Arthropod Assassins: Crawling Biochemists with Diverse Toxin Pharmacopeias

Total Page:16

File Type:pdf, Size:1020Kb

Arthropod Assassins: Crawling Biochemists with Diverse Toxin Pharmacopeias Accepted Manuscript Arthropod assassins: crawling biochemists with diverse toxin pharmacopeias Volker Herzig PII: S0041-0101(18)31041-9 DOI: https://doi.org/10.1016/j.toxicon.2018.11.312 Reference: TOXCON 6038 To appear in: Toxicon Please cite this article as: Herzig, V., Arthropod assassins: crawling biochemists with diverse toxin pharmacopeias, Toxicon, https://doi.org/10.1016/j.toxicon.2018.11.312. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT 1 Editorial 2 Arthropod assassins: crawling biochemists with diverse toxin pharmacopeias 3 Volker Herzig 1 4 5 6 1 Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD 4072, 7 Australia 8 9 10 11 *Address correspondence to: Volker Herzig, Institute for Molecular Bioscience, The University 12 of Queensland, St. Lucia QLD 4072, Australia; Phone: +61 7 3346 2018, Fax: +61 7 3346 2101, 13 Email: [email protected] 14 15 16 17 MANUSCRIPT 18 19 20 21 22 23 24 25 26 ACCEPTED 1 ACCEPTED MANUSCRIPT 27 Abstract 28 The millions of extant arthropod species are testament to their evolutionary success that can at 29 least partially be attributed to venom usage, which evolved independently in at least 19 arthropod 30 lineages. While some arthropods primarily use venom for predation (e.g., spiders and centipedes) 31 or defense (e.g., bees and caterpillars), it can also have more specialised functions (e.g. in 32 parasitoid wasps to paralyse arthropods for their brood to feed on) or even a combination of 33 functions (e.g. the scorpion Parabuthus transvaalicus can deliver a prevenom for predator 34 deterrence and a venom for predation). Most arthropod venoms are complex cocktails of water, 35 salts, small bioactive molecules, peptides, enzymes and larger proteins, with peptides usually 36 comprising the majority of toxins. Some spider venoms have been reported to contain > 1,000 37 peptide toxins, which function as combinatorial libraries to provide an evolutionary advantage. 38 The astounding diversity of venomous arthropods multiplied by their enormous toxin arsenals 39 results in an almost infinite resource for novel bioactive molecules. The main challenge for 40 exploiting this resource is the small size of most arthropods, which can be a limitation for current 41 venom extraction techniques. Fortunately, recent decades have seen an incredible improvement in 42 transcriptomic and proteomic techniques that have provided increasing sensitivity while reducing 43 sample requirements. In turn, this has provided a much larger variety of arthropod venom 44 compounds for potential applications such as therapeutics, molecular probes for basic research, 45 bioinsecticides or anti-parasitic drugs. This special issue of Toxicon aims to cover the breadth of 46 arthropod venom research, including toxin evolution, pharmacology, toxin discovery and 47 characterisation, toxin structures, clinical aspects, and potential applications. 48 49 50 1. Diversity of arthropod venom systems 51 Invertebrates within the phylum Arthropoda that MANUSCRIPTare characterised by segmented bodies and 52 paired jointed appendages are classified into the four extant subphyla Chelicerata, Myriapoda, 53 Crustacea and Hexapoda. Arthropods have been extremely successful over the course of 54 evolution and it is estimated that they comprise nearly 85% of all extant animal species (Giribet 55 and Edgecombe, 2012). Their evolutionary success story can partially be attributed to the use of 56 venoms, which have independently developed in all extant arthropod subphyla. Based on their 57 independent evolutionary origin (even multiple times within some lineages), the venom delivery 58 systems in arthropods can be localised in very different body regions (Fig. 1); for example, they 59 can be combined with, or close to, mouth parts (dipterans, bugs, spiders, ticks), present as 60 modified legs (centipedes, remipedes), in the palpal pincers (pseudoscorpions), in the antennae 61 (coleopterans - Cerambycidae), at the distal end of the body (scorpions and hymenopterans) or as 62 toxic hairs covering parts of the body (lepidopteran larvae). 