Reconstructing the Duplication History of a Tandem Repeat

Total Page:16

File Type:pdf, Size:1020Kb

Reconstructing the Duplication History of a Tandem Repeat Reconstructing the Duplication History of a Tandem Rep eat y Gary Benson and Lan Dong Department of Biomathematical Sciences The Mount Sinai Scho ol of Medicine New York, NY 10029-6574 Abstract repeat.Over time, individual copies within a tandem re- p eat may undergo additional, unco ordinated mutations including new tandem duplications so that typically, One of the less well understo o d mutational transforma- multiple approximate tandem copies are present. tions that act up on DNA is tandem duplication. In this pro cess, a stretch of DNA is duplicated to pro duce two Examination of a tandem rep eat often suggests that or more adjacent copies, resulting in a tandem repeat. the sequence was pro duced by a series of tandem du- Over time, the copies undergo additional mutations so plications intersp ersed with p ointmutations. The real that typically,multiple approximate tandem copies are biological sequence shown in Fig. 1 is a typical exam- present. An interesting feature of tandem rep eats is that the duplicated copies are preserved together, mak- ple. It consists of 16 copies of an 8 nucleotide pattern. ing it p ossible to do \phylogenetic analysis" on a single Copies are numb ered and spaces inserted b etween the sequence. This involves using the pattern of mutations copies for clarity. A consensus for these 16 copies is among the copies to determine a minimal or a most AAAC T T AG. Astrisks * ag di erences b etween the likely history for the rep eat. A history tries to de- copies and the consensus. scrib e the interwoven pattern of substitutions, indels, and duplication events in suchaway as to minimize Careful observation reveals that G is p erio dically sub- the numb er of identical mutations that arise indep en- stituted for A. Such substitutions are unlikely to o c- dently. Because the copies are adjacent and ordered, cur indep endently. It is more likely that a single the history problem can not b e solved by standard phy- common ancestor pattern is resp onsible for the A to logeny algorithms. In this pap er, weintro duce several G substitutions through duplication. Perhaps an 8 versions of the tandem rep eat history problem, develop character unit, say AAAC T T AG,was rst duplicated algorithmic solutions and evaluate their p erformance. and then mutated to AGAC T T AG and then the two We also develop ways to visualize imp ortant features of a history with the goal of discovering prop erties of copies were duplicated as a single 16 character unit the duplication mechanism. AAAC T T AGAGAC T T AG. When the second through thirteenth copies are viewed in this way, 5 of the A to G substitutions are accounted for. Further observation Keywords: tandem rep eats, phylogeny algorithms suggests that the two starred T smayhave b een the result of another duplication. 1 Intro duction Tandem rep eats are di erent from other typ es of du- plicated sequences b ecause the child copies of duplica- One of the less well understo o d mutational pro cesses for tion are adjacent on the same sequence. This di erence DNA molecules is tandem duplication in which a stretch leads to complications in determining the parent copy of DNA is transformed into two or more adjacent copies. of duplication. See Fig. 2. The following illustrates a tandem duplication in which the single o ccurrence of triplet CGG is transformed into Boundaries. It is not always p ossible to distinguish three identical, adjacent copies. the b oundaries of a duplicated pattern. Consider the two examples b elow in which a duplication changes three identical copies of AB C D into four identical :::T C GG A::: ! :::T C GG CGG CGG A::: copies. Although the b oundaries of the duplicated pat- terns underlined di er, the results are the same. The result of a tandem duplication is termed a tandem AB C D ! AB C D AB C D AB C DAB C D AB C D AB C D Partially supp orted by NFS grant CCR-9623532 and AB C D AB C D AB CD ! AB C D AB C D AB CDABCD a 1997 grant from the German Academic Exchange Service DAAD. y Partially supp orted by NFS grant CCR-9623532. 