Annotated List of Ensifera (Orthoptera) and Further Records on Caelifera (Orthoptera) of Mt Kilimanjaro, Tanzania

Total Page:16

File Type:pdf, Size:1020Kb

Annotated List of Ensifera (Orthoptera) and Further Records on Caelifera (Orthoptera) of Mt Kilimanjaro, Tanzania Zootaxa 3613 (4): 301–342 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3613.4.1 http://zoobank.org/urn:lsid:zoobank.org:pub:F9ABE9FA-824A-40AA-B2F8-7F9C7682B0AD Annotated list of Ensifera (Orthoptera) and further records on Caelifera (Orthoptera) of Mt Kilimanjaro, Tanzania CLAUDIA HEMP University of Würzburg, Dept. Animal Ecology and Tropical Biology (Zoology III), Am Hubland , 97974 Würzburg, Germany. E-mail: [email protected] Table of contents Abstract . 301 Introduction . 302 Study area . 302 Material and methods . 302 Results . 303 Annotated list of Tettigoniidae of Mt Kilimanjaro . 305 Subfamily Conocephalinae . 305 Subfamily Hetrodinae . 318 Subfamily Hexacentrinae . 320 Subfamily Meconematinae . 320 Subfamily Mecopodinae . 321 Subfamily Phaneropterinae . 322 Subfamily Pseudophyllinae. 332 Subfamily Saginae . 333 Family Gryllacrididae Kirby, 1906 . 333 Additamenta to the list of Caelifera recorded for Mt Kilimanjaro by Hemp (2009). 335 Family Pyrgomorphidae . 335 Family Acrididae . 336 Subfamily Catantopinae . 336 Summary and discussion . 336 Acknowledgements . 340 Literature . 340 Abstract A list of the Tettigoniidae and Gryllacrididae (Orthoptera: Ensifera) of Mt Kilimanjaro is presented. A total number of 63 Ensifera was recorded for this mountain, of which 25 species belonged to Phaneropterinae, 18 to Conocephalinae, 6 to Hetrodinae and three to Pseudophyllinae. The subfamily Meconematinae contributed two species while only one species of the subfamilies Hexacentrinae, Mecopodinae and Saginae was found. Gryllacrididae contributed six species. Three spe- cies recorded in literature were not found again during the research period. 15 species are newly recorded for Mt Kiliman- jaro in this study and one species of Agraeciini newly described. Two new genera, Afroanthracites Hemp & Ingrisch n. gen. (type species: Anthracites montium Sjöstedt, 1910) and Afroagraecia Ingrisch & Hemp n. gen. (type species: Agrae- cia sansibara Redtenbacher, 1891), are erected on African Agraeciini (Conocephalinae). Anthracites kilimandjaricus Sjöstedt, 1910 is snonymized with A. montium Sjöstedt, 1910. Agraecia sansibara (Redtenbacher, 1891), Anthracites bloyeti Brongniart, 1897 and Anelytra panteli Karny are transferred to Afroagraecia. Aethiomerus stenorhinus Saussure, 1899 is synonymised with Afroagraecia sansibara (Redtenbacher, 1891). In Caelifera two Catantopinae (Acrididae) spe- cies are newly recorded for Mt Kilimanjaro and one pyrgomorphid species, Maura lurida (Fabricius, 1781), recovered again for the area. Key words: New genera, new species, new records, species list, diversity, altitudinal range, endemism, East Africa, En- sifera, Caelifera Accepted by D. Rentz: 17 Dec. 2012; published: 12 Feb. 2013 301.