63 64 ACCEPTED 2 ACCEPTED MANUSCRIPT 65 MANUSCRIPT 66 67 Fig.1: Venomous representatives of the four arthropod subphyla with the red arrows and the 68 zoomed images indicating the anatomic location of the venom delivery system. Photographs 69 authored by Tobias Hauke (Germany; spider, scorpion), Kriton Kunz (Germany; 70 pseudoscorpion), Mario Sergio Palma (Brazil; wasp, ant), Gavin Rice (Australia; caterpillar), 71 Ivo Muniz (Brazil; beetle), Eivind A.B. Undheim (Australia; centipede, assassin bug), Ingo Wendt 72 (Germany; robberACCEPTED fly, pseudoscorpion chelae, centipede focipules), Björn von Reumont 73 (Germany; remipede). 74 75 76 Crustaceans are the least well-studied arthropods in terms of venoms and only a single example 77 of a venomous crustacean, the cave-dwelling remipede Xibalbanus tulumensis , has been reported 3 ACCEPTED MANUSCRIPT 78 so far (von Reumont et al., 2014a). Remipedes have paired venom glands located in the first 79 segments of the cephalothorax and they use their paired fang-like maxillulae for venom delivery 80 (von Reumont et al., 2014a). 81 In contrast, venomous species in the other arthropod subphyla are common or in some lineages 82 even the most abundant representatives. Within the Myriapoda, the class Chilopoda contains 83 about 3500 species of venomous centipedes; these arthropods date back to at least 430 mya, 84 making their venom systems one of the oldest among terrestrial animals (Undheim et al., 2015). 85 For venom delivery, centipedes use their paired forcipules ("poison claws") containing the venom 86 glands, which evolved from the first pair of walking legs (Undheim et al., 2015). Within the 87 Chelicerata, venomous lineages have only developed in the class Arachnida, which comprises 88 four orders that have independently evolved venom systems: Acari (ticks), Araneae (true 89 spiders), Scorpiones (scorpions) and Pseudoscorpiones (pseudoscorpions). Within the Acari, ticks 90 have been recently considered as venomous ectoparasites due to the composition and function of 91 their saliva/venom (Cabezas-Cruz and Valdes, 2014), although this classification is not 92 unanimously accepted and might depend of the actual definition of the term “venom” that is used 93 (Pienaar et al., 2018). Tick saliva/venom is produced in the salivary glands and injected into the 94 host via a structure called the hypostome, which is used to penetrate the host’s epidermis and 95 helps in anchoring the tick while feeding (Pienaar et al., 2018). Pseudoscorpiones with their 96 venom glands being located in the fixed and/or the movable finger of their pedipalpal pincers 97 comprise about 3300 species worldwide (Murienne et al., 2008), but their small size has so far 98 limited research on their venoms. A little less diverse are the scorpions, with 2336 species known 99 to date (Rein, 2018) and all of them use venom. Their paired venom glands are located in the last 100 segment of the metasoma ("tail") and connected to a single stinger for venom injection (Yigit and 101 Benli, 2008). The most diverse of all arachnids are the spiders, which currently comprise over 102 47,000 species (World Spider Catalog, 2018). AllMANUSCRIPT spiders, with the exception of the family 103 Uloboridae (~ 0.6% of all spiders) are venomous, although in contrast to public opinion the vast 104 majority are not dangerous to humans (Hauke and Herzig, 2017). In mygalomorph spiders, the 105 paired venom glands are located in the basal part of the chelicerae, whereas in araneomorph 106 spiders they can extend into the prosoma (Foelix, 1992). Finally, the Hexapoda contain six 107 venomous orders of insects, including the hemimetabolous Hemiptera (bugs) and