On Normal Human Tibialis Anterior Muscle

Total Page:16

File Type:pdf, Size:1020Kb

On Normal Human Tibialis Anterior Muscle J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.48.8.774 on 1 August 1985. Downloaded from Journal of Neurology, Neurosurgery, and Psychiatry 1985;48:774-781 Effects of chronic low frequency electrical stimulation on normal human tibialis anterior muscle OM SCOTT, G VRBOVA,* SA HYDE, V DUBOWITZt From the Departments of Physiotherapy and Paediatrics, t Hammersmith Hospital and Department of Anatomy and Embryology, * Centre for Neuroscience, University College, London, UK SUMMARY The loss of force that occurred during intermittent electrically evoked tetanic contrac- tions was determined for the tibialis anterior muscle of normal subjects. Adult muscles showed a characteristic reduction of tension over the first two to three minutes until a steady plateau was reached. Muscles of young children showed no comparable decrease of the initial tension in response to this method of fatigue testing. After fatigue the muscles of both groups of subjects produced a higher proportion of tension at lower rates of stimulation. Following prolonged chronic low frequency stimulation at 8-10 Hz, adult muscles showed a significant increase (p < 0.01) in fatigue resistance compared to unstimulated control: the muscles of the normal child showed no measured change. It is concluded that it is possible to alter the properties of adult human muscle by superimposed low frequency electrical stimulation. Protected by copyright. Investigations on animals have shown that it is poss- longed electrical stimulation are easier to interpret. ible to modify the properties of mammalian skeletal In this case, fatigue is probably caused by the muscles by chronic electrical stimulation. Fast twitch decrease in tension of high threshold motor units, muscles of cats and rabbits have been induced by which normally are not used during sustained volun- chronic low frequency stimulation to exhibit proper- tary contraction (for review see ref 6). ties of slow contracting twitch muscles. An early Most data on human muscles are obtained from effect of such stimulation is an increase in resistance adult subjects, and little is known of how human to fatigue with an increase in capillary density and skeletal muscles change during development in oxidative enzymes. These changes occur before an childhood. In this study, an attempt was made to observable change in contractile properties.' The compare some physiological characteristics of adult purpose of this study was to establish whether simi- muscle with that of young children. On the basis of lar increases in resistance to fatigue could be work with animals, it can be expected that chronic induced in human skeletal muscle. electrical stimulation will increase the resistance to In previous experiments, measurements of resis- fatigue of mature muscle. We were concerned to in resistance to fatigue fol- tance to fatigue of human muscles have been based investigate any changes http://jnnp.bmj.com/ upon the decrease in tension, or changes in electrical lowing a prolonged period of chronic low frequency activity using electromyography, either during vol- stimulation as shown by changes of response to an untary contraction, or prolonged electrical stimula- electrically stimulated test of muscle fatigue.7 tion.>5 In assessing resistance to fatigue during vol- untary contraction, account must be taken of the Method motivation of the subject and other influences that control. In contrast, tests using pro- Subjects are difficult to Sixteen normal adults (six males and 10 females), varying in age from 17 to 53 years, and 18 normal children (15 on September 23, 2021 by guest. Addlress for reprint requests: Dr 0\4 Scott, Physiotherapy boys and three girls) of age range 3 to 13 years took part in Department, Hamimersmith Hospital, Du Catie Road, Lolndon the study. All the subjects were normal, healthy volunteers Wl2 OHS, UK. and the studies were approved by the Committee on Ethics of Clinical Investigations of Hammersmith Hospital. were made of maximum voluntary and 1984 and in final revised form 5 December Measurements Received 30 March electrically evoked contractions of the tibialis anterior 1984. of Accepted 15 December 1984 muscles in all subjects. In order to evaluate the effects 774 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.48.8.774 on 1 August 1985. Downloaded from Effects of chronic low frequency electrical stimulation on normal human tibialis anterior muscle 775 chronic low frequency stimulation, five female adults and subject pulled was adjusted so that it was comfortable. one 11-year-old girl stimulated their tibialis anterior mus- Particular care was taken to ensure that the foot was cles at a frequency of 10 Hz or less for an hour, three times positioned so that the bar was aligned with the head of the daily for 6 weeks. first