1 * * * * AAACTTAG AAACTTAT AGACTTAG AAACTTAG AGACTTAG AAACTTAG AGACTTAG AAACTTAG 1 2 3 4 5 6 7 8 * * * * * * * AGACTTAG AAACTTAT AGACTTAG AAACTTAG AGACTTAG AGACTCAG AAACTTAG AAAGCTTAG 9 10 11 12 13 14 15 16 -------------------------------------------------------------------------------- * AAACTTAG AAACTTATAGACTTAG AAACTTAGAGACTTAG AAACTTAGAGACTTAG AAACTTAGAGACTTAG 1 2 3 4 5 6 7 8 9 * * * * AAACTTATAGACTTAG AAACTTAGAGACTTAG AGACTCAG AAACTTAG AAAGCTTAG 10 11 12 13 14 15 16 Figure 1: Top: Perio dic nucleotide substitutions in a tandem rep eat suggests a common ancestor. Bottom: Fiveof the A to G substitutions may b e accounted for by a single A to G substitution followed by duplication. Mutations add information. In the next example, the assumes predominantly single copychanges with rare second copy of ABCD has b een mutated to AXCY. multi-copychanges. In Bell & Torney 1993 compar- Now, di erent duplication b oundaries give di erent re- ison of estimated rates of unequal crossing over and sults. observed rates of microsatellite mutation lead to the conclusion that slipp ed strand mispairing is the ma- ABCDAXCY AB C D ! ABCDAXCY AXCY AB C D jor cause of length p olymorphism in microsatellites. In ABCDAXCY AB CD ! ABCDAXCY AB CY ABCD Charlesworth, Sniegowski, & Stephan 1994, mo deling and simulation suggests that very low recombination rates unequal crossing over can result in very large copynumb er and higher order rep eats. Note that the b oundaries are still not completely deter- mined in the later two cases. The pattern in b oth could Many unresolved questions can b e asked ab out the b e shifted one character to the right and give the same mechanism of tandem duplication, among them: 1 Is results. We presentaway to display this uncertaintyin the b oundary of the duplication unit unique, is it con- Section 6. ned to a few lo cations or is it seemingly unrestricted? 2 Is the duplication unit size unique, do es it vary in Duplication size. The size of the duplication unit can a small range or is it unrestriced? Do es pattern size be anymultiple of the basic pattern size. In the exam- a ect the variability of duplication unit size? 3 Do es ple b elow, four copies of a pattern of size 4 are changed duplication o ccur preferentially at one end or the other into six copies by duplicating the middle 8 characters. of the rep eat or preferentially on the leading or lag- Again, mutations in the original copies can help distin- ging strand during replication Kunst & Warren 1994; guish the size of the duplication unit from other p ossi- Kang et al. 1995; Eichler et al. 1995? bilities. Answers to these questions may suggest the presence of conformational structures, either within or adjacentto AB C D ! ABCDAXCY ABCZ the tandem rep eat Je reys et al. 1994, which trigger ABCDAXCY ABCZ AXCY ABCZAB C D duplication or may indicate that di erent mechanisms act on patterns of di erent sizes. An extensive anal- ysis of the histories of many tandem rep eats can pro- Several mechanisms have b een prop osed for the pro- vide data to supp ort one or the other of the theoretical duction of tandem rep eats, including replication slip- mo dels and may reveal new mechanistic features not al- page and unequal crossing over Wells 1996; Levinson ready anticipated. Additionally, comparison of related & Gutman 1987; Schlotterer & Tautz 1992; Okumura, tandem rep eats in di erent sequences could resolve im- Kiyama, & Oishi 1987; Smith 1976. Biological stud- p ortant questions regarding evolution or mutation over ies Strand et al. 1993; Weitzmann, Wo o dford, & Us- short time scales. Such a capabilitywould op en up new din 1997 have already provided supp ort for one or the opp ortunities to address questions of evolution and an- other of the mechanisms. Mathematical mo deling has cestry, including the study of human migration, rapid suggested mechanistic characteristics. For example in evolution of bacterial diseases, and the cascade of mu- Di Rienzo et al. 1994 accurate mo deling of copynum- tations that lead to cancer. With these purp oses in ber variation at a p olymorphic dinucleotide rep eat lo- mind, wehave b egun the development of algorithms to cus has b een obtained with a two-phase mo del which 2 copy of a pattern with two or more adjacent, identi- cal copies. A contraction is an algorithmic op eration in whichtwo or more adjacent, equal length substrings the contraction copies of a string are replaced by a sin- gle substring the mergedcopy. A contraction can b e thought of as the opp osite of a tandem duplication. A binary contraction replaces two contraction copies with a merged copy.Amany-to-one contraction replaces two or more contraction copies with a merged copy.Acon- traction copy is some substring of the multiple align- ment M with length a multiple of k .For the purp oses of contraction, each p osition in M is treated as a character set which is some subset of the alphab et fA; C ; G; T ; g. An ambiguous character set is a character set whichis Figure 2: A tandem rep eat history. Ancestral pattern not a singleton set, e.g., fA; Gg is ambiguous but fAg is not. The original multiple alignment M contains no sequence is at the top.