the 108 holometabolous Neuroptera (e.g. antlions), Hymenoptera (bees, wasps and ants), Diptera (flies), 109 Lepidoptera (butterflies and moths) and Coleoptera (beetles). Despite (or maybe because of) their 110 incredible diversity, insects are extremely under-represented in venom research. The best studied 111 order of venomous insects by far is Hymenoptera, although other hymenopteran venoms from 112 ants and wasps have also been studied (Moreau and Asgari, 2015; Touchard et al., 2016; Perez- 113 Riverol et al., 2017; Robinson et al., 2018). Dipterans are another insect order with several 114 different venomous lineages, but they have received far less attention compared to 115 hymenopterans. Venom in dipterans is used by adult members of the family Asilidae (robber 116 flies) and by larval Tabanidae (horse flies), Sciomyzidae (marsh flies), Cecidomyiidae (gall 117 midges) and Vermileonidae (von Reumont et al., 2014b). In coleopterans, a single cerambycid 118 species has been ACCEPTEDdescribed in which the adult beetle delivers (a possibly defensive) venom with 119 the tip of the antennae, which has been modified into a scorpion-like stinger (Berkov et al., 120 2008). In addition, some larval beetles also have venom glands that are used for prey capture (for 121 details see Walker et al., 2018c). 122 123 4 ACCEPTED MANUSCRIPT 124 125 126 2. Complexity of arthropod venom compositions 127 Venomous arthropods dwarf all other venomous organisms in both number and diversity, and 128 they also have some of the most complex venom compositions. Most arthropod venoms are 129 complex cocktails made up of water, salts, small bioactive molecules, peptides, enzymes and 130 larger proteins, with peptides or proteins usually comprising the majority of venom toxins. Some 131 spider venoms for example have been reported to contain > 1,000 peptide toxins (Escoubas et al., 132 2006). There are a number of reasons that might explain this incredible complexity of arthropod 133 venoms as summarized in Table 1.
Recommended publications
  • Medicinal Value of Animal Venom for Treatment of Cancer in Humans - a Review
    Available online at www.worldscientificnews.com WSN 22 (2015) 91-107 EISSN 2392-2192 Medicinal value of animal venom for treatment of Cancer in Humans - A Review Partha Pal1,*, Spandita Roy2, Swagata Chattopadhyay3, Tapan Kumar Pal4 1Assistant Professor, Department of Zoology, Scottish Church College, 1 & 3 Urquhart Square, Kolkata - 700006, India *Phone: 91-33-2350-3862 2Ex-PG Student, Department of Biological, Sciences Presidency University 86/1, College Street, Kolkata – 700073, India 3Associate Professor, Department of Zoology, Scottish Church College, Kolkata, India 4Ex-Reader Department of Zoology, Vivekananda College, Thakurpukur, Kolkata - 700063, India *E-mail address: [email protected] ABSTRACT Since cancer is one of the leading causes death worldwide and there is an urgent need to find better treatment. In recent years remarkable progress has been made towards the understanding of proposed hallmarks of cancer development and treatment. Anticancer drug developments from natural resources are ventured throughout the world. Venoms of several animal species including snake, scorpion, frog, spider etc. and their active components in the form of peptides, enzymes etc. have shown promising therapeutic potential against cancer. In the present review, the anticancer potential of venoms as well as their biochemical derivatives from some vertebrates like snake or frog or some venomous arthropods like scorpion, honey bee, wasps, beetles, caterpillars, ants, centipedes and spiders has been discussed. Some of these molecules are in the clinical trials and may find their way towards anticancer drug development in the near future. The recognition that cancer is fundamentally a genetic disease has opened enormous opportunities for preventing and treating the disease and most of the molecular biological based treatment are cost effective.
