 Cycle: 24, Proposal Category: GO (Availability Mode: SUPPORTED) INVESTIGATORS Name Institution E-Mail Dr. Yael Naze (PI) (ESA Member) (Contact) Universite de Liege [email protected] Dr. D. John Hillier (CoI) University of Pittsburgh [email protected] Dr. Gloria Koenigsberger (CoI) (Contact) Universidad Nacional Autonoma de Mexico (UNAM) [email protected] Dr. Julian M. Pittard (CoI) (ESA Member) University of Leeds [email protected] Dr. Michael F. Corcoran (CoI) Universities Space Research Association [email protected] Dr. Gregor Rauw (CoI) (ESA Member) Universite de Liege [email protected] VISITS Visit Targets used in Visit Configurations used in Visit Orbits Used Last Orbit Planner Run OP Current with Visit? 01 (1) HD-5980 STIS/CCD 2 07-Sep-2016 17:28:00.0 yes CCDFLAT STIS/FUV-MAMA 2 Total Orbits Used ABSTRACT HD 5980 provides a unique laboratory for studying the properties of wind-wind collisions. It contains one of only two binary systems having a WR- star in orbit with a LBV. The latter star has been observed to undergo major changes in its wind structure over the past 35 years, implying changes in the geometry and emitting conditions of the wind-wind collision region. Ten years ago, when the LBV wind was very strong, XMM observations revealed X-ray emission consistent with the shock cone wrapping around the WR component. Since then, the wind strength has significantly declined, implying that the collision shock cone may be inverting its orientation.
    [Show full text]
  • Multiwavelength Observations of AB Doradus
    Publications of the Astronomical Society of Australia (PASA), Vol. 31, e021, 18 pages (2014). C Astronomical Society of Australia 2014; published by Cambridge University Press. doi:10.1017/pasa.2014.16 Multiwavelength Observations of AB Doradus O.B. Slee1,5, N. Erkan2, M. Johnston-Hollitt3 and E. Budding3,4 1Australia Telescope National Facility, CSIRO, Australia 2Canakkale Onsekiz Mart University, Canakkale, TR 17020, Turkey 3School of Chemical and Physical Sciences, Victoria University of Wellington, New Zealand 4Carter Observatory, Wellington, New Zealand 5Email: [email protected] (Received September 4, 2013; Accepted January 28, 2014) Abstract We have observed the bright, magnetically active multiple star AB Doradus in a multiwavelength campaign centring around two large facility allocations in November 2006 and January, 2007. Our observations have covered at least three large flares. These flares were observed to produce significant hardening of the X-ray spectra during their very initial stages. We monitored flare-related effects using the Suzaku X-ray satellite and the Australia Telescope Compact Array (ATCA) at 3.6 and 6 cm. Observations at 11 and 21 cm were also included, but they were compromised by interference. Optical monitoring was also provided by broadband B and V photometry and some high-dispersion spectrograms. From this multiwavelength coverage we find that the observed flare effects can be mainly associated with a large active region near longitude zero. The second major X-ray and microwave flare of Jan 8, 2007 was observed with a favourable geometry that allowed its initial high-energy impulsive phase to be observed in the higher frequency range of Suzaku’s XIS detectors.