Recommended publications
  • Best Practice Recommendations for Internal Validation of Human Short Tandem Repeat Profiling on Capillary Electrophoresis Platforms
    Best Practice Recommendations for Internal Validation of Human Short Tandem Repeat Profiling on Capillary Electrophoresis Platforms Best Practice Recommendations for Internal Validation of Human Short Tandem Repeat Profiling on Capillary Electrophoresis Platforms Biological Methods Subcommittee Biology/DNA Scientific Area Committee Organization of Scientific Area Committees (OSAC) for Forensic Science Best Practice Recommendations for Internal Validation of Human Short Tandem Repeat Profiling on Capillary Electrophoresis Platforms OSAC Proposed Standard Best Practice Recommendations for Internal Validation of Human Short Tandem Repeat Profiling on Capillary Electrophoresis Platforms Prepared by Biological Methods Subcommittee Version: 1.0 Disclaimer: This document has been developed by the Biological Methods Subcommittee of the Organization of Scientific Area Committees (OSAC) for Forensic Science through a consensus process and is proposed for further development through a Standard Developing Organization (SDO). This document is being made available so that the forensic science community and interested parties can consider the recommendations of the OSAC pertaining to applicable forensic science practices. The document was developed with input from experts in a broad array of forensic science disciplines as well as scientific research, measurement science, statistics, law, and policy. This document has not been published by an SDO. Its contents are subject to change during the standards development process. All interested groups or individuals are strongly encouraged to submit comments on this proposed document during the open comment period administered by the Academy Standards Board (www.asbstandardsboard.org). Best Practice Recommendations for Internal Validation of Human Short Tandem Repeat Profiling on Capillary Electrophoresis Platforms Foreword This document outlines best practice recommendations for the internal validation of human short tandem repeat DNA profiling on capillary electrophoresis platforms utilized in forensic laboratories.
    [Show full text]
  • Microsatellites Within the Feline Androgen Receptor Are
    JFM0010.1177/1098612X16634386Journal of Feline Medicine and SurgeryFarwick et al 634386research-article2016 Original Article Journal of Feline Medicine and Surgery 1 –7 Microsatellites within the feline © The Author(s) 2016 Reprints and permissions: androgen receptor are suitable for X sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/1098612X16634386 chromosome-linked clonality testing jfms.com in archival material Nadine M Farwick1, Robert Klopfleisch1, Achim D Gruber1 and Alexander Th A Weiss2 Abstract Objectives A hallmark of neoplasms is their origin from a single cell; that is, clonality. Many techniques have been developed in human medicine to utilise this feature of tumours for diagnostic purposes. One approach is X chromosome-linked clonality testing using polymorphisms of genes encoded by genes on the X chromosome. The aim of this study was to determine if the feline androgen receptor gene was suitable for X chromosome-linked clonality testing. Methods The feline androgen receptor gene, was characterised and used to test clonality of feline lymphomas by PCR and polyacrylamide gel electrophoresis, using archival formalin-fixed, paraffin-embedded material. Results Clonality of the feline lymphomas under study was confirmed and the gene locus was shown to represent a suitable target in clonality testing. Conclusions and relevance Because there are some pitfalls using X chromosome-linked clonality testing, further studies are necessary to establish this technique in the cat. Accepted: 26 January 2016 Introduction Most tumours arise
    [Show full text]
  • Role of Human Endogenous Retroviral Long Terminal Repeats (Ltrs) in Maintaining the Integrity of the Human Germ Line
    Viruses 2011, 3, 901-905; doi:10.3390/v3060901 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Commentary Role of Human Endogenous Retroviral Long Terminal Repeats (LTRs) in Maintaining the Integrity of the Human Germ Line Meihong Liu and Maribeth V. Eiden * Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, 49 Convent Drive MSC 4483, Bethesda, MD 20892, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.:+1-301-402-1641 Fax: +1-301-402-1748. Received: 27 April 2011; in revised form: 10 June 2011 / Accepted: 15 June 2011 / Published: 21 June 2011 Abstract: Retroviruses integrate a reverse transcribed double stranded DNA copy of their viral genome into the chromosomal DNA of cells they infect. Occasionally, exogenous retroviruses infect germ cells and when this happens a profound shift in the virus host dynamic occurs. Retroviruses maintained as hereditable viral genetic material are referred to as endogenous retroviruses (ERVs). After millions of years of co-evolution with their hosts many human ERVs retain some degree of function and a few have even become symbionts. Thousands of copies of endogenous retrovirus long terminal repeats (LTRs) exist in the human genome. There are approximately 3000 to 4000 copies of the ERV-9 LTRs in the human genome and like other solo LTRs, ERV-9 LTRs can exhibit distinct promoter/enhancer activity in different cell lineages. It has been recently reported that a novel transcript of p63, a primordial member of the p53 family, is under the transcriptional control of an ERV-9 LTR [1].