    [Show full text]
  • Envenomations in Humans Caused by The
    linica f C l To o x l ic a o n r l o u g o y J Amaral et al., J Clin Toxicol 2018, 8:4 Journal of Clinical Toxicology DOI: 10.4172/2161-0495.1000392 ISSN: 2161-0495 Case Report Open Access Envenomations in Humans Caused by the Venomous Beetle Onychocerus albitarsis: Observation of Two Cases in São Paulo State, Brazil Amaral ALS1*, Castilho AL1, Borges de Sá AL2 and Haddad V Jr3 1Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista – UNESP, CEP 18618-000, Botucatu, São Paulo State, Brazil 2Private Clinic, Botucatu, São Paulo State, Brazil 3Departamento de Dermatologia e Radioterapia, Faculdade de Medicina, Universidade Estadual Paulista – UNESP, CP 557, CEP 18618-000, Botucatu, São Paulo State, Brazil *Corresponding author: Antonio L. Sforcin Amaral, Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista – UNESP, CEP 18618-000, Botucatu, São Paulo State, Brazil, Email: [email protected] Received date: July 23, 2018; Accepted date: August 21, 2018; Published date: August 24, 2018 Copyright: ©2018 Amaral ALS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Beetles (Coleoptera) are the most diverse group of animals in the world and occur in many environments. In Atlantic and Amazon rainforests, the scorpion-beetle Onychocerus albitarsis (Cerambycidae), can be found. It has venom glandules and inoculators organs in the antenna extremities. Two injuries in humans are reported, showing different patterns of skin reaction after the stings.
    [Show full text]
  • Honeybee (Apis Mellifera) and Bumblebee (Bombus Terrestris) Venom: Analysis and Immunological Importance of the Proteome
    Department of Physiology (WE15) Laboratory of Zoophysiology Honeybee (Apis mellifera) and bumblebee (Bombus terrestris) venom: analysis and immunological importance of the proteome Het gif van de honingbij (Apis mellifera) en de aardhommel (Bombus terrestris): analyse en immunologisch belang van het proteoom Matthias Van Vaerenbergh Ghent University, 2013 Thesis submitted to obtain the academic degree of Doctor in Science: Biochemistry and Biotechnology Proefschrift voorgelegd tot het behalen van de graad van Doctor in de Wetenschappen, Biochemie en Biotechnologie Supervisors: Promotor: Prof. Dr. Dirk C. de Graaf Laboratory of Zoophysiology Department of Physiology Faculty of Sciences Ghent University Co-promotor: Prof. Dr. Bart Devreese Laboratory for Protein Biochemistry and Biomolecular Engineering Department of Biochemistry and Microbiology Faculty of Sciences Ghent University Reading Committee: Prof. Dr. Geert Baggerman (University of Antwerp) Dr. Simon Blank (University of Hamburg) Prof. Dr. Bart Braeckman (Ghent University) Prof. Dr. Didier Ebo (University of Antwerp) Examination Committee: Prof. Dr. Johan Grooten (Ghent University, chairman) Prof. Dr. Dirk C. de Graaf (Ghent University, promotor) Prof. Dr. Bart Devreese (Ghent University, co-promotor) Prof. Dr. Geert Baggerman (University of Antwerp) Dr. Simon Blank (University of Hamburg) Prof. Dr. Bart Braeckman (Ghent University) Prof. Dr. Didier Ebo (University of Antwerp) Dr. Maarten Aerts (Ghent University) Prof. Dr. Guy Smagghe (Ghent University) Dean: Prof. Dr. Herwig Dejonghe Rector: Prof. Dr. Anne De Paepe The author and the promotor give the permission to use this thesis for consultation and to copy parts of it for personal use. Every other use is subject to the copyright laws, more specifically the source must be extensively specified when using results from this thesis.