metatarsal bone. The subject was asked to make max- imal effort to dorsiflex against the bar and the output from Assessment procedure the strain gauges was fed through amplifiers on to a pen To ensure standardisation of position and fixation of the recorder. The best of three attempts was taken as the max- limb during assessment, a special chair was designed imum voluntary contraction, unless the third was greatest (fig 1). The position of the seat and leg supports were in which case a fourth attempt was made and if greater, adjusted to the individual and then firmly secured. Two repeated until a maximum was established. A standard sets of footplates were provided, one was made of stainless constant voltage stimulator (Digitimer Type 3072) con- steel and of dimensions suitable for adults, the other set nected to two 4 cm square carbon rubber electrodes placed made of aluminium, was built on the same design principle over the motor point and on the belly of the muscle was and was used for measuring in children. Strain gauges used in stimulation. Good contact was ensured by using mounted on the upper surface of a mild steel bar measured electrode jelly and the electrodes were secured by adhesive the tension exerted by the tibialis anterior muscles. The bar tapes. Isometric contractions of the tibialis anterior muscle was mounted at 20° to horizontal on two supporting pillars were thus elicited by stimulating the intramuscular and its height could be readily adjusted by two self-locating branches of the lateral popliteal nerve using a square wave screws. Moulded padding on the under surface of the bar pulse of 50 ,us duration, applied at selected frequencies for ensured optimum force transmission from the contracting 250 ms each second. A routine sequence of testing was muscle group. Two bars were provided, one of 3 mm established to record the increments of tension in response thickness which gave a measuring range suitable for adult to brief trains of stimulation at 1, 10, 20 and 40 Hz. To subjects and one of 1 mm thickness which was more sensi- determine resistance to fatigue, the muscle was stimulated tive and was suitable for measuring the forces exerted by at 40 Hz for 250 ms, every second for 5 minutes and the the children. The subjects were secured to the seat by an percentage decrease of tension after three minutes was adjustable seat belt, sat upright with their thighs sup- measured. ported, their knees flexed to 90° and their feet resting on The effect of this fatigue test on the tension elicited by two rigid footplates as shown in fig 1. Two correctly sized brief trains of stimulation was established (fig 2), by Protected by copyright. heel cups were fitted and the padded bar against which the 5kg] Ii 6 1i 23 4 Time (min) http://jnnp.bmj.com/ 5kg] I I I I I I 0 1 2 3 4 5 Time (min) on September 23, 2021 by guest. Fig 2 Records ofroutine sequence of testing ofthe tibialis anterior muscles oftwo normal adult subjects, (a) shows the response to testing ofsubject (AT), her maximum voluntary contraction and the increments oftension in response to brieftrains ofstimulation at 1, 10, 20 and 40 Hz before and Fig 1 Apparatus for measuring strength oftibialis anterior after fatigue. (b) shows the typical response to fatigue muscle. testing, subject (MD) FI = 23 %. J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.48.8.774 on 1 August 1985. Downloaded from Scon, Vrbova, l)ubowitz 776 HY'de, 10, 20 and 40 Hz normal school children varied from one week to a recording the tension developed at 1, these results are before and after fatigue. The following ratios were deter- maximumn of three months and mined: shown in table 2. Ihese indicate more variability this be accounted for and Tension (20 Hz) x 100 than in the adult studvy; can Tension ( 10Hz) x 100 interval between the two tests, (40 Hz) Tension (40 Hz) partly by the longer Tension the inherent variability of young childrel. was then calculated as and A Fatigue Index (FI) at 40 Hz It has been suggested that percutaneous stimula- follows: a muscle may be unsatisfactory and after tion of part of Initial Tetanic Tension-Tetanic Tension that the relationship between high and low 3 minute stimulation frequency force generation is voltage dependent.' Initial Tetanic Tension Further investigations have shown that the relation- A prelimary study of six normal adults and six normal ship is robust except at the lowest voltages when school children aged 5 to 12 years indicated that this 10% of maximum voluntary con- 20 forces of less than method of assessment was well tolerated and between traction are generated." and 50% of the maximum voluntary force could be elicited on stimulation at 40 Hz. Fatigue testing in adults was measured in six- stimulation The response to fatigue testing Chronic low frequency A typical record is shown in The subjects stimulated their tibialis anterior muscles with teen normal adults.