Recommended publications
  • Literature Cited
    LITERATURE CITED Abercrombie, M., C. J. Hichman, and M. L. Johnson. 1962. A Dictionary of Biology. Chicago: Aldine Publishing Company. Adkisson, C. S. 1996. Red Crossbill (Loxia curvirostra). In The Birds of North America, No. 256 (A. Poole and F. Gill, eds.). The Academy of Natural Sciences, Philadelphia, PA, and the American Ornithologists’ Union, Washington, D.C. Agee, J. K. 1993. Fire ecology of Pacific Northwest forests. Island Press, Covelo, CA. Albert, S. K., N. Luna, and A. L. Chopito. 1995. Deer, small mammal, and songbird use of thinned piñon–juniper plots: preliminary results. Pages 54–64 in Desired future conditions for piñon–juniper ecosystems (D. W. Shaw, E. F. Aldon, and C. LaSapio, eds.). Gen. Tech. Rep. GTR–RM–258. Fort Collins, CO: Rocky Mountain Research Station, Forest Service, U.S. Department of Agriculture. Aldrich, J. W. 1946. New subspecies of birds from western North America. Proceedings of the Biological Society of Washington 59:129–136. Aldrich, J. W. 1963. Geographic orientation of American Tetraonidae. Journal of Wildlife Management 27:529–545. Allen, R. K. 1984. A new classification of the subfamily Ephemerellinae and the description of a new genus. Pan–Pacific Entomologist 60(3): 245–247. Allen, R. K., and G. F. Edmunds, Jr. 1976. A revision of the genus Ametropus in North America (Ephemeroptera: Ephemerellidae). Journal of the Kansas Entomological Society 49:625–635. Allen, R. P. 1958. A progress report on the wading bird survey. National Audubon Society, unpubl. rep., Tavernier, FL. American Ornithologists’ Union. 1931. Check–list of North American birds. 4th ed. American Ornithologists’ Union, Lancaster, PA.
    [Show full text]
  • Orthoptera: Ensifera) in Rajshahi City, Bangladesh Shah HA Mahdi*, Meherun Nesa, Manzur-E-Mubashsira Ferdous, Mursalin Ahmed
    Scholars Academic Journal of Biosciences Abbreviated Key Title: Sch Acad J Biosci ISSN 2347-9515 (Print) | ISSN 2321-6883 (Online) Zoology Journal homepage: https://saspublishers.com/sajb/ Species Abundance, Occurrence and Diversity of Cricket Fauna (Orthoptera: Ensifera) in Rajshahi City, Bangladesh Shah HA Mahdi*, Meherun Nesa, Manzur-E-Mubashsira Ferdous, Mursalin Ahmed Department of Zoology, University of Rajshahi, Rajshahi 6205, Bangladesh DOI: 10.36347/sajb.2020.v08i09.003 | Received: 06.09.2020 | Accepted: 14.09.2020 | Published: 25.09.2020 *Corresponding author: Shah H. A. Mahdi Abstract Original Research Article The present study was done to assess the species abundance, monthly occurrence and diversity of cricket fauna (Orthoptera: Ensifera) in Rajshahi City, Bangladesh. A total number of 283 individuals of cricket fauna were collected and they were identified into three families, six genera and seven species. The collected specimens belonged to three families such as Gryllidae (166), Tettigoniidae (59) and Gryllotalpidae (58). The seven species and their relative abundance were viz. Gryllus texensis (36.40%), Gryllus campestris (18.37%), Lepidogryllus comparatus (3.89%), Neoconocephalus palustris (9.89%), Scudderia furcata (4.95%), Montezumina modesta (6.01%) and Gryllotalpa gryllotalpa (20.49%). Among them, highest population with dominance was Gryllus texensis (103) and lowest population was Lepidogryllus comparatus (11). Among the collected species, the status of Gryllus texensis, Gryllus campestris and Gryllotalpa gryllotalpa were very common (VC); Neoconocephalus palustris and Montezumina modesta were fairly common (FC) and Lepidogryllus comparatus and Scudderia furcata were considered as rare (R). Base on monthly occurrence 2 species of cricket were found throughout 12 months, 2 were 9-11 months, 2 were 6-8 months and 1 was 3-5 months.
    [Show full text]
  • Locusts in Queensland
    LOCUSTS Locusts in Queensland PEST STATUS REVIEW SERIES – LAND PROTECTION by C.S. Walton L. Hardwick J. Hanson Acknowledgements The authors wish to thank the many people who provided information for this assessment. Clyde McGaw, Kevin Strong and David Hunter, from the Australian Plague Locust Commission, are also thanked for the editorial review of drafts of the document. Cover design: Sonia Jordan Photographic credits: Natural Resources and Mines staff ISBN 0 7345 2453 6 QNRM03033 Published by the Department of Natural Resources and Mines, Qld. February 2003 Information in this document may be copied for personal use or published for educational purposes, provided that any extracts are fully acknowledged. Land Protection Department of Natural Resources and Mines GPO Box 2454, Brisbane Q 4000 #16401 02/03 Contents 1.0 Summary ................................................................................................................... 1 2.0 Taxonomy.................................................................................................................. 2 3.0 History ....................................................................................................................... 3 3.1 Outbreaks across Australia ........................................................................................ 3 3.2 Outbreaks in Queensland........................................................................................... 3 4.0 Current and predicted distribution ........................................................................