    [Show full text]
  • A New Census of Protein Tandem Repeats and Their Relationship with Intrinsic Disorder
    G C A T T A C G G C A T genes Article A New Census of Protein Tandem Repeats and Their Relationship with Intrinsic Disorder Matteo Delucchi 1,2 , Elke Schaper 1,2,† , Oxana Sachenkova 3,‡, Arne Elofsson 3 and Maria Anisimova 1,2,* 1 ZHAW Life Sciences und Facility Management, Applied Computational Genomics, 8820 Wädenswil, Switzerland; [email protected] 2 Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland 3 Science of Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden * Correspondence: [email protected]; Tel.: +41-(0)58-934-5882 † Present address: Carbon Delta AG, 8002 Zürich, Switzerland. ‡ Present address: Vildly AB, 385 31 Kalmar, Sweden. Received: 9 March 2020; Accepted: 1 April 2020; Published: 9 April 2020 Abstract: Protein tandem repeats (TRs) are often associated with immunity-related functions and diseases. Since that last census of protein TRs in 1999, the number of curated proteins increased more than seven-fold and new TR prediction methods were published. TRs appear to be enriched with intrinsic disorder and vice versa. The significance and the biological reasons for this association are unknown. Here, we characterize protein TRs across all kingdoms of life and their overlap with intrinsic disorder in unprecedented detail. Using state-of-the-art prediction methods, we estimate that 50.9% of proteins contain at least one TR, often located at the sequence flanks. Positive linear correlation between the proportion of TRs and the protein length was observed universally, with Eukaryotes in general having more TRs, but when the difference in length is taken into account the difference is quite small.
    [Show full text]
  • An Intronic Variable Number of Tandem Repeat Polymorphisms of the Cold
    European Journal of Human Genetics (2006) 14, 1295–1305 & 2006 Nature Publishing Group All rights reserved 1018-4813/06 $30.00 www.nature.com/ejhg ARTICLE An intronic variable number of tandem repeat polymorphisms of the cold-induced autoinflammatory syndrome 1 (CIAS1) gene modifies gene expression and is associated with essential hypertension Toshinori Omi1, Maki Kumada1, Toyomi Kamesaki1, Hiroshi Okuda1, Lkhagvasuren Munkhtulga1, Yoshiko Yanagisawa1, Nanami Utsumi1, Takaya Gotoh1, Akira Hata2, Masayoshi Soma3, Satoshi Umemura4, Toshio Ogihara5, Norio Takahashi6, Yasuharu Tabara7, Kazuyuki Shimada8, Hiroyuki Mano9, Eiji Kajii1, Tetsuro Miki7 and Sadahiko Iwamoto*,1 1Division of Human Genetics, Center for Community Medicine, Jichi Medical School, Tochigi, Japan; 2Department of Public Health, Graduate School of Medicine, Chiba University, Chiba, Japan; 3Department of Nephrology and Endocrinology, Advanced Medical Research Center, Nihon University School of Medicine, Tokyo, Japan; 4Second Department of Internal Medicine, Yokohama City University Medical School, Kanagawa, Japan; 5Department of Genetics, Radiation Effects Research Foundation, Hiroshima, Japan; 6Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan; 7Department of Geriatric Medicine, Ehime University School of Medicine, Ehime, Japan; 8Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical School, Tochigi, Japan; 9Division of Functional Genomics, Jichi Medical School, Kawachigun, Tochigi, Japan Cold-induced autoinflammatory syndrome 1 (CIAS1) gene is a member of the NALP subfamily of the CATERPILLER protein family that is expressed predominantly in peripheral blood leukocytes, which is to regulate apoptosis or inflammation through the activation of NF-jB and caspase. Recent genetic analyses suggested an association between inflammation and oxidative stress-related genes in the development of hypertension. This is the first genetic study indicating an association between the CIAS1 gene and susceptibility to essential hypertension (EH).