Recommended publications
  • Tibialis Posterior Tendon Transfer Corrects the Foot Drop Component
    456 COPYRIGHT Ó 2014 BY THE JOURNAL OF BONE AND JOINT SURGERY,INCORPORATED Tibialis Posterior Tendon Transfer Corrects the Foot DropComponentofCavovarusFootDeformity in Charcot-Marie-Tooth Disease T. Dreher, MD, S.I. Wolf, PhD, D. Heitzmann, MSc, C. Fremd, M.C. Klotz, MD, and W. Wenz, MD Investigation performed at the Division for Paediatric Orthopaedics and Foot Surgery, Department for Orthopaedic and Trauma Surgery, Heidelberg University Clinics, Heidelberg, Germany Background: The foot drop component of cavovarus foot deformity in patients with Charcot-Marie-Tooth disease is commonly treated by tendon transfer to provide substitute foot dorsiflexion or by tenodesis to prevent the foot from dropping. Our goals were to use three-dimensional foot analysis to evaluate the outcome of tibialis posterior tendon transfer to the dorsum of the foot and to investigate whether the transfer works as an active substitution or as a tenodesis. Methods: We prospectively studied fourteen patients with Charcot-Marie-Tooth disease and cavovarus foot deformity in whom twenty-three feet were treated with tibialis posterior tendon transfer to correct the foot drop component as part of a foot deformity correction procedure. Five patients underwent unilateral treatment and nine underwent bilateral treatment; only one foot was analyzed in each of the latter patients. Standardized clinical examinations and three-dimensional gait analysis with a special foot model (Heidelberg Foot Measurement Method) were performed before and at a mean of 28.8 months after surgery. Results: The three-dimensional gait analysis revealed significant increases in tibiotalar and foot-tibia dorsiflexion during the swing phase after surgery. These increases were accompanied by a significant reduction in maximum plantar flexion at the stance-swing transition but without a reduction in active range of motion.
    [Show full text]
  • Chronic Tibialis Anterior Tendon Tear Treated with an Achilles Tendon Allograft Technique
    n tips & techniques Section Editor: Steven F. Harwin, MD Chronic Tibialis Anterior Tendon Tear Treated With an Achilles Tendon Allograft Technique Ezequiel Palmanovich, MD; Yaron S. Brin, MD; Lior Laver, MD; Dror Ben David, MD; Sabri Massrawe, MD; Meir Nyska, MD; Iftach Hetsroni, MD tus,16,17 rheumatoid arthritis,17 erative tibialis anterior tendon Abstract: Tibialis anterior tendon tear is an uncommon in- psoriasis,18 and deposition of was diagnosed clinically and jury. Nontraumatic or degenerative tears are usually seen gout tophi19,20 also have been confirmed by ultrasound. in the avascular zone of the tendon. Treatment can be con- reported to be associated with After 3 months of phys- servative or surgical. Conservative treatment is adequate tendon ruptures. In older pa- iotherapy treatment without for low-demand older patients. For active patients, surgical tients and in partial tears, non- improvement, surgical treat- treatment can be challenging for the surgeon because after operative treatment has been ment was recommended. The debridement of degenerative tissue, a gap may be formed described.8,21 patient’s American Orthopae- that can make side-to-side suture impossible. The authors Surgical techniques de- dic Foot and Ankle Society present allograft Achilles tendon insertion for reconstruc- scribed in the literature in- (AOFAS)22 score was 23 and tion of chronic degenerative tears. Using Achilles tendon al- clude direct side-to-side his Foot and Ankle Disabil- lograft has the advantage of bone-to-bone fixation, allowing repair and interposition of ity Index (FADI)23 score was rapid incorporation and earlier full weight bearing. autogenous tendon graft for 34.6 preoperatively.
