An Analysis of Salt Eating in Birds

Total Page:16

File Type:pdf, Size:1020Kb

An Analysis of Salt Eating in Birds Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 8-1980 An Analysis of Salt Eating in Birds Kathryn Julia Herson Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Biology Commons Recommended Citation Herson, Kathryn Julia, "An Analysis of Salt Eating in Birds" (1980). Master's Theses. 1909. https://scholarworks.wmich.edu/masters_theses/1909 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. AN ANALYSIS OF SALT EATING IN BIRDS by KATHRYN JULIA HERSON A Thesis Submitted to the Faculty of The Graduate College in partial fulfillment of the Degree of Master of Arts Department of Biology Western Michigan University Kalamazoo, Michigan August 1880 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ACKNOWLEDGMENTS I am very graceful for Che advice and help of my thesis committee which conslsced of Dr8, Richard Brewer, Janes Erickson and Michael McCarville, I am parclcularly thankful for my major professor, Dr, Richard Brewer for his extreme diligence and patience In aiding me with Che project. I am also very thankful for all the amateur ornithologists of the Kalamazoo, Michigan, area who allowed me to work on their properties. In this respect I am particularly grateful to Mrs. William McCall of Augusta, Michigan. Last of all I would like to thank all my friends who aided me by lending modes of transportation so that I could pursue the field work. These persons included Peggy Pantazopoulos Reinsch, Norman William Schafer and Terry Irving. Kathryn Julia Herson 11 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photo­ graphed the photographer has followed a definite method in “sectioning” the material. It is customary to begin filming at the upper left hand comer of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete. 4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department. 5. Some pages in any document may have indistinct print. In all cases we have filmed the best available copy. University M iaorilm s International 300 N. ZEEB ROAD. ANN ARBOR. Ml 48106 18 BEDFORD ROW. LONDON WC1R 4EJ. ENGLAND Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 131523S HERSON, KATHRYK J-JLIA AH ANALYSIS OF SALT EATISG IH BIROS. WESTER** MICHIGAN UM1YE^SITYV M.&., 1980 i i University’ . Mtadnfrns nsmational 300 N. ZEEB ROAD. ANN ARBOR. Ml 48106 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. TABLE OF CONTENTS ACKNOWLEDGMENTS........................................... ii LIST OF TABLES............................................ v Chapter I. INTRODUCTION...................................... 1 II. STUDY METHODS.................................... 3 III. ANALYSIS OF HYPOTHESIS ONE: SALT EATING SERVES NO ADAPTIVE FUNCTION; BIRDS INGEST SALT ACCIDENTALLY, PERHAPS MISTAKING IT FOR GRIT.................... 5 IV. ANALYSIS OF HYPOTHESIS TWO: BIRDS EAT SALT BECAUSE OF A LACK OF IT IN THEIRNATURAL DIETS............ 10 Subhypothesis a. Salt-eating birds may live in an environment where the salt content is so low that most food obtained from the area will also be low in salt............................ 10 Subhypothesis b. At certain times of the year, birds are kept away from natural salt sources and therefore will seek out other available sources of salt (Cade 1964)...................... 12 Subhypothesis c. Salt-eating birds eat foods which have naturally low salt content, certain seeds and particularly fruits are examples (Cade 1964).... 12 V. ANALYSIS OF HYPOTHESIS THREE: BIRDS NEED AN INCREASED INTAKE OF SALT DURING CERTAIN PERIODS, FOR EXAMPLE DURING BREEDING (Schorger 1935).................... 22 VI. ANALYSIS OF HYPOTHESIS FOUR: EVOLUTIONARY CHANGES HAVE RESULTED IN HIGHER SALT REQUIREMENTS IN SOME LINES OF DESCENT (Tordoff 1964b).................. 25 VII. GENERAL DISCUSSION.............................. 31 VIII. SUMMARY........................................ 33 iii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. APPENDICES................................................ 35 BIBLIOGRAPHY.............................................. 48 iv Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. LIST OF TABLES N Salt-eating citations that emphasize that salt is not being mistaken for grit..........,.................................. 7 Observations on salt and grit ingestion at established feed­ ers in or near Kalamazoo, hichigan, January-June 1979....... 9 Number of species, number of salt-eating species, and number of expected salt-eating species per characteristic environment for the species of the orders Passeriformes, Columbiformes, and Piciformes................................................. 