    [Show full text]
  • British Museum (Natural History)
    Bulletin of the British Museum (Natural History) Darwin's Insects Charles Darwin 's Entomological Notes Kenneth G. V. Smith (Editor) Historical series Vol 14 No 1 24 September 1987 The Bulletin of the British Museum (Natural History), instituted in 1949, is issued in four scientific series, Botany, Entomology, Geology (incorporating Mineralogy) and Zoology, and an Historical series. Papers in the Bulletin are primarily the results of research carried out on the unique and ever-growing collections of the Museum, both by the scientific staff of the Museum and by specialists from elsewhere who make use of the Museum's resources. Many of the papers are works of reference that will remain indispensable for years to come. Parts are published at irregular intervals as they become ready, each is complete in itself, available separately, and individually priced. Volumes contain about 300 pages and several volumes may appear within a calendar year. Subscriptions may be placed for one or more of the series on either an Annual or Per Volume basis. Prices vary according to the contents of the individual parts. Orders and enquiries should be sent to: Publications Sales, British Museum (Natural History), Cromwell Road, London SW7 5BD, England. World List abbreviation: Bull. Br. Mus. nat. Hist. (hist. Ser.) © British Museum (Natural History), 1987 '""•-C-'- '.;.,, t •••v.'. ISSN 0068-2306 Historical series 0565 ISBN 09003 8 Vol 14 No. 1 pp 1-141 British Museum (Natural History) Cromwell Road London SW7 5BD Issued 24 September 1987 I Darwin's Insects Charles Darwin's Entomological Notes, with an introduction and comments by Kenneth G.
    [Show full text]
  • Malelane Safari Lodge, Kruger National Park
    INVERTEBRATE SPECIALIST REPORT Prepared For: Malelane Safari Lodge, Kruger National Park Dalerwa Ventures for Wildlife cc P. O. Box 1424 Hoedspruit 1380 Fax: 086 212 6424 Cell (Elize) 074 834 1977 Cell (Ian): 084 722 1988 E-mail: [email protected] [email protected] Table of Contents 1. EXECUTIVE SUMMARY ............................................................................................................................ 3 2. INTRODUCTION ........................................................................................................................................... 5 2.1 DESCRIPTION OF PROPOSED PROJECT .................................................................................................................... 5 2.1.1 Safari Lodge Development .................................................................................................................... 5 2.1.2 Invertebrate Specialist Report ............................................................................................................... 5 2.2 TERMS OF REFERENCE ......................................................................................................................................... 6 2.3 DESCRIPTION OF SITE AND SURROUNDING ENVIRONMENT ......................................................................................... 8 3. BACKGROUND ............................................................................................................................................. 9 3.1 LEGISLATIVE FRAMEWORK ..................................................................................................................................
    [Show full text]
  • Arachnologische Mitteilungen
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arachnologische Mitteilungen Jahr/Year: 2012 Band/Volume: 43 Autor(en)/Author(s): Chiarle Alberto, Kovarik Frantisek, Levi Lisa, Gavetti Elena Artikel/Article: The scorpion collections (Arachnida, Scorpiones) held in the Museo Regionale di Scienze Naturali of Turin (Italy) 17-23 2 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; Arachnologische Mitteilungen 43: 17-23 Nuremberg, July 2012 The scorpion collections (Arachnida, Scorpiones) held in the Museo Regionale di Scienze Naturali of Turin (Italy) Alberto Chiarle, Frantisek Kovarik, Lisa Levi & Elena Gavetti doi;10.5431/aramit4307 Abstract: Data and considerations about the history and contents of the scorpion collection housed in the Museo Regionale di Scienze Naturali of Turin (MRSN) are reported. Information on type material and important historical specimens are provided, as well as biographical notes about the major zoologists of the museum. Key words: Borelli, MZUT, MRSN, scorpiology,Turin collection history In 1978 the public administration of the Regione the museum collections were neglected. Specimens in Piemonte founded the ‘Museo Regionale di Scienze ethanol suffered and exchanges, loans and systematic Naturali’ (MRSN) in Turin. Since 1980, the zoologi- studies on specimens were interrupted. In 1968, under cal treasures kept by the Zoological Museum of the Professor Umberto Parenti’s guidance and thanks to Turin University (MZUT) have been entrusted to the the curators, the MZUT was reorganized. MRSN. The MZUT is one of the oldest and most Since 1980 a large number of transfers have taken important Italian university museums. It was founded place involving all the collections.