    [Show full text]
  • Treatment of Spastic Foot Deformities
    TREATMENT OF SPASTIC FOOT DEFORMITIES penn neuro-orthopaedics service Table of Contents OVERVIEW Severe loss of movement is often the result of neurological disorders, Overview .............................................................. 1 such as stroke or brain injury. As a result, ordinary daily activities Treatment ............................................................. 2 such as walking, eating and dressing can be difficult and sometimes impossible to accomplish. Procedures ........................................................... 4 The Penn Neuro-Orthopaedics Service assists patients with Achilles Tendon Lengthening .........................................4 orthopaedic problems caused by certain neurologic disorders. Our Toe Flexor Releases .....................................................5 team successfully treats a wide range of problems affecting the limbs including foot deformities and walking problems due to abnormal Toe Flexor Transfer .......................................................6 postures of the foot. Split Anterior Tibialis Tendon Transfer (SPLATT) ...............7 This booklet focuses on the treatment of spastic foot deformities The Extensor Tendon of the Big Toe (EHL) .......................8 under the supervision of Keith Baldwin, MD, MSPT, MPH. Lengthening the Tibialis Posterior Tendon .......................9 Care After Surgery .................................................10 Notes ..................................................................12 Pre-operative right foot. Post-operative
    [Show full text]
  • Traumatic Tear of Tibialis Anterior During a Gaelic Football Game: a Case Report M Constantinou, a Wilson
    1of3 Br J Sports Med: first published as 10.1136/bjsm.2003.007625 on 23 November 2004. Downloaded from CASE REPORT Traumatic tear of tibialis anterior during a Gaelic football game: a case report M Constantinou, A Wilson ............................................................................................................................... Br J Sports Med 2004;38:e30 (http://www.bjsportmed.com/cgi/content/full/38/6/e30) were considered irrefutable evidence of a rupture, so Reports of traumatic injury to the anterior lower leg muscles operative management was undertaken one week after the are scarce, with only a handful of reports of traumatic injury injury. to the tibialis anterior. A database search of Medline, Cinhal, Surgery revealed a complete traumatic tear of tibialis and Sports Discus only revealed three such cases, and they anterior at the musculotendinous junction. The tendon had did not result from a direct sporting injury. This report ruptured directly from the muscle belly, which had also documents the case of a traumatic rupture of tibialis anterior sustained some muscle fibre damage (fig 1). The tendon was muscle in a young female Gaelic football player. It details the subsequently sutured back to the muscle belly using surgical repair and management of tibialis anterior muscle absorbable interrupted sutures. and the physiotherapy rehabilitation to full function. Post-surgical management consisted of an initial period of six weeks non-weight bearing and immobilisation in a short leg fibreglass cast, followed by four weeks in an ankle-foot orthosis with partial weight bearing. Active physiotherapy raumatic injuries to the lower limb are often associated rehabilitation was begun 10 weeks after surgery. The with contact team sports.
    [Show full text]
  • Axis Scientific 9-Part Foot with Muscles, Ligaments, Nerves & Arteries A-105857
    Axis Scientific 9-Part Foot with Muscles, Ligaments, Nerves & Arteries A-105857 DORSAL VIEW LATERAL VIEW 53. Superficial Fibular (Peroneal) Nerve 71. Fibula 13. Fibularis (Peroneus) Longus Tendon 17. Anterior Talofibular Ligament 09. Fibularis (Peroneus) 72. Lateral Malleolus Tertius Tendon 21. Kager’s Fat Pad 07. Superior Extensor 15. Superior Fibular Retinaculum (Peroneal) Retinaculum 51. Deep Fibular Nerve 52. Anterior Tibial Artery 19. Calcaneal (Achilles) Tendon 16. Inferior Fibular 02. Tibialis Anterior Tendon (Peroneal) Retinaculum 42. Intermedial Dorsal 08. Inferior Extensor 73. Calcaneus Bone Cutaneous Nerve Retinaculum 43. Lateral Dorsal Cutaneous Nerve 44. Dorsalis Pedis Artery 11. Extensor Digitorum 32. Abductor Digiti Minimi Muscle Brevis Muscle 04. Extensor Hallucis Longus Tendon 48. Medial Tarsal Artery 06. Extensor Digitorum 10. Extensor Hallucis Longus Tendons Brevis Muscle 41. Medial Dorsal Cutaneous Nerve 49. Dorsal Metatarsal Artery 45. Deep Fibular (Peroneal) Nerve MEDIAL VIEW 22. Flexor Digitorum 46. Arcuate Artery Longus Muscle 68. Tibia 12. Dorsal Interossei Muscle 21. Kager’s Fat Pad 48. Medial Tarsal Artery 69. Medial Malleolus 27. Tibialis Posterior 81. Nail Tendon 18. Flexor Retinaculum 29. Abductor Hallucis Muscle 36. Flexor Muscle POSTERIOR VIEW PLANTAR VIEW 01. Tibialis Anterior Muscle 03. Extensor Hallucis 70. Interosseous Longus Muscle Membrane 23. Flexor Digitorum 05. Extensor Digitorum Longus Tendons Longus Muscle 26. Tibialis Posterior Muscle 14. Fibularis (Peroneus) 20. Soleus Muscle Brevis Muscle 24. Flexor Hallucis Longus Muscle 25. Flexor Hallucis Longus Tendon 67. Proper Plantar 66. Proper Plantar Digital Artery Digital Nerve 65. Proper Plantar Digital Nerve 80. Sesamoid Bone 31. Flexor Digitorum Brevis Tendons 19. Calcaneal (Achilles) Tendon 36. Flexor Muscle 29.