14 Number of species, number of salt-eating species, and number of expected salt-eating species of the orders Passeriformes, Columbiformes, and Piciformes for the coniferous forest species in comparision to all other habitats.................. 15 Number of salt-eating incidents and number of expected salt- eating incidents per season for the order Passeriformes 16 Sodium content (mg/lOOg) of some avian foods and animal matter......................................................... 17 Seasonal dietary sodium content of known salt-eating species. Diets are from Bent (1926, 1963, 1964a and b, 1965 and 1968). An asterisk (*) indicates that salt eating is well documented for the period. Y.R. indicates year-round information. The letters "V" and "I" indicate predominantly vegetarian and insectivorous diets respectively................................ 18 Number of salt-eating incidents per diet type and expected number of incidents for the salt-eating citations that included the date of the incident............................. 20 Distribution of the boreal forest species of the orders Columbiformes, Piciformes and Passeriformes. The species are classified as either salt eaters or non-salt eaters and as having characteristic diets of either low ot high salt content........................................................ 21 Number of salt-eating Incidents and expected number of salt- eating incidents for the species of the order Passeriformes in which the incidents included the date of salt ingestion. The breeding season's incidents are compared with the inci­ dents of the nonbreeding season......... ;.................... 24 v Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Number of species, number of salt-eating species and number of expected salt-eating species for the North American avian families................................................. vi Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CHAPTER I INTRODUCTION Salt eating in birds has not been throughly studied. There are many anecdotes of birds eating salt off winter roads, salt licks set out for deer and other animals, and natural salt licks. Cade (1964) listed some salt-eating birds and proposed that salt eating is the result of a lack of salt in the birds' diets either from foods with low sodium content or from seasonal factors such as snow cover restrict­ ing access to natural salt sources. Schorger (1935) indicated that pigeons "are fond of salt and seek it greedily, especially when raising their young." Tordoff (1954b) suggested that salt eating is taxonomi- cally restricted thus implying that genetic as well as environmental factors may be involved. Considering the connection between dietary salt and hypertension in mammals (Darrow and Yannett 1934) and known unfavorable effects of high sodium
Recommended publications
  • Potential Threats to Afro-Palearctic Migrato
    www.nature.com/scientificreports OPEN Unravelling the drastic range retraction of an emblematic songbird of North Africa: potential Received: 31 October 2016 Accepted: 16 March 2017 threats to Afro-Palearctic migratory Published: xx xx xxxx birds Rassim Khelifa1, Rabah Zebsa2, Hichem Amari3, Mohammed Khalil Mellal4, Soufyane Bensouilah3, Abdeldjalil Laouar5 & Hayat Mahdjoub1 Understanding how culture may influence biodiversity is fundamental to ensure effective conservation, especially when the practice is local but the implications are global. Despite that, little effort has been devoted to documenting cases of culturally-related biodiversity loss. Here, we investigate the cultural domestication of the European goldfinch (Carduelis carduelis) in western Maghreb (Morocco, Algeria and Tunisia) and the effects of long-term poaching of wild populations (1990–2016) on range distribution, socio-economic value, international trading and potential collateral damage on Afro- Palearctic migratory birds. On average, we found that the European goldfinch lost 56.7% of its distribution range in the region which led to the increase of its economic value and establishment of international trading network in western Maghreb. One goldfinch is currently worth nearly a third of the average monthly income in the region. There has been a major change in poaching method around 2010, where poachers started to use mist nets to capture the species. Nearly a third of the 16 bird species captured as by-catch of the European goldfinch poaching are migratory, of which one became regularly sold as cage-bird. These results suggest that Afro-Palearctic migratory birds could be under serious by-catch threat. Species overexploitation for wildlife trade is a major global threat to biodiversity, particularly birds1, 2.