    [Show full text]
  • The Importance of Behavior and Venom System Morphology in Understanding Its Ecology and Evolution
    Toxins 2019, 11, 666; doi:10.3390/toxins11110666 S1 of S11 Supplementary Materials: The Diversity of Venom: The Importance of Behavior and Venom System Morphology in Understanding Its Ecology and Evolution Vanessa Schendel, Lachlan D. Rash, Ronald A. Jenner, and Eivind A. B. Undheim Table S1. Independently evolved venomous animal lineages and the primary ecological roles of their venoms. Taxa for which no direct support of their venomous nature could be found are shown in grey font. General Venom System Animal Group Venomous Lineage Primary Role References Morphology Predation, defense, Cnidarians All Nematocysts [1] intraspecific competition Coleoid Posterior and anterior glands, cephalopods, venom injected through salivary Predation [2,3] including octopus papilla. and squid Long duct/venom gland, venom Cone snails and injected through hollow radular Predation, [4] relatives (Conoidea) tooth on proboscis by a distal defense venom pump. Tritons, helmet Two-lobed salivary (venom) Molluscs shells, etc. glands that open through Predation [5] (Tonnoidea) common duct into buccal mass. Dwarf tritons, Single-lobed salivary (venom) including vampire glands that open through Predation [6] snails common duct into buccal mass. (Colubrariidae) Primary and accessory salivary Murex snails (venom) glands that open Predation [7] (Muricidae) through common duct into buccal mass. Proboscis with venom secreting cells, sometimes with stylet to Nemerteans Ribbon worms facilitate venom delivery Predation [8] (Enopla), or pseudocnidae with a potential role in venom delivery. Toxin-producing “lappets” secreting venom into large Blood worms muscular and glandular venom Predation [9] (Glyceridae) reservoir, which is presumably Annelids also involved in venom expulsion. Secretory cells dispersed along Predation, Leeches (Hirudinea) the buccal cavity in jawed [10–12] blood feeding leeches (Arhynchobdellida); Toxins 2019, 11, 666; doi:10.3390/toxins11110666 S2 of S11 presence of two paired salivary glands in jawless leeches (Glossiphoniidae).
    [Show full text]
  • Venom Composition and Bioactivity from the Eurasian Assassin Bug Rhynocoris Iracundus
    biomedicines Article Hexapod Assassins’ Potion: Venom Composition and Bioactivity from the Eurasian Assassin Bug Rhynocoris iracundus Nicolai Rügen 1, Timothy P. Jenkins 2, Natalie Wielsch 3, Heiko Vogel 4 , Benjamin-Florian Hempel 5,6 , Roderich D. Süssmuth 5 , Stuart Ainsworth 7, Alejandro Cabezas-Cruz 8 , Andreas Vilcinskas 1,9,10 and Miray Tonk 9,10,* 1 Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany; [email protected] (N.R.); [email protected] (A.V.) 2 Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; [email protected] 3 Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany; [email protected] 4 Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany; [email protected] 5 Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany; [email protected] (B.-F.H.); [email protected] (R.D.S.) 6 BIH Center for Regenerative Therapies BCRT, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany 7 Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; [email protected] 8 Citation: Rügen, N.; Jenkins, T.P.; UMR BIPAR, Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, Wielsch, N.; Vogel, H.; Hempel, B.-F.; F-94700 Maisons-Alfort, France; [email protected] 9 Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, Süssmuth, R.D.; Ainsworth, S.; 35392 Giessen, Germany Cabezas-Cruz, A.; Vilcinskas, A.; 10 LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, Tonk, M.