    [Show full text]
  • Tibialis Posterior Muscle Pain Effects on Hip, Knee and Ankle Gait
    Human Movement Science 66 (2019) 98–108 Contents lists available at ScienceDirect Human Movement Science journal homepage: www.elsevier.com/locate/humov Tibialis posterior muscle pain effects on hip, knee and ankle gait mechanics T Morten Bilde Simonsena,b, Aysun Yurtseverb,c, Ketill Næsborg-Andersenb, Peter Derek Christian Leutscherb,d, Kim Hørslev-Petersene, ⁎ Michael Skipper Andersenf, Rogerio Pessoto Hirataa, a Center for Sensory-Motoric Interaction (SMI®), Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, DK-9220 Aalborg East, Denmark b Centre for Clinical Research, North Denmark Regional Hospital, Bispensgade 37, DK-9800 Hjoerring, Denmark c Department of Rheumatology, Hjørring Hospital, Bispensgade 37, DK-9800 Hjørrring, Denmark d Department of Clinical Medicine, Aalborg University, Søndre Skovvej 15, DK-9000, Denmark e King Christian 10th Hospital for Rheumatic Diseases, University of Southern Denmark, Toldbodgade 3, DK-6300 Gråsten, Denmark f Department of Materials and Production, Aalborg University, Fibigerstraede 16, DK-9220 Aalborg East, Denmark ARTICLE INFO ABSTRACT Keywords: Background: Tibialis posterior (TP) dysfunction is a common painful complication in patients Tibialis posterior with rheumatoid arthritis (RA), which can lead to the collapse of the medial longitudinal arch. Dysfunction Different theories have been developed to explain the causality of tibialis posterior dysfunction. Gait In all these theories, pain is a central factor, and yet, it is uncertain to what extent pain causes the Experimental pain observed biomechanical alterations in the patients. The aim of this study was to investigate the Rheumatoid arthritis effect of experimental tibialis posterior muscle pain on gait mechanics in healthy subjects. Methods: Twelve healthy subjects were recruited for this randomized crossover study.
    [Show full text]
  • The Postural and Biomechanical Effects of High Heel Shoes: a Literature Review
    1 The Postural and Biomechanical Effects of High Heel Shoes: A Literature Review By Shavonda L. Pannell Faculty Advisor: Dana L. Underkofler-Mercer, B.S., M.S., D.C. April 10, 2012 A Senior Research Project Submitted in Partial Requirement for the Degree of Doctor of Chiropractic 2 ABSTRACT Objective: The purpose of this literature is to provide an overview of literature concerning the postural and biomechanical effects that high heel shoes have on the musculoskeletal system. The implications of postural imbalances, the roles that muscles play in the maintenance of both ideal and imbalanced human posture and certain gait distortions that may occur. Prevention and treatment options are also discussed. Data Collection: The resources utilized included indexed/referenced journal articles, text and reference books. Pubmed, Chiroweb, Chiroaccess and Mantis were databases used to find journal articles and publications related to the effects of posture on the musculoskeletal system and or the effects of high heel shoes on posture and musculoskeletal biomechanics. Results: The keywords high heel shoes, high heeled posture, gait, posture, postural balance, lower crossed syndrome and spinal instability turned up various articles. The most relevant articles were chosen and included in this compilation. Conclusion: An extensive body of literature supports a conclusion that faulty posture due to the wearing of high heels can have detrimental effects on the musculoskeletal system and its biomechanics. The means to evaluate and address faulty posture is crucial in the evaluation and treatment of the biomechanical stresses placed on the musculoskeletal system. Most women who wear high heels have at some point experienced the conditions associated with the faulty body biomechanics.