    [Show full text]
  • American Goldfinch American Goldfinch Appearance Fairly Small, Slim, Somewhat Small-Headed Bird with a Fairly Long Notched Tail, and Short Conical Bill
    American Goldfinch American Goldfinch Appearance Fairly small, slim, somewhat small-headed bird with a fairly long notched tail, and short conical bill. Sexually dimorphic. Male Female Pale pinkish-orange bill. Pale pinkish-orange bill. Black cap, bright yellow body with white undertail coverts; Greenish-yellow crown; bright yellow underparts with white undertail covers; dusky two white wing-bars on black wings. olive/yellow upper parts; two white wing-bars on black wings. Photos: Jackie Tilles (left), Omaksimenko (right) DuPage Birding Club, 2020 2 American Goldfinch Appearance Fairly small, slim, somewhat small-headed bird with a fairly long notched tail and short conical bill. Sexually dimorphic. Female (left) and male (right) Photo: Mike Hamilton DuPage Birding Club, 2020 3 American Goldfinch Appearance Immatures are olive/brown above, pale yellow below, shading to buff on sides and flanks; throat of males progressively brighter yellow with age. Flight feathers dark blackish-brown, males darker than females; wing-bars and feather tips buffy. Immature American Goldfinch Immature American Goldfinch Photos: Mike Hamilton DuPage Birding Club, 2020 4 American Goldfinch Sounds From The Cornell Lab of Ornithology: https://www.birds.cornell.edu/home/ SONGS Males sing a long and variable series of twitters and warbles that can be several seconds long. The notes and phrases are variable and repeated in a seemingly random order. Birds continue to learn song patterns throughout life. CALLS The American Goldfinch’s most common call is its contact call, often given in flight. It sounds like the bird is quietly saying po-ta-to-chip or per- chik’-o-ree with a very even cadence.
    [Show full text]
  • Phylogeography of Finches and Sparrows
    In: Animal Genetics ISBN: 978-1-60741-844-3 Editor: Leopold J. Rechi © 2009 Nova Science Publishers, Inc. Chapter 1 PHYLOGEOGRAPHY OF FINCHES AND SPARROWS Antonio Arnaiz-Villena*, Pablo Gomez-Prieto and Valentin Ruiz-del-Valle Department of Immunology, University Complutense, The Madrid Regional Blood Center, Madrid, Spain. ABSTRACT Fringillidae finches form a subfamily of songbirds (Passeriformes), which are presently distributed around the world. This subfamily includes canaries, goldfinches, greenfinches, rosefinches, and grosbeaks, among others. Molecular phylogenies obtained with mitochondrial DNA sequences show that these groups of finches are put together, but with some polytomies that have apparently evolved or radiated in parallel. The time of appearance on Earth of all studied groups is suggested to start after Middle Miocene Epoch, around 10 million years ago. Greenfinches (genus Carduelis) may have originated at Eurasian desert margins coming from Rhodopechys obsoleta (dessert finch) or an extinct pale plumage ancestor; it later acquired green plumage suitable for the greenfinch ecological niche, i.e.: woods. Multicolored Eurasian goldfinch (Carduelis carduelis) has a genetic extant ancestor, the green-feathered Carduelis citrinella (citril finch); this was thought to be a canary on phonotypical bases, but it is now included within goldfinches by our molecular genetics phylograms. Speciation events between citril finch and Eurasian goldfinch are related with the Mediterranean Messinian salinity crisis (5 million years ago). Linurgus olivaceus (oriole finch) is presently thriving in Equatorial Africa and was included in a separate genus (Linurgus) by itself on phenotypical bases. Our phylograms demonstrate that it is and old canary. Proposed genus Acanthis does not exist. Twite and linnet form a separate radiation from redpolls.