    [Show full text]
  • Molecular Basis of the Remarkable Species Selectivity of an Insecticidal
    www.nature.com/scientificreports OPEN Molecular basis of the remarkable species selectivity of an insecticidal sodium channel toxin from the Received: 03 February 2016 Accepted: 20 June 2016 African spider Augacephalus Published: 07 July 2016 ezendami Volker Herzig1,*, Maria Ikonomopoulou1,*,†, Jennifer J. Smith1,*, Sławomir Dziemborowicz2, John Gilchrist3, Lucia Kuhn-Nentwig4, Fernanda Oliveira Rezende5, Luciano Andrade Moreira5, Graham M. Nicholson2, Frank Bosmans3 & Glenn F. King1 The inexorable decline in the armament of registered chemical insecticides has stimulated research into environmentally-friendly alternatives. Insecticidal spider-venom peptides are promising candidates for bioinsecticide development but it is challenging to find peptides that are specific for targeted pests. In the present study, we isolated an insecticidal peptide (Ae1a) from venom of the African spider Augacephalus ezendami (family Theraphosidae). Injection of Ae1a into sheep blowflies (Lucilia cuprina) induced rapid but reversible paralysis. In striking contrast, Ae1a was lethal to closely related fruit flies (Drosophila melanogaster) but induced no adverse effects in the recalcitrant lepidopteran pest Helicoverpa armigera. Electrophysiological experiments revealed that Ae1a potently inhibits the voltage-gated sodium channel BgNaV1 from the German cockroach Blattella germanica by shifting the threshold for channel activation to more depolarized potentials. In contrast, Ae1a failed to significantly affect sodium currents in dorsal unpaired median neurons from the American cockroachPeriplaneta americana. We show that Ae1a interacts with the domain II voltage sensor and that sensitivity to the toxin is conferred by natural sequence variations in the S1–S2 loop of domain II. The phyletic specificity of Ae1a provides crucial information for development of sodium channel insecticides that target key insect pests without harming beneficial species.
    [Show full text]
  • Project Reports 2006
    KNP 15/1/2 - 06 Project Reports 2006 Scientific Reports on Research Projects undertaken in the Kruger National Park during 2006 TABLE OF CONTENTS FELINE LENTIVIRUS: MOLECULAR ANALYSIS AND EPIDEMIOLOGY IN SOUTHERN AFRICAN LIONS ................................................................................. 13 Adams H .....................................................................................................................13 WILDLIFE CONSERVATION THROUGH PEOPLE CENTRED APPROACHES TO NATURAL RESOURCE MANAGEMENT AND THE CONTROL OF WILDLIFE EXPLOITATION........................................................................................................ 14 Algotsson EM ..............................................................................................................14 A REGIONAL SCALE PASSIVE MONITORING STUDY OF SULPHUR DIOXIDE (SO2), NITROGEN OXIDES (NOX) AND OZONE (O3) ........................................................ 15 Annegarn HJ ...............................................................................................................15 METAL ANALYSIS AND PHYSICO-CHEMICAL CHARACTERISTICS OF FOUR MAJOR RIVER SYSTEMS THAT TRANSECT THE KRUGER NATIONAL PARK (SOUTH AFRICA)..................................................................................................... 16 Barker HJ ....................................................................................................................16 TOWARDS A SOCIO-ECOLOGICAL SYSTEMS VIEW OF THE SAND RIVER CATCHMENT, SOUTH AFRICA: A RESILIENCE ANALYSIS
    [Show full text]
  • Scorpions of the Eastern Mediterranean