    [Show full text]
  • Singleton Molecular Species Delimitation Based on COI-5P
    Zhou et al. BMC Evolutionary Biology (2019) 19:79 https://doi.org/10.1186/s12862-019-1404-5 RESEARCHARTICLE Open Access Singleton molecular species delimitation based on COI-5P barcode sequences revealed high cryptic/undescribed diversity for Chinese katydids (Orthoptera: Tettigoniidae) Zhijun Zhou*, Huifang Guo, Li Han, Jinyan Chai, Xuting Che and Fuming Shi* Abstract Background: DNA barcoding has been developed as a useful tool for species discrimination. Several sequence- based species delimitation methods, such as Barcode Index Number (BIN), REfined Single Linkage (RESL), Automatic Barcode Gap Discovery (ABGD), a Java program uses an explicit, determinate algorithm to define Molecular Operational Taxonomic Unit (jMOTU), Generalized Mixed Yule Coalescent (GMYC), and Bayesian implementation of the Poisson Tree Processes model (bPTP), were used. Our aim was to estimate Chinese katydid biodiversity using standard DNA barcode cytochrome c oxidase subunit I (COI-5P) sequences. Results: Detection of a barcoding gap by similarity-based analyses and clustering-base analyses indicated that 131 identified morphological species (morphospecies) were assigned to 196 BINs and were divided into four categories: (i) MATCH (83/131 = 64.89%), morphospecies were a perfect match between morphospecies and BINs (including 61 concordant BINs and 22 singleton BINs); (ii) MERGE (14/131 = 10.69%), morphospecies shared its unique BIN with other species; (iii) SPLIT (33/131 = 25.19%, when 22 singleton species were excluded, it rose to 33/109 = 30.28%), morphospecies were placed in more than one BIN; (iv) MIXTURE (4/131 = 5.34%), morphospecies showed a more complex partition involving both a merge and a split. Neighbor-joining (NJ) analyses showed that nearly all BINs and most morphospecies formed monophyletic cluster with little variation.
    [Show full text]
  • Little Spurthroated Grasshopper Melanoplus Infantilis Scudder
    Wyoming_________________________________________________________________________________________ Agricultural Experiment Station Bulletin 912 • Species Fact Sheet September 1994 Little Spurthroated Grasshopper Melanoplus infantilis Scudder Distribution and Habitat Large populations infest regions of bunchgrass-sagebrush in Idaho where densities may reach The little spurthroated grasshopper has a wide geographic 20 to 40 per square yard in outbreak years. This species range in Western North America. It occurs in grasslands, often confined in field cages on western wheatgrass in Montana, as the dominant grasshopper, from the Canadian provinces to caused a loss of 35 mg dry weight of forage per adult northern New Mexico. It is common in clearings of montane grasshopper per day. This amount was less than that caused coniferous forest and in the parklands of the Canadian northern by an adult big-headed grasshopper, Aulocara elliotti, forest. In Colorado, it is found in montane grasslands as high as which caused a loss of 62 mg per day. The reason for this 10,000 feet. Its northern geographic range and its distribution difference is no doubt related to the difference in weight of in montane habitats indicate tolerance for colder temperate the two species. The larger grasshopper, which requires climates and intolerance for warmer conditions. more food, caused the greater damage. Unconfined in its natural habitat, the little spurthroated grasshopper may be Economic Importance even less damaging because it feeds on forbs as well as This grasshopper is an economically important species, grasses. becoming abundant in grasslands and feeding on both grasses and forbs. In a rangeland assemblage it is sometimes the Food Habits dominant grasshopper. During 1953 it was the dominant The little spurthroated grasshopper feeds on both species in 11 of 42 sites sampled in the mixedgrass prairie of grasses and forbs.