    [Show full text]
  • Prairie Falcons of Coles County, Illinois 14
    MeadowlarkSUMMER/FALL 2017 Prairie Falcons of Coles County, Illinois 14 2017 IORC Report 7 Summer 2017 Fall 2017 Field Notes 21 Field Notes 46 Meadowlark PRESIDENT’S LETTER PUBLISHED BY Illinois Ornithological Society Anyone who has done a bit of bird watching on the western shore of Lake Michigan during fall migration knows that your success is very often weather EDITORIAL TEAM dependent. In fact, the best weather days (think sunny and calm) aren’t necessarily the best birding days at all. Warm sunny weather entices more people outside CHIEF EDITOR often with their kids and pets in tow. Better get up early or you’ll hear stories Eric Secker from fellow birders how dogs chased off a flock of graceful American Avocets from ASSISTANT EDITORS the beach or runners flushed an unexpected Upland Sandpiper moments before Tamima Itani, Adam Sell you arrived. There’s nothing more frustrating than missing a good bird by a few PRESIDENT & CHIEF SUPERVISOR minutes. Believe me. I’ve been there many times. Matt Igleski Experienced birders don’t mind getting up early or even braving the elements, LAYOUT AND PRODUCTION but it’s not just about trying to beat the crowd. Knowing how the weather may Eric Secker affect migration and bird activity improves your chances at finding certain species or of having a productive outing in general. FIELD NOTES EDITORS There’s probably one condition where you might as well pack it in for the Jill Anderson Matt Hayes day and that’s heavy rain. In a torrential downpour, you won’t be able to see or Dan Williams even keep your optics dry.
    [Show full text]
  • Review of Illegal Killing and Taking of Birds in Northern and Central Europe and the Caucasus
    Review of illegal killing and taking of birds in Northern and Central Europe and the Caucasus Overview of main outputs of the project The information collated and analysed during this project has been summarised in a variety of outputs: 1. This full report Presenting all the aspects of the project at regional and national levels http://www.birdlife.org/illegal-killing 2. Scientific paper Presenting results of the regional assessment of scope and scale of illegal killing and taking of birds in Northern and Central Europe and the Caucasus1 https://www.cambridge.org/core/journals/bird-conservation-international 3. Legislation country factsheets Presenting a review of national legislation on hunting, trapping and trading of birds in each assessed country http://www.birdlife.org/datazone/country (under ‘resources’ tab) 4. ‘The Killing 2.0’ Layman’s report Short communications publication for publicity purposes with some key headlines of the results of the project and the previous one focussing on the Mediterranean region http://www.birdlife.org/illegal-killing Credits of front cover pictures 1 2 3 4 1 Hen harrier Circus cyaneus © RSPB 2 Illegal trapping of Hen Harrier in the UK © RSPB 3 Common Coot (Fulica atra) © MISIK 4 Illegal trade of waterbirds illegally killed in Azerbaijan © AOS Citation of the report BirdLife International (2017) Review of illegal killing and taking of birds in Northern and Central Europe and the Caucasus. Cambridge, UK: BirdLife International. 1 Paper in revision process for publication in Bird Conservation International in October 2017 when this report is released 1 Executive Summary The illegal killing and taking of wild birds remains a major threat on a global scale.