    [Show full text]
  • Long Terminal Repeat Enhancer Core Sequences in Proviruses Adjacent to C-Myc in T-Cell Lymphomas Induced by a Murine Retrovirus
    JOURNAL OF VIROLOGY, Jan. 1995, p. 446–455 Vol. 69, No. 1 0022-538X/95/$04.0010 Copyright q 1995, American Society for Microbiology Long Terminal Repeat Enhancer Core Sequences in Proviruses Adjacent to c-myc in T-Cell Lymphomas Induced by a Murine Retrovirus HARRY L. MORRISON, BOBBY SONI, AND JACK LENZ* Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461 Received 28 June 1994/Accepted 17 October 1994 The transcriptional enhancer in the long terminal repeat (LTR) of the T-lymphomagenic retrovirus SL3-3 differs from that of the nonleukemogenic virus Akv at several sites, including a single base pair difference in an element termed the enhancer core. Mutation of this T-A base pair to the C-G sequence found in Akv significantly attenuated the leukemogenicity of SL3-3. Thus, this difference is important for viral leukemoge- nicity. Since Akv is an endogenous virus, this suggests that the C-G in its core is an adaptation to being minimally pathogenic. Most tumors that occurred in mice inoculated with the mutant virus, called SAA, contained proviruses with reversion or potential suppressor mutations in the enhancer core. We also found that the 72-bp tandem repeats constituting the viral enhancer could vary in number. Most tumors contained mixtures of proviruses with various numbers of 72-bp units, usually between one and four. Variation in repeat number was most likely due to recombination events involving template misalignment during viral replication. Thus, two processes during viral replication, misincorporation and recombination, combined to alter LTR enhancer structure and generate more pathogenic variants from the mutant virus.
    [Show full text]
  • Estimation of Duplication History Under a Stochastic Model for Tandem Repeats Farzad Farnoud1* , Moshe Schwartz2 and Jehoshua Bruck3
    Farnoud et al. BMC Bioinformatics (2019) 20:64 https://doi.org/10.1186/s12859-019-2603-1 RESEARCH ARTICLE Open Access Estimation of duplication history under a stochastic model for tandem repeats Farzad Farnoud1* , Moshe Schwartz2 and Jehoshua Bruck3 Abstract Background: Tandem repeat sequences are common in the genomes of many organisms and are known to cause important phenomena such as gene silencing and rapid morphological changes. Due to the presence of multiple copies of the same pattern in tandem repeats and their high variability, they contain a wealth of information about the mutations that have led to their formation. The ability to extract this information can enhance our understanding of evolutionary mechanisms. Results: We present a stochastic model for the formation of tandem repeats via tandem duplication and substitution mutations. Based on the analysis of this model, we develop a method for estimating the relative mutation rates of duplications and substitutions, as well as the total number of mutations, in the history of a tandem repeat sequence. We validate our estimation method via Monte Carlo simulation and show that it outperforms the state-of-the-art algorithm for discovering the duplication history. We also apply our method to tandem repeat sequences in the human genome, where it demonstrates the different behaviors of micro- and mini-satellites and can be used to compare mutation rates across chromosomes. It is observed that chromosomes that exhibit the highest mutation activity in tandem repeat regions are the same as those thought to have the highest overall mutation rates. However, unlike previous works that rely on comparing human and chimpanzee genomes to measure mutation rates, the proposed method allows us to find chromosomes with the highest mutation activity based on a single genome, in essence by comparing (approximate) copies of the pattern in tandem repeats.