    [Show full text]
  • ESO Annual Report 2004 ESO Annual Report 2004 Presented to the Council by the Director General Dr
    ESO Annual Report 2004 ESO Annual Report 2004 presented to the Council by the Director General Dr. Catherine Cesarsky View of La Silla from the 3.6-m telescope. ESO is the foremost intergovernmental European Science and Technology organi- sation in the field of ground-based as- trophysics. It is supported by eleven coun- tries: Belgium, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Sweden, Switzerland and the United Kingdom. Created in 1962, ESO provides state-of- the-art research facilities to European astronomers and astrophysicists. In pur- suit of this task, ESO’s activities cover a wide spectrum including the design and construction of world-class ground-based observational facilities for the member- state scientists, large telescope projects, design of innovative scientific instruments, developing new and advanced techno- logies, furthering European co-operation and carrying out European educational programmes. ESO operates at three sites in the Ataca- ma desert region of Chile. The first site The VLT is a most unusual telescope, is at La Silla, a mountain 600 km north of based on the latest technology. It is not Santiago de Chile, at 2 400 m altitude. just one, but an array of 4 telescopes, It is equipped with several optical tele- each with a main mirror of 8.2-m diame- scopes with mirror diameters of up to ter. With one such telescope, images 3.6-metres. The 3.5-m New Technology of celestial objects as faint as magnitude Telescope (NTT) was the first in the 30 have been obtained in a one-hour ex- world to have a computer-controlled main posure.
    [Show full text]
  • Gas and Dust in the Magellanic Clouds
    Gas and dust in the Magellanic clouds A Thesis Submitted for the Award of the Degree of Doctor of Philosophy in Physics To Mangalore University by Ananta Charan Pradhan Under the Supervision of Prof. Jayant Murthy Indian Institute of Astrophysics Bangalore - 560 034 India April 2011 Declaration of Authorship I hereby declare that the matter contained in this thesis is the result of the inves- tigations carried out by me at Indian Institute of Astrophysics, Bangalore, under the supervision of Professor Jayant Murthy. This work has not been submitted for the award of any degree, diploma, associateship, fellowship, etc. of any university or institute. Signed: Date: ii Certificate This is to certify that the thesis entitled ‘Gas and Dust in the Magellanic clouds’ submitted to the Mangalore University by Mr. Ananta Charan Pradhan for the award of the degree of Doctor of Philosophy in the faculty of Science, is based on the results of the investigations carried out by him under my supervi- sion and guidance, at Indian Institute of Astrophysics. This thesis has not been submitted for the award of any degree, diploma, associateship, fellowship, etc. of any university or institute. Signed: Date: iii Dedicated to my parents ========================================= Sri. Pandab Pradhan and Smt. Kanak Pradhan ========================================= Acknowledgements It has been a pleasure to work under Prof. Jayant Murthy. I am grateful to him for giving me full freedom in research and for his guidance and attention throughout my doctoral work inspite of his hectic schedules. I am indebted to him for his patience in countless reviews and for his contribution of time and energy as my guide in this project.
    [Show full text]
  • 2013 Version
    Citizen Science with Variable Stars Brought to you by the AAVSO, Astronomers without Borders, the National Science Foundation and Your Universe Astronomers need your help! Many bright stars change in brightness all the time and for many different reasons. Some stars are too bright for professionals to CitizenSky is a collaboration of the look at with most large telescopes. So, we American Association of need your help to watch these stars as they Variable Star Observers (AAVSO), the University of dim and brighten over the next several years. Denver, the Adler Planetarium, the Johns Hopkins University and the California Academies of This guide will help you find these bright Science with support from the National Science Foundation. stars, measure their brightness and then submit the measurements to assist professional astronomers. Participate in one of the largest and longest running citizen science projects in history! Thousands of people just like you are helping o ut. Astronomers need large numbers of people to get the amount of precision they need to do their research. You are the key. Header artwork is reproduced with permission from Sky & Telescope magazine (www.skyandtelescope.com) Betelgeuse – Alpha Orionis From the city or country sky, from almost any part of the world, the majestic figure of Orion dominates the night sky with his belt, sword, and club. Low and to the right is the great red pulsating supergiant, Betelgeuse (alpha Orionis). Recently acquiring fame for being the first star to have its atmosphere directly imaged (shown below), alpha Orionis has captivated observers' attention for centuries. At minimum brightness, as in 1927 and 1941, its magnitude may drop below 1.2.