    [Show full text]
  • Nimfal Conocephalus Fuscus Fuscus (Fabricius, 1793) (Orthoptera, Tettigoniidae)’Ta Proventrikulusun Histomorfolojik Özellikleri
    ISSN 2757-5543 GÜFFD 2. Cilt (1): 68-76 (2021) DOI: 10.5281/zenodo.4843474 Gazi Üniversitesi Fen Fakültesi Dergisi http://sci-fac-j.gazi.edu.tr/ Nimfal Conocephalus fuscus fuscus (Fabricius, 1793) (Orthoptera, Tettigoniidae)’ta Proventrikulusun Histomorfolojik Özellikleri Damla Amutkan Mutlu1,* , Irmak Polat2 , Zekiye Suludere2 1 Gazi Üniversitesi, Fen Fakültesi, Biyoloji Bölümü, 06500, Ankara, Türkiye 2 Çankırı Karatekin Üniversitesi, Fen Fakültesi, Biyoloji Bölümü, 18200, Çankırı, Türkiye Öne Çıkanlar • Nimfal Conocephalus fuscus fuscus’ta proventrikulusun morfolojik ve yapısal özellikleri incelenmiştir. • Çalışmada ışık mikroskobu ve taramalı elektron mikroskop yöntemleri kullanılmıştır. • Diğer böcek türlerinin proventrikulusu ile benzerlikleri ve farklılıkları ortaya konmuştur. Makale Bilgileri Özet Böceklerde sindirim sisteminin morfolojisindeki çeşitlilik, birçok araştırmacıyı, proventrikulusa özel vurgu Geliş: 29.03.2021 yaparak, onu sistematik ve filogenik karakter olarak kullanmaya yöneltmiştir. Bu çalışmada, nimfal Kabul: 06.05.2021 Conocephalus fuscus fuscus (Fabricius, 1793) (Orthoptera, Tettigoniidae), 2017 ve 2018 yıllarının Haziran ayında Ankara-Çankırı yolu üzerindeki arazilerden toplanmış ve disekte edilen proventrikulus yapısı ışık mikroskobu ve taramalı elektron mikroskop yöntemleriyle incelenmiştir. C. fuscus fuscus dıştan içe doğru Anahtar Kelimeler kas tabakası ve epitel tabakasından oluşmaktadır. Epitel tabakasının apikal yüzeyinde farklı kalınlıklarda kütikül tabakası yer almaktadır. C. fuscus fuscus, 6 skletorize
    [Show full text]
  • (Orthoptera, Caelifera, Acrididae) on the Subfamily Level Using Molecular Markers
    e-ISSN 1734-9168 Folia Biologica (Kraków), vol. 67 (2019), No 3 http://www.isez.pan.krakow.pl/en/folia-biologica.html https://doi.org/10.3409/fb_67-3.12 The Evaluation of Genetic Relationships within Acridid Grasshoppers (Orthoptera, Caelifera, Acrididae) on the Subfamily Level Using Molecular Markers Igor SUKHIKH , Kirill USTYANTSEV , Alexander BUGROV, Michael SERGEEV, Victor FET, and Alexander BLINOV Accepted August 20, 2019 Published online September 11, 2019 Issue online September 30, 2019 Original article SUKHIKH I., USTYANTSEV K., BUGROV A., SERGEEV M., FET V., BLINOV A. 2019. The evaluation of genetic relationships within Acridid grasshoppers (Orthoptera, Caelifera, Acrididae) on the subfamily level using molecular markers. Folia Biologica (Kraków) 67: 119-126. Over the last few decades, molecular markers have been extensively used to study phylogeny, population dynamics, and genome mapping in insects and other taxa. Phylogenetic methods using DNA markers are inexpensive, fast and simple to use, and may help greatly to resolve phylogenetic relationships in groups with problematic taxonomy. However, different markers have various levels of phylogenetic resolution, and it’s important to choose the right set of molecular markers for a studied taxonomy level. Acrididae is the most diverse family of grasshoppers. Many attempts to resolve the phylogenetic relationships within it did not result in a clear picture, partially because of the limited number of molecular markers used. We have tested a phylogenetic resolution of three sets of the most commonly utilized mitochondrial molecular markers available for Acrididae sequences in the database: (i) complete protein-coding mitochondrial sequences, (ii) concatenated mitochondrial genes COI, COII, and Cytb, and (iii) concatenated mitochondrial genes COI and COII.