    [Show full text]
  • Golden-Winged Warbler Status Review and Conservation Plan
    Golden-winged Warbler Status Review and Conservation Plan i Golden-winged Warbler Status Review and Conservation Plan Editors: Amber M. Roth, Ronald W. Rohrbaugh, Tom Will, and David A. Buehler Front cover art by: Ann-Kathrin Wirth. Back cover art by: Reyn Oriji. Chapter 1: Golden-winged Warbler Status Review Chapter 2: Golden-winged Warbler Full Life Cycle Conservation Strategy Chapter 3: Golden-winged Warbler Breeding Season Conservation Plan Chapter 4: Golden-winged Warbler Non- breeding Season Conservation Plan (to be added in the future) Photo by Roger Erikkson. RECOMMENDED CITATION Roth, A.M., R.W. Rohrbaugh, T. Will, and D.A. Buehler, editors. 2012. Golden-winged Warbler Status Review and Conservation Plan. www.gwwa.org/ ii TABLE OF CONTENTS Recommended Citation ................................................................................................................................ ii Acknowledgments........................................................................................................................................ vi Preface ....................................................................................................................................................... viii CHAPTER 1: Golden-winged Warbler Status Review................................................................................1–1 CHAPTER 2: Golden-winged Warbler Full Life Cycle Conservation Strategy............................................2–1 Recommended Citation ............................................................................................................................2–1
    [Show full text]
  • Niche Analysis and Conservation of Bird Species Using Urban Core Areas
    sustainability Article Niche Analysis and Conservation of Bird Species Using Urban Core Areas Vasilios Liordos 1,* , Jukka Jokimäki 2 , Marja-Liisa Kaisanlahti-Jokimäki 2, Evangelos Valsamidis 1 and Vasileios J. Kontsiotis 1 1 Department of Forest and Natural Environment Sciences, International Hellenic University, 66100 Drama, Greece; [email protected] (E.V.); [email protected] (V.J.K.) 2 Arctic Centre, University of Lapland, 96101 Rovaniemi, Finland; jukka.jokimaki@ulapland.fi (J.J.); marja-liisa.kaisanlahti@ulapland.fi (M.-L.K.-J.) * Correspondence: [email protected] Abstract: Knowing the ecological requirements of bird species is essential for their successful con- servation. We studied the niche characteristics of birds in managed small-sized green spaces in the urban core areas of southern (Kavala, Greece) and northern Europe (Rovaniemi, Finland), during the breeding season, based on a set of 16 environmental variables and using Outlying Mean Index, a multivariate ordination technique. Overall, 26 bird species in Kavala and 15 in Rovaniemi were recorded in more than 5% of the green spaces and were used in detailed analyses. In both areas, bird species occupied different niches of varying marginality and breadth, indicating varying responses to urban environmental conditions. Birds showed high specialization in niche position, with 12 species in Kavala (46.2%) and six species in Rovaniemi (40.0%) having marginal niches. Niche breadth was narrower in Rovaniemi than in Kavala. Species in both communities were more strongly associated either with large green spaces located further away from the city center and having a high vegetation cover (urban adapters; e.g., Common Chaffinch (Fringilla coelebs), European Greenfinch (Chloris Citation: Liordos, V.; Jokimäki, J.; chloris Cyanistes caeruleus Kaisanlahti-Jokimäki, M.-L.; ), Eurasian Blue Tit ( )) or with green spaces located closer to the city center Valsamidis, E.; Kontsiotis, V.J.
    [Show full text]
  • Evaluating and Treating the Gastrointestinal System
    CHAPTER 14 Evaluating and Treating the Gastrointestinal System STACEY GELIS, BS c, BVS c (Hons), MACVS c ( Avian Health) The avian gastrointestinal tract (GIT) has undergone a multitude of changes during evolution to become a unique anatomical and physiological structure when compared to other animal orders. On the one hand it has evolved to take advantage of the physical and chemi- cal characteristics of a wide variety of food types.1 On the other hand, it has had to do so within the limitations of the requirements for flight.2 To this end, birds have evolved a lightweight beak and muscular ventriculus, which replaces the heavy bone, muscular and dental structure characteristic of reptiles and mammals. The ventriculus and small intestine are the heaviest struc- tures within the gastrointestinal tract and are located near the bird’s centre of gravity within the abdomen. Greg J. Harrison Greg J. The overall length of the GIT is also less than that of a comparable mammal, another weight-saving flight adap- tation. Interestingly, these characteristics are still shared with the flightless species such as ratites and penguins. In addition, the actual digestive process needs to be rapid to support the high metabolic rate typical of flighted birds.3 Gastrointestinal adaptations to the wide range of ecolog- ical niches that birds occupy mean that birds can take advantage of a huge variety of foodstuffs. The GIT hence shows the greatest degree of diversity of all the organ systems between different avian taxa. However, the pres- sures of convergent evolution have also meant that many distantly related species have developed a similar gastrointestinal anatomy to take advantage of particular food niches.3,4 Examples of these will be presented in the discussion of each section of the GIT.