    [Show full text]
  • Characterization of Solar X-Ray Response Data from the REXIS Instrument Andrew T. Cummings
    Characterization of Solar X-ray Response Data from the REXIS Instrument by Andrew T. Cummings Submitted to the Department of Earth, Atmospheric, and Planetary Sciences in partial fulfillment of the requirements for the degree of Bachelor of Science in Earth, Atmospheric, and Planetary Sciences at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2020 ○c Massachusetts Institute of Technology 2020. All rights reserved. Author................................................................ Department of Earth, Atmospheric, and Planetary Sciences May 18, 2020 Certified by. Richard P. Binzel Professor of Planetary Sciences Thesis Supervisor Certified by. Rebecca A. Masterson Principal Research Scientist Thesis Supervisor Accepted by . Richard P. Binzel Undergraduate Officer, Department of Earth, Atmospheric, and Planetary Sciences 2 Characterization of Solar X-ray Response Data from the REXIS Instrument by Andrew T. Cummings Submitted to the Department of Earth, Atmospheric, and Planetary Sciences on May 18, 2020, in partial fulfillment of the requirements for the degree of Bachelor of Science in Earth, Atmospheric, and Planetary Sciences Abstract The REgolith X-ray Imaging Spectrometer (REXIS) is a student-built instrument that was flown on NASA’s Origins, Spectral Interpretation, Resource Identification, Safety, Regolith Explorer (OSIRIS-REx) mission. During the primary science ob- servation phase, the REXIS Solar X-ray Monitor (SXM) experienced a lower than anticipated solar x-ray count rate. Solar x-ray count decreased most prominently in the low energy region of instrument detection, and made calibrating the REXIS main spectrometer difficult. This thesis documents a root cause investigation intothe cause of the low x-ray count anomaly in the SXM. Vulnerable electronic components are identified, and recommendations for hardware improvements are made to better facilitate future low-cost, high-risk instrumentation.
    [Show full text]
  • Origins of Type Ibn Sne 2006Jc/2015G in Interacting Binaries and Implications for Pre-SN Eruptions
    This is a repository copy of Origins of Type Ibn SNe 2006jc/2015G in interacting binaries and implications for pre-SN eruptions. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/154958/ Version: Published Version Article: Sun, N.-C. orcid.org/0000-0002-4731-9698, Maund, J.R. orcid.org/0000-0003-0733-7215, Hirai, R. et al. (2 more authors) (2019) Origins of Type Ibn SNe 2006jc/2015G in interacting binaries and implications for pre-SN eruptions. Monthly Notices of the Royal Astronomical Society, 491 (4). pp. 6000-6019. ISSN 0035-8711 https://doi.org/10.1093/mnras/stz3431 This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ MNRAS 491, 6000–6019 (2020) doi:10.1093/mnras/stz3431 Advance Access publication 2019 December 6 Origins of Type Ibn SNe 2006jc/2015G in interacting binaries and implications for pre-SN eruptions Ning-Chen Sun,1‹ Jusytn R.
    [Show full text]
  • The Stellar Parameters of the SMC WR Binary HD 5980
    Wolf-Rayet Phenomena in Massive Stars and Starburst Galaxies Proceedings [AU Symposium No. 193, @1999 [AU K.A. van der Hucht, G. Koenigsberger & P.R.J. Eenens, eds. The stellar parameters of the SMC WR binary HD 5980 Jorg Schweickhardt' and Werner Schmutz/ 1Landessternwarte Koniqstuhl, D-69117 Heidelberg, Germany 2Institut fur Astronomie, ETH-Zentrum, CH-8092 Zurich, Switzerland Abstract. We present the temporal variation of the stellar parameters of the erupting star in HD 5980. We derive the effective temperature and radius from the observed changes of the visual magnitude. Our analysis is based on the assumption that the luminosity of the erupting star remained constant and that the brightness of the second star did not vary. 1. The determination of the stellar parameters T* and R* A simple method to derive the changes of the parameters T* and R* of a star is to analyze the variations of the visual magnitude My. Using Stefan-Boltzmann's law and the dependence of the observed flux, fA' on distance one gets oo 4 _ F Jo fAdA aT*- 1[' A fA . (1) Knowing the luminosity L ex Jooo fAdA and the visual magnitude My ex log fA' A == 5555 A, only the theoretical knowledge of the astrophysical flux FA emitted in the V band is needed to derive the temperature and the radius with equation (1). As a simple approximation we use here the Planck function BA(T*) for FA' If we want to apply this method to the binary system HD 5980, we need additional assumptions: (a) the LBV-like outburst in 1994 is the result of the eruption of only one star (star A, classified as an 071 star before eruption); (b) the luminosity of the erupting star remains constant with time; and (c) there is no variability of the companion (star B, WN 4).