    [Show full text]
  • Studies in Australian Tettigoniidae: the Mecopodine Katydids Part 2 (Orthoptera: Tettigoniidae; Mecopodinae; Sexavaini) Queensland Palm Katydid Author(S) :D
    Studies in Australian Tettigoniidae: The Mecopodine Katydids Part 2 (Orthoptera: Tettigoniidae; Mecopodinae; Sexavaini) Queensland Palm Katydid Author(s) :D. C. F. Rentz, You Ning Su, Norihiro Ueshima Source: Transactions of the American Entomological Society, 132(3):229-241. 2006. Published By: The American Entomological Society DOI: URL: http://www.bioone.org/doi/ full/10.3157/0002-8320%282006%29132%5B229%3ASIATTM %5D2.0.CO%3B2 BioOne (www.bioone.org) is a a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofitrequests publishers, should academic be directed institutions, to researchthe individual libraries, andpublisher research fundersas copyright in the common holder. goal of maximizing access to critical research. Transactions of the American EntomologicalRENTZ, SU, Society AND UESHIMAVolume 132, Numbers 3: 229-241, 2006 229 Studies in Australian Tettigoniidae: The Mecopodine Katydids Part 2 (Orthoptera: Tettigoniidae; Mecopodinae; Sexavaini) Queensland Palm Katydid DCF RENTZ, YOU NING SU AND NORIHIRO UESHIMA [DCFR] 19 Butler Dr, Kuranda, Queensland, Australia 4881 [email protected] [YNS] 90 Mugga Way, Red Hill, Australian Capital Territory 2603 [email protected] [NU] 1435-1 Kubo-cho, Matsusaka, Mie 515-004, Japan [email protected] ABSTRACT Two tribes of Mecopodinae (Mecopodini and Sexavaini) are represented in Australia.
    [Show full text]
  • Orthoptera-Tettigoniidae)
    _??_1994 The Japan Mendel Society Cytologia 59 : 285-287, 1994 Karyotypes of Two Indian Grasshoppers of Mecopodinae (Orthoptera-Tettigoniidae) N. V. Aswathanarayana* and S. K. Ashwath Deprtment of Studies in Zoology, University of Mysore, Manasa Gangotri , Mysore, 570 006, India Accepted June 2, 1994 Variation in the chromosome number and form in closely related groups are of great interest and importance in the karyotype evolution. Robertsonian rearrangements and peri centric inversions are both considered to be the principle modes of chromosomal change in animals. (Imai et al. 1977). There are instances where the karyotypes are relatively stable as in the Acrididae. However, in the related family of Tettigonidae there is a wide range of variation in the diploid numbers from 12 to 39 (Ferreira 1977, Ashwath 1981, Aswathanara yana and Ashwath 1985). In the present paper, the karyotype diversity in two species of the less studied subgroup Mecopodiane is described and discussed. Material and methods A total of 29 males of Mecopoda elongata and 27 males of Mecopoda sp. were collected in and around Mysore (S. W. India) for karyological studies. The chromosome preparations were made from testes as well as from hepatic caecae adopting the method of Imai et al. (1977). The C-banding was induced applying technique of Summer (1972) with minor modifications. Observations A. Karyotype: (1) Mecopoda elongata: The mitotic metaphases from hepatic caecae show 29 chromosomes in the males (2n= 28+XO). The karyotype possesses 8 pairs of metacentrics of which one pair is large (chrm. 1) and others are smaller in size. Of the other 6 pairs, 5 pairs are subacrocentric having one large pair (chrm.
    [Show full text]
  • Downloaded from Brill.Com09/24/2021 02:27:59AM Via Free Access T  E,  147, 2004
    1 2 FER WILLEMSE & SIGFRID INGRISCH 1 Eygelshoven, The Netherlands 2 Bad Karlshafen, Germany A NEW GENUS AND SPECIES OF ACRIDIDAE FROM SOUTH INDIA (ORTHOPTERA, ACRIDOIDEA) Willemse, F. & S. Ingrisch 2004. A new genus and species of Acrididae from South India (Or- thoptera, Acridoidea). – Tijdschrift voor Entomologie 147: 191-196, figs. 1-22. [ISSN 0040- 7496]. Published 1 December 2004. Nathanacris quadrimaculata gen. et sp. n. is described from Anaimalai Hills in South India. The systematic position of this acridid genus is not yet clear. For the time being we propose to arrange the genus under the unclassified group of Catantopinae sensu lato. Dr. Fer Willemse (corresponding author), Laurastraat 67, Eygelshoven 6471 JH, The Nether- lands. E-mail: [email protected] Dr. Sigfrid Ingrisch, Eichendorffweg 4, D-34385 Bad Karlshafen, Germany. E-mail: sigfrid.in- [email protected] Key words. – Orthoptera, Acrididae, Catantopinae (s.l.), South India. Major contributions to the Acrididae fauna of than wide, in female a little shorter than wide, in male South India were provided by Bolívar (1902), Hebard lateral margins almost parallel and converging towards (1929), Uvarov (1929), Henry (1940), Muralirangan widely rounded apex, in female lateral margins short et al. (1992) and Shrinivasan & Muralirangan (1992). and apical margin semicircular (figs. 2, 7); in lateral Nevertheless our knowledge of the grasshopper fauna view tip angularly merging with frons, foveolae obso- of south India is still insufficient, particularly of lete or scarcely recognisable as elongate triangular fur- species living in natural habitats and commonly dis- rows. Frontal ridge projecting slightly between anten- tributed over small areas.