    [Show full text]
  • Federal Register/Vol. 85, No. 74/Thursday, April 16, 2020/Notices
    21262 Federal Register / Vol. 85, No. 74 / Thursday, April 16, 2020 / Notices acquisition were not included in the 5275 Leesburg Pike, Falls Church, VA Comment (1): We received one calculation for TDC, the TDC limit would not 22041–3803; (703) 358–2376. comment from the Western Energy have exceeded amongst other items. SUPPLEMENTARY INFORMATION: Alliance, which requested that we Contact: Robert E. Mulderig, Deputy include European starling (Sturnus Assistant Secretary, Office of Public Housing What is the purpose of this notice? vulgaris) and house sparrow (Passer Investments, Office of Public and Indian Housing, Department of Housing and Urban The purpose of this notice is to domesticus) on the list of bird species Development, 451 Seventh Street SW, Room provide the public an updated list of not protected by the MBTA. 4130, Washington, DC 20410, telephone (202) ‘‘all nonnative, human-introduced bird Response: The draft list of nonnative, 402–4780. species to which the Migratory Bird human-introduced species was [FR Doc. 2020–08052 Filed 4–15–20; 8:45 am]‘ Treaty Act (16 U.S.C. 703 et seq.) does restricted to species belonging to biological families of migratory birds BILLING CODE 4210–67–P not apply,’’ as described in the MBTRA of 2004 (Division E, Title I, Sec. 143 of covered under any of the migratory bird the Consolidated Appropriations Act, treaties with Great Britain (for Canada), Mexico, Russia, or Japan. We excluded DEPARTMENT OF THE INTERIOR 2005; Pub. L. 108–447). The MBTRA states that ‘‘[a]s necessary, the Secretary species not occurring in biological Fish and Wildlife Service may update and publish the list of families included in the treaties from species exempted from protection of the the draft list.
    [Show full text]
  • The Phylogenetic Relationships and Generic Limits of Finches
    Molecular Phylogenetics and Evolution 62 (2012) 581–596 Contents lists available at SciVerse ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev The phylogenetic relationships and generic limits of finches (Fringillidae) ⇑ Dario Zuccon a, , Robert Pryˆs-Jones b, Pamela C. Rasmussen c, Per G.P. Ericson d a Molecular Systematics Laboratory, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden b Bird Group, Department of Zoology, Natural History Museum, Akeman St., Tring, Herts HP23 6AP, UK c Department of Zoology and MSU Museum, Michigan State University, East Lansing, MI 48824, USA d Department of Vertebrate Zoology, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden article info abstract Article history: Phylogenetic relationships among the true finches (Fringillidae) have been confounded by the recurrence Received 30 June 2011 of similar plumage patterns and use of similar feeding niches. Using a dense taxon sampling and a com- Revised 27 September 2011 bination of nuclear and mitochondrial sequences we reconstructed a well resolved and strongly sup- Accepted 3 October 2011 ported phylogenetic hypothesis for this family. We identified three well supported, subfamily level Available online 17 October 2011 clades: the Holoarctic genus Fringilla (subfamly Fringillinae), the Neotropical Euphonia and Chlorophonia (subfamily Euphoniinae), and the more widespread subfamily Carduelinae for the remaining taxa. Keywords: Although usually separated in a different
    [Show full text]
  • Mt. Tabor Park Bird List