    [Show full text]
  • Clinical Anatomy of the Lower Extremity
    Государственное бюджетное образовательное учреждение высшего профессионального образования «Иркутский государственный медицинский университет» Министерства здравоохранения Российской Федерации Department of Operative Surgery and Topographic Anatomy Clinical anatomy of the lower extremity Teaching aid Иркутск ИГМУ 2016 УДК [617.58 + 611.728](075.8) ББК 54.578.4я73. К 49 Recommended by faculty methodological council of medical department of SBEI HE ISMU The Ministry of Health of The Russian Federation as a training manual for independent work of foreign students from medical faculty, faculty of pediatrics, faculty of dentistry, protocol № 01.02.2016. Authors: G.I. Songolov - associate professor, Head of Department of Operative Surgery and Topographic Anatomy, PhD, MD SBEI HE ISMU The Ministry of Health of The Russian Federation. O. P.Galeeva - associate professor of Department of Operative Surgery and Topographic Anatomy, MD, PhD SBEI HE ISMU The Ministry of Health of The Russian Federation. A.A. Yudin - assistant of department of Operative Surgery and Topographic Anatomy SBEI HE ISMU The Ministry of Health of The Russian Federation. S. N. Redkov – assistant of department of Operative Surgery and Topographic Anatomy SBEI HE ISMU THE Ministry of Health of The Russian Federation. Reviewers: E.V. Gvildis - head of department of foreign languages with the course of the Latin and Russian as foreign languages of SBEI HE ISMU The Ministry of Health of The Russian Federation, PhD, L.V. Sorokina - associate Professor of Department of Anesthesiology and Reanimation at ISMU, PhD, MD Songolov G.I K49 Clinical anatomy of lower extremity: teaching aid / Songolov G.I, Galeeva O.P, Redkov S.N, Yudin, A.A.; State budget educational institution of higher education of the Ministry of Health and Social Development of the Russian Federation; "Irkutsk State Medical University" of the Ministry of Health and Social Development of the Russian Federation Irkutsk ISMU, 2016, 45 p.
    [Show full text]
  • Tibialis Anterior Tendon Rupture: a Case Report
    CHAPTER 32 Tibialis Anterior Tendon Rupture: A Case Report James Uh, DPM Cameron Barr, MD INTRODUCTION weave technique. This patient had a predisposing factor that may have contributed to her rupture, which was the use of Closed rupture of the tibialis anterior tendon is a rare injury. local corticosteroids. However, she had no history of acute Bruning fi rst described it in 1905 and there have been fewer trauma to the area of her tibialis anterior tendon or any than 120 cases reported in literature since (1). The rupture other systemic factors that could have been attributed to can be a result of a direct, closed trauma without ankle her tibialis anterior tendon rupture. motion. However, it is more commonly associated with forced ankle plantarfl exion against resistance (1). It has also been CASE REPORT established that a normal tendon rarely ruptures. Conditions that increase the likelihood of rupture are systemic lupus A 70-year-old female presented to our clinic with complaint erythematosus, hyperparathyroidism, and psoriasis (2). Other of vague pain and weakness of 1 month duration that was factors may contribute to tibialis anterior tendon ruptures localized to the anterior aspect of her right ankle. She denied including metabolic disorders such as diabetes mellitus, gout, any history of trauma to the area. However, she did recall rheumatoid arthritis, or after local injections or chronic use that while walking normally that she felt a discomfort that of corticosteroids (1). The typical patient is a male older than was present to the anterior aspect of her ankle that presented the age of 45 years with a complaint of slapping of the foot as a popping type of sensation.