    Advances in Arachnology and Developmental Biology. UDC 595.46.06(262.2) Papers dedicated to Prof. Dr. Božidar Ćurčić. S. E. Makarov & R. N. Dimitrijević (Eds.) 2008. Inst. Zool., Belgrade; BAS, Sofia; Fac. Life Sci., Vienna; SASA, Belgrade & UNESCO MAB Serbia. Vienna — Belgrade — Sofia, Monographs, 12, 209-246 . SCORPIONS OF THE EASTERN MEDITERRANEAN Dimitris Kaltsas1,2, Iasmi Stathi1,2, and Victor Fet3 1 Department of Biology, University of Crete, 714 09 Irakleio, Crete, Greece 2 Natural History Museum of Crete, University of Crete, 714 09 Irakleio, Crete, Greece 3 Department of Biological Sciences, Marshall University, Huntington, West Virginia 25755-2510, USA Abstract — The scorpiofauna of the Eastern Mediterranean region is presented. Taxonomy and distribution data of species are reviewed based on scientific literature until August 2008. We report the presence of 48 valid species in the area, belonging to four families and 16 genera. Examined material of nine buthid species collected from Egypt (including the Sinai Peninsula) and Libya is recorded. The current knowledge on taxonomy, chorotypic status, and origins of species, complexes, and genera in relation to their biogeography and phylogeny is also discussed. Key words: Scorpion taxonomy, E-Mediterranean chorotype, Buthidae, Euscorpiidae, Iuridae, Scorpionidae INTRODUCTION The scorpiofauna of the Eastern Mediterranean area has long ago attracted the inter- est of scorpiologists worldwide in terms of taxonomy and biogeography, due to the diversiform morphological characters and the high venom toxicity of several genera. The number of publications dealing with the systematics of scorpions of the Eastern Mediterranean since Linnaeus (1758), Amoreux (1789), and Herbst (1800) amounts to several hundred.
    [Show full text]
  • Euscorpius Thracicus Sp. N. (Scorpiones: Euscorpiidae) from Bulgaria
    Euscorpius thracicus sp. n. (Scorpiones: Euscorpiidae) from Bulgaria František Kovařík, Graeme Lowe, Markéta Byronová & František Šťáhlavský November 2020 — No. 326 Euscorpius Occasional Publications in Scorpiology EDITOR: Victor Fet, Marshall University, ‘[email protected]’ ASSOCIATE EDITOR: Michael E. Soleglad, ‘[email protected]’ TECHNICAL EDITOR: František Kovařík, ‘[email protected]’ Euscorpius is the first research publication completely devoted to scorpions (Arachnida: Scorpiones). Euscorpius takes advantage of the rapidly evolving medium of quick online publication, at the same time maintaining high research standards for the burgeoning field of scorpion science (scorpiology).Euscorpius is an expedient and viable medium for the publication of serious papers in scorpiology, including (but not limited to): systematics, evolution, ecology, biogeography, and general biology of scorpions. Review papers, descriptions of new taxa, faunistic surveys, lists of museum collections, and book reviews are welcome. Derivatio Nominis The name Euscorpius Thorell, 1876 refers to the most common genus of scorpions in the Mediterranean region and southern Europe (family Euscorpiidae). Euscorpius is located at: https://mds.marshall.edu/euscorpius/ Archive of issues 1-270 see also at: http://www.science.marshall.edu/fet/Euscorpius (Marshall University, Huntington, West Virginia 25755-2510, USA) ICZN COMPLIANCE OF ELECTRONIC PUBLICATIONS: Electronic (“e-only”) publications are fully compliant with ICZN (International Code of Zoological Nomenclature) (i.e. for the purposes of new names and new nomenclatural acts) when properly archived and registered. All Euscorpius issues starting from No. 156 (2013) are archived in two electronic archives: • Biotaxa, http://biotaxa.org/Euscorpius (ICZN-approved and ZooBank-enabled) • Marshall Digital Scholar, http://mds.marshall.edu/euscorpius/. (This website also archives all Euscorpius issues previously published on CD-ROMs.) Between 2000 and 2013, ICZN did not accept online texts as “published work” (Article 9.8).
    [Show full text]