    [Show full text]
  • Cell Line Authentication: Technology, Workflow, and Service
    Maintaining Scientific Integrity Through Cell Line Authentication Gabriela Saldanha Genomics Business Unit Life Sciences Research Promega Corporation Presentation Outline • Background on cell line authentication (CLA) • Basics of STRs and CLA protocols Promega Corporation 2 The legend of HeLa • HeLa- first immortal cancer line to be established in 1951 by George Gey • Cervical cancer derived from patient Henrietta Lacks • Widely used in research According to Rebecca Skloot, “More than 60,000 scientific articles had been published about research done on HeLa, and that number was increasing steadily at a rate of more than 300 papers each month.” • Rapid growing; can contaminate and overtake HeLa cells other cell types Promega Corporation 3 Stanley Gartler describes HeLa contamination of cell lines 1968: Gartler publishes first evidence of HeLa contamination based on G6PD isoenzymes NAME DESCRIPTION ORIGIN G6PD VARIANT HeLa Cervical adenocarcinoma, African Type A (fast) human KB Oral epidermoid Caucasian Type A (fast) Nature Reviews, 2010 carcinoma, human HEp-2 Larynx epidermoid Caucasian Type A (fast) carcinoma, human Conclusion: 90% (18/20) Chang liver Liver, human Caucasian Type A (fast) human cell lines are ‘HeLa’ Int-407 Embryonic intestine, Caucasian Type A (fast) human Promega Corporation 4 Poor culture condition leads to contamination • Poor tissue culture environment • No disposable, plastic culture dishes • No commercial media • Cells grown on bench-top • Bunsen burners and steam used for sterilization • Technicians wore surgical
    [Show full text]
  • Finding a Tandem Repeats Motifs in the Completed
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 October 2019 doi:10.20944/preprints201910.0249.v1 Finding a Tandem Repeats Motifs in the Completed Genomes of Human Coronavirus (hku1) Which is Identified as a Hotspot Region for the Viruses Recombination by Using Regular Expression Language Mohammed Ahmed Ezzelregal Hassan 1, Mohamed Elsayed Hasan2 1. PhD. in Bioinformatics, University of SADAT City, Genetic Engineering and Biotechnology Research Institute GEBRI, Bioinformatics Department, [email protected] Bioinformatician and molecular geneticist at Molecular genetics and taxonomy lab, General Authority for Fish Resources and Development (GAFRD) 2. PhD. in Bioinformatics, University of SADAT City, Genetic Engineering and Biotechnology Research Institute GEBRI, Bioinformatics Department , [email protected] Bioinformatician at the central laboratory unit of GEBRI institute 1 © 2019 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 October 2019 doi:10.20944/preprints201910.0249.v1 Abstract A lot of research studies have been surveyed the completed genomes of prokaryotic and eukaryotic and focused on the correlation between the percentage of microsatellite sequences in completed genomes and the whole size of the organism genomes. There are fewer studies made in repetitive sequences otherwise simple sequence repeats or long tandem repeats of virus genomes. simple sequence repeats (SSRs) are the most important regions for recombination and moving repeats blocks from site to another site in the genomes. A tool was programmed and designed by visual basic 6.0 to find the long tandem repeats in DNA sequences of the small genomes.
    [Show full text]
  • Identification and Characterisation of Endogenous Avian Leukosis Virus Subgroup E (ALVE) Insertions in Chicken Whole Genome Sequencing Data Andrew S
    Mason et al. Mobile DNA (2020) 11:22 https://doi.org/10.1186/s13100-020-00216-w RESEARCH Open Access Identification and characterisation of endogenous Avian Leukosis Virus subgroup E (ALVE) insertions in chicken whole genome sequencing data Andrew S. Mason1,2* , Ashlee R. Lund3, Paul M. Hocking1ˆ, Janet E. Fulton3† and David W. Burt1,4† Abstract Background: Endogenous retroviruses (ERVs) are the remnants of retroviral infections which can elicit prolonged genomic and immunological stress on their host organism. In chickens, endogenous Avian Leukosis Virus subgroup E (ALVE) expression has been associated with reductions in muscle growth rate and egg production, as well as providing the potential for novel recombinant viruses. However, ALVEs can remain in commercial stock due to their incomplete identification and association with desirable traits, such as ALVE21 and slow feathering. The availability of whole genome sequencing (WGS) data facilitates high-throughput identification and characterisation of these retroviral remnants. Results: We have developed obsERVer, a new bioinformatic ERV identification pipeline which can identify ALVEs in WGS data without further sequencing. With this pipeline, 20 ALVEs were identified across eight elite layer lines from Hy-Line International, including four novel integrations and characterisation of a fast feathered phenotypic revertant that still contained ALVE21. These bioinformatically detected sites were subsequently validated using new high- throughput KASP assays, which showed that obsERVer was highly precise and exhibited a 0% false discovery rate. A further fifty-seven diverse chicken WGS datasets were analysed for their ALVE content, identifying a total of 322 integration sites, over 80% of which were novel. Like exogenous ALV, ALVEs show site preference for proximity to protein-coding genes, but also exhibit signs of selection against deleterious integrations within genes.