    Species s S F W Species s S F W Jays & Crows Warblers (continued) *Steller’s Jay c c c f Blackpoll Warbler x *Western Scrub-Jay c c c c MacGillivray’s Warbler u o Mt. Tabor Park *American Crow c c c c *Wilson’s Warbler c o c Swallows Hooded Warbler x Tree Swallow r r Tanagers Bird List Violet-green Swallow f f f *Western Tanager c u u x Northern Rough-winged Swallow x Summer Tanager x Cliff Swallow r r Sparrows *Barn Swallow c c c *Spotted Towhee c c c u Purple Martin x x Chipping Sparrow o r Chickadees Savannah Sparrow x *Black-capped Chickadee c c c c Fox Sparrow f f f *Chestnut-backed Chickadee c c c c *Song Sparrow c c c c Bushtits Lincoln’s Sparrow o r *Bushtit c c c c White-throated Sparrow r r r Nuthatches *White-crowned Sparrow u o u r *Red-breasted Nuthatch c c c c Golden-crowned Sparrow f f f Creepers *Dark-eyed Junco c c c c *Brown Creeper c c c c Grosbeaks Wrens *Black-headed Grosbeak f f f *Bewick’s Wren c c c c Rose-breasted Grosbeak x House Wren x x Buntings *Winter Wren c o c c Lazuli Bunting r x Kinglets Blackbirds Golden-crowned Kinglet c u c c Brewer’s Blackbird x x x x Ruby-crowned Kinglet c c c Red-winged Blackbird x x Thrushes Brown-headed Cowbird f f u Townsend’s Solitaire u r r Orioles Portland, OR Swainson’s Thrush c o c Bullock’s Oriole r x Hermit Thrush c c f Finches *American Robin c c c c Purple Finch f u r Varied Thrush c c c *House Finch c c c c Starlings Red Crossbill u o o o Illustrated and compiled by European Starling f f f f *Pine Siskin f u f f Adrian Hinkle Waxwings *Lesser Goldfinch c c c u January
    [Show full text]
  • Sequence and Organisation of the Mitochondrial Genome of Japanese Grosbeak (Eophona Personata), and the Phylogenetic Relationships of Fringillidae
    ZooKeys 955: 67–80 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.955.34432 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Sequence and organisation of the mitochondrial genome of Japanese Grosbeak (Eophona personata), and the phylogenetic relationships of Fringillidae Guolei Sun1, Chao Zhao1, Tian Xia1, Qinguo Wei1, Xiufeng Yang1, Shi Feng1, Weilai Sha1, Honghai Zhang1 1 College of Life Science, Qufu Normal University, Qufu, Shandong province, China Corresponding author: Honghai Zhang ([email protected]) Academic editor: G. Sangster | Received 12 March 2019 | Accepted 7 October 2020 | Published 18 November 2020 http://zoobank.org/C3518FBE-06B2-4CAA-AFBF-13EB96B3E1E9 Citation: Sun G, Zhao C, Xia T, Wei Q, Yang X, Feng S, Sha W, Zhang H (2020) Sequence and organisation of the mitochondrial genome of Japanese Grosbeak (Eophona personata), and the phylogenetic relationships of Fringillidae. ZooKeys 955: 67–80. https://doi.org/10.3897/zookeys.955.34432 Abstract Mitochondrial DNA is a useful molecular marker for phylogenetic and evolutionary analysis. In the current study, we determined the complete mitochondrial genome of Eophona personata, the Japanese Grosbeak, and the phylogenetic relationships of E. personata and 16 other species of the family Fringil- lidae based on the sequences of 12 mitochondrial protein-coding genes. The mitochondrial genome of E. personata consists of 16,771 base pairs, and contains 13 protein-coding genes, 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, and one control region. Analysis of the base composition revealed an A+T bias, a positive AT skew and a negative GC skew. The mitochondrial gene order and arrangement in E.
    [Show full text]