    [Show full text]
  • Katydid (Orthoptera: Tettigoniidae) Bio-Ecology in Western Cape Vineyards
    Katydid (Orthoptera: Tettigoniidae) bio-ecology in Western Cape vineyards by Marcé Doubell Thesis presented in partial fulfilment of the requirements for the degree of Master of Agricultural Sciences at Stellenbosch University Department of Conservation Ecology and Entomology, Faculty of AgriSciences Supervisor: Dr P. Addison Co-supervisors: Dr C. S. Bazelet and Prof J. S. Terblanche December 2017 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: December 2017 Copyright © 2017 Stellenbosch University All rights reserved Stellenbosch University https://scholar.sun.ac.za Summary Many orthopterans are associated with large scale destruction of crops, rangeland and pastures. Plangia graminea (Serville) (Orthoptera: Tettigoniidae) is considered a minor sporadic pest in vineyards of the Western Cape Province, South Africa, and was the focus of this study. In the past few seasons (since 2012) P. graminea appeared to have caused a substantial amount of damage leading to great concern among the wine farmers of the Western Cape Province. Very little was known about the biology and ecology of this species, and no monitoring method was available for this pest. The overall aim of the present study was, therefore, to investigate the biology and ecology of P. graminea in vineyards of the Western Cape to contribute knowledge towards the formulation of a sustainable integrated pest management program, as well as to establish an appropriate monitoring system.
    [Show full text]
  • Phylogeny of Ensifera (Hexapoda: Orthoptera) Using Three Ribosomal Loci, with Implications for the Evolution of Acoustic Communication
    Molecular Phylogenetics and Evolution 38 (2006) 510–530 www.elsevier.com/locate/ympev Phylogeny of Ensifera (Hexapoda: Orthoptera) using three ribosomal loci, with implications for the evolution of acoustic communication M.C. Jost a,*, K.L. Shaw b a Department of Organismic and Evolutionary Biology, Harvard University, USA b Department of Biology, University of Maryland, College Park, MD, USA Received 9 May 2005; revised 27 September 2005; accepted 4 October 2005 Available online 16 November 2005 Abstract Representatives of the Orthopteran suborder Ensifera (crickets, katydids, and related insects) are well known for acoustic signals pro- duced in the contexts of courtship and mate recognition. We present a phylogenetic estimate of Ensifera for a sample of 51 taxonomically diverse exemplars, using sequences from 18S, 28S, and 16S rRNA. The results support a monophyletic Ensifera, monophyly of most ensiferan families, and the superfamily Gryllacridoidea which would include Stenopelmatidae, Anostostomatidae, Gryllacrididae, and Lezina. Schizodactylidae was recovered as the sister lineage to Grylloidea, and both Rhaphidophoridae and Tettigoniidae were found to be more closely related to Grylloidea than has been suggested by prior studies. The ambidextrously stridulating haglid Cyphoderris was found to be basal (or sister) to a clade that contains both Grylloidea and Tettigoniidae. Tree comparison tests with the concatenated molecular data found our phylogeny to be significantly better at explaining our data than three recent phylogenetic hypotheses based on morphological characters. A high degree of conflict exists between the molecular and morphological data, possibly indicating that much homoplasy is present in Ensifera, particularly in acoustic structures. In contrast to prior evolutionary hypotheses based on most parsi- monious ancestral state reconstructions, we propose that tegminal stridulation and tibial tympana are ancestral to Ensifera and were lost multiple times, especially within the Gryllidae.
    [Show full text]