    [Show full text]
  • Plastic Surgery
    PLASTIC SURGERY Coverage of extensive tibial bone exposure in burn patients with three local flaps N Lahouel, P Mokwatlo, E Ndobe Department of Plastic, Reconstructive and Aesthetic Surgery, University of the Witwatersrand, Johannesburg, South Africa Corresponding author: N Lahouel ([email protected]) Covering tibial bone exposure from third degree burns to the lower limbs is a challenging task for the plastic surgeon. We present our experience of covering tibial exposure from burns in three different patients, where four limbs were involved and three muscular flaps were used in conjunction with one another; i.e. the tibialis anterior flap, the medial gastrocnemius flap and the hemisoleus flap. Through the use of this technique, tibial bone exposure, ranging from 15–30 cm, was successfully covered. This technique constitutes a good solution for surgically challenging wounds. Keywords: hemisoleus flap, lower limb burns, medial gastrocnemius flap, tibial bone exposure, tibialis anterior flap S Afr J Surg 2016;54(4) Introduction Anatomy and techniques Full-thickness lower limb third degree burns are difficult to Tibialis anterior flap treat, and become very challenging when the tibia is exposed. TA muscle originates in the lateral condyle of the tibia, The tibial bone is subcutaneous on its anteromedial surface, proximally two thirds of the lateral surface of the tibia, the 5 extending from the tibial tuberosity to the convergence of the interosseous membrane and the deep fascia of the leg. Its tibialis anterior (TA) tendon and the extensor tendons. This internal axial tendon courses to the medial side of the foot to insert on the medial cuneiform and the base of the first position makes it very vulnerable and at high risk of exposure metatarsal.2 Throughout its course, the TA muscle runs from deep lower extremity burns.
    [Show full text]
  • Lower Limb Muscle Activation and Kinematics Modifications of Young Healthy Adults While Pushing a Variable Resistance Sled
    Original Article Lower limb muscle activation and kinematics modifications of young healthy adults while pushing a variable resistance sled MARTIN G. ROSARIO 1 , MONICA MATHIS School of Physical Therapy, Texas Woman’s University, Dallas, Texas, United States of America ABSTRACT Introduction: The XPO Trainer used in this research is a novel device which provides low rolling resistance at low speeds with an immediate and automatic proportional increase in resistance with increased speed. Purpose: To examine the impact of using the XPO Trainer on gait and neuromuscular activation at low and high speeds in young, seemingly healthy adults. Materials and Methods: This work consisted of 35 healthy adults (age: 24.9 ± 3.2 years, weight: 149.8 ± 8 lbs, height: 66.6 ± 4.4 inches). Each participant wore accelerometers/gyroscopes sensors around each wrist and ankle, chest, and low back and surface electromyography (EMG) electrodes on their dominant leg over the quadriceps (QUAD), hamstring (HAM), anterior tibialis (TA), and gastrocnemius (GA). To initiate the tasks, participants walked then ran 40 feet with and without the XPO Trainer sled. Subjects did a total of 3 trials per tasks (total of 12) with one minute of rest between tasks to reduce fatigue factor. The data from the EMG and Mobility Lab sensors were then processed and compared through the SPSS 24 system for a repeated-measures ANOVA. Results: EMG- The QUAD muscle exhibited a substantial higher muscle activation between walk (45.39 ± 24.43) and walk push (74.40 ± 56.73) tasks. Gait Parameters- There was a significant modification (p ≤ .05) between the different gait variables and tasks, including cadence, gait speed, stride length and trunk velocity while pushing the sled.
    [Show full text]
  • Shin Splints Is an Injury of the Lower Leg That Often High Body Mass Index, Poor Nutrition, and Degenerative Afflicts Athletes
    May 2008 Keeping Bodies in Motion ® by Joshua Dubin, DC, CCSP, CSCS, Rachel Dubin, DPT, Gregory Doerr, DC, CCSP S PORTS T HERAPY Getting a Leg Up on Shin Pain Review of Literature Abstract: training errors, foot shape/biomechanics, poor conditioning, Shin splints is an injury of the lower leg that often high body mass index, poor nutrition, and degenerative afflicts athletes. Generally, symptoms include pain on changes.1,13-16 the anterolateral or posteromedial surfaces of the shin. Symptoms associated with shin splints may include There is a great deal of research on the treatment and pain over the anterolateral, or the distal two thirds of prevention of shin splints, and based on extensive the posteromedial aspect of the shin.2-6 Usually, these research, several hypotheses have been proposed for symptoms are present with activity and alleviated with its pathophysiology; however, the exact cause of shin rest.7 However, if the athlete trains throughout pain and splints remains unknown. This paper explains the a proper treatment program is not initiated, the symptoms anatomy of the lower leg and biomechanics of gait. It and severity of shin splints may progress. presents possible etiologies and risk factors for shin splints, In the 1900s shin splints was initially defined as and it reviews options for treatment and prevention. Its any type of pain from the hip to the ankle.14 This broad conclusion, based on extensive literature review, definition seemed appropriate because treatments for reveals that most cases of shin splints respond favorably lower extremity injuries were rudimentary and relatively to conservative care.
    [Show full text]