    [Show full text]
  • Seeing the Light: the Art and Science of Astronomy
    Chapter 1 Seeing the Light: The Art and Science of Astronomy In This Chapter ▶ Understanding the observational nature of astronomy ▶ Focusing on astronomy’s language of light ▶ Weighing in on gravity ▶ Recognizing the movements of objects in space tep outside on a clear night and look at the sky. If you’re a city dweller Sor live in a cramped suburb, you see dozens, maybe hundreds, of twin- kling stars. Depending on the time of the month, you may also see a full Moon and up to five of the eight planets that revolve around the Sun. A shooting star or “meteor” may appear overhead. What you actually see is the flash of light from a tiny piece of comet dust streaking through the upper atmosphere. Another pinpoint of light moves slowly and steadily across the sky. Is it a space satellite, such as the Hubble Space Telescope, or just a high-altitude airliner? If you have a pair of binoculars, you may be able to see the difference. Most air- liners have running lights, and their shapes may be perceptible. If you liveCOPYRIGHTED in the country — on the seashore MATERIAL away from resorts and develop- ments, on the plains, or in the mountains far from any floodlit ski slope — you can see thousands of stars. The Milky Way appears as a beautiful pearly swath across the heavens. What you’re seeing is the cumulative glow from millions of faint stars, individually indistinguishable with the naked eye. At a great observation place, such as Cerro Tololo in the Chilean Andes, you can see even more stars.
    [Show full text]
  • Planetesimals Around Stars with TESS (PAST) – I. Transient Dimming of a Binary Solar Analogue at the End of the Planet Accreti
    MNRAS 488, 4465–4476 (2019) doi:10.1093/mnras/stz1942 Advance Access publication 2019 July 12 Planetesimals around stars with TESS (PAST) – I. Transient dimming of a binary solar analogue at the end of the planet accretion era Downloaded from https://academic.oup.com/mnras/article-abstract/488/4/4465/5531782 by California Institute of Technology user on 26 September 2019 E. Gaidos ,1,2‹ T. Jacobs,3 D. LaCourse,4 A. Vanderburg,5 S. Rappaport,6 T. Berger,2,7 L. Pearce,5 A. W. Mann,8 L. Weiss,2,7† B. Fulton,9 A. Behmard ,10 A. W. Howard,9 M. Ansdell,11,12 G. R. Ricker,13 R. K. Vanderspek,13 D. W. Latham,14 S. Seager,13,15,16 J. N. Winn17 and J. M. Jenkins18 1Department of Earth Sciences, University of Hawai’i at Manoa,¯ Honolulu, HI 96822, USA 2Kavli Institute for Theoretical Physics, UC Santa Barbara, Santa Barbara, CA 93106, USA 312812 SE 69th Place Bellevue, WA 98006, USA 47507 52nd Place NE Marysville, WA 98270, USA 5Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712, USA 6Department of Physics, Kavli Institute for Astrophysics and Space Research, MIT, Cambridge, MA 02139, USA 7Institute for Astronomy, University of Hawaii at Manoa,¯ Honolulu, HI 96822, USA 8Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255, USA 9Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA 10Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA
    [Show full text]