    [Show full text]
  • Intra-Epidemic Genome Variation in Highly Pathogenic African Swine
    Farlow et al. Virology Journal (2018) 15:190 https://doi.org/10.1186/s12985-018-1099-z RESEARCH Open Access Intra-epidemic genome variation in highly pathogenic African swine fever virus (ASFV) from the country of Georgia Jason Farlow3* , Marina Donduashvili1, Maka Kokhreidze1, Adam Kotorashvili2, Nino G. Vepkhvadze1, Nato Kotaria2 and Ana Gulbani1 Abstract Background: African swine fever virus (ASFV) causes an acute hemorrhagic infection in suids with a mortality rate of up to 100%. No vaccine is available and the potential for catastrophic disease in Europe remains elevated due to the ongoing ASF epidemic in Russia and Baltic countries. To date, intra-epidemic whole-genome variation for ASFV has not been reported. To provide a more comprehensive baseline for genetic variation early in the ASF outbreak, we sequenced two Georgian ASFV samples, G-2008/1 and G-2008/2, derived from domestic porcine blood collected in 2008. Methods: Genomic DNA was extracted directly from low-volume ASFV PCR-positive porcine blood samples and subjected to next generation sequencing on the Illumina Miseq platform. De novo and mapped sequence assemblies were performed using CLCBio software. Genomic illustrations, sequence alignments and assembly figures were generated using Geneious v10.2.4. Sequence repeat architecture was analyzed using DNASTAR GeneQuest 14.1.0. Results: The G-2008/1 and G-2008/2 genomes were distinguished from each other by coding changes in seven genes, including MGF 110-1 L, X69R, MGF 505-10R, EP364R, H233R, E199L, and MGF 360-21R in addition to eight homopolymer tract variations. The 2008/2 genome possessed a novel allele state at a previously undescribed intergenic repeat locus between genes C315R and C147L.
    [Show full text]
  • Conversion of DNA Sequences: from a Transposable Element to a Tandem Repeat Or to a Gene
    G C A T T A C G G C A T genes Review Conversion of DNA Sequences: From a Transposable Element to a Tandem Repeat or to a Gene Ana Paço 1,* , Renata Freitas 2,3,4 and Ana Vieira-da-Silva 1 1 MED-Mediterranean Institute for Agriculture, Environment and Development, University of Évora, 7002–554 Évora, Portugal; [email protected] 2 IBMC-Institute for Molecular and Cell Biology, University of Porto, R. Campo Alegre 823, 4150–180 Porto, Portugal; [email protected] 3 I3S-Institute for Innovation and Health Research, University of Porto, Rua Alfredo Allen, 208, 4200–135 Porto, Portugal 4 ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal * Correspondence: [email protected]; Tel.: +351-266-760-878 Received: 19 October 2019; Accepted: 29 November 2019; Published: 5 December 2019 Abstract: Eukaryotic genomes are rich in repetitive DNA sequences grouped in two classes regarding their genomic organization: tandem repeats and dispersed repeats. In tandem repeats, copies of a short DNA sequence are positioned one after another within the genome, while in dispersed repeats, these copies are randomly distributed. In this review we provide evidence that both tandem and dispersed repeats can have a similar organization, which leads us to suggest an update to their classification based on the sequence features, concretely regarding the presence or absence of retrotransposons/transposon specific domains. In addition, we analyze several studies that show that a repetitive element can be remodeled into repetitive non-coding or coding sequences, suggesting (1) an evolutionary relationship among DNA sequences, and (2) that the evolution of the genomes involved frequent repetitive sequence reshuffling, a process that we have designated as a “DNA remodeling mechanism”.
    [Show full text]