Protein Analytics

Total Page:16

File Type:pdf, Size:1020Kb

Protein Analytics Part I Protein Analytics Protein Purification Friedrich Lottspeich 1 Peter-Dörfler-Straße 4a, 82131 Stockdorf, Germany Investigation of the structure and function of proteins has already kept scientists busy for over 200 years. In 1777 the French chemist Pierre J. Macquer subsumed under the term Albumins all substances that showed the peculiar phenomenon of change from a liquid to a solid state upon warming. Chicken egg white, casein, and the blood component globulin already belonged to this class of substances. Already as early as 1787 (i.e., about the time of the French Revolution) the purification of egg white-like (coagulating) substances from plants was reported. In the early nineteenth century many proteins like albumin, fibrin, or casein were purified and analyzed. It soon became apparent that these compounds were considerably more complicated than other organic molecules known at that time. The word protein was most probably introduced by the Swedish chemist Jöns J. von Berzelius in about 1838 and was then published by the Dutch Gerardus J. Mulder. Mulder also suggested a chemical formula, which at that time was regarded as universally valid for all egg white-like materials. The homogeneity and purity of these purified proteins did not correspond of course to today’s demands. However, it became clear that proteins are different and distinct molecules. At that time purification could succeed only if one could use very simple steps, such as extraction for enrichment, acidification for precipitation, and spontaneous crystallization. Already in 1889 Hofmeister had obtained chicken albumin in crystalline form. Although Sumner in 1926 could already crystallize enzymatically active urease, the structure and the The molar mass (M) – often wrongly construction of proteins remained unknown up to the middle of the twentieth century. Only by called molecular weight – is not a mass the development of efficient purification methods, which allowed single proteins to be isolated but is defined as the mass of a substance from complicated mixtures, accompanied by a revolution in analysis techniques of the purified divided by the amount of substance: proteins, was today’s understanding of protein structures possible. M m=n NAmM This chapter describes fundamental purification methods and also touches on how they can be used systematically and strategically. It is extremely difficult to look at this subject in general The unit is g mol 1 terms, because the physical and chemical properties of single proteins may be very different. However, this structural diversity, which in the end determines also the function of the various Absolute molecule mass (mM) is the proteins, is biologically very meaningful and necessary. Proteins – the real tools and building molar mass of a molecule divided by the number of molecules in one mol materials of a cell – have to exercise a plethora of different functions. (= Avogadro constant, NA). mM = M/NA. The unit is g. The relative molecular mass (Mr)is 1.1 Properties of Proteins defined as the mass of one molecule normalized to the mass of 12C (carbon Size of Proteins The size of proteins can be very different. From small polypeptides, like 12), which by definition is equal to 12. insulin, which consists of 51 amino acids, up to very big multifunctional proteins, for example, to M 12 m =m 12 the apolipoprotein B, a cholesterol-transporting protein which contains more than 4600 amino r molecule C acid residues, with a molecular mass of more than 500 000 Dalton (500 kDa). Many proteins are It is dimensionless, but it has been composed of oligomers from the same or different protein chains and have molecule masses up to given the “unit” Dalton (Da) (formerly some millions Daltons. Quite in general it is to be expected that, the greater a protein is, the more atomic mass unit). Bioanalytics: Analytical Methods and Concepts in Biochemistry and Molecular Biology, First Edition. Edited by Friedrich Lottspeich and Joachim Engels. 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA. 4 Part I: Protein Analytics Figure 1.1 Separation methods of proteins and peptides. The separation capacity (i.e., the maximal number of compounds that can be separated in a single analysis) of the various separation methods is very different for different molecular masses of the analyte. Abbreviations: SEC, size exclusion chromatography; HIC, hydrophobic interaction chromatography; IEC, ion exchange chromatography; RPC, reversed phase chromatography; CE, capillary electrophoresis. Dalton (Da), named after the researcher difficultly its isolation and purification will be. This has its reason in the analytical procedures John Dalton (1766–1844), is a non-SI which show very low efficiencies with big molecules. Figure 1.1 shows the separation capacity mass unit. One Dalton is equivalent to (the maximum number of analytes, which can be separated under optimal condition) of individual = the atomic mass unit (u 1/12 of the separation techniques against the molecule mass of the analytes. 12 mass of C) and corresponds roughly It is evident that for small molecules like amino acids or peptides some chromatographic to the mass of one hydrogen atom (1.66 × 1024 g). In biochemistry the procedures are clearly able to distinguish more than 50 analytes in a single analysis. In the area > unit kDa (1 kilodalton = 1000 Da) is of proteins (Mr 104 Da) one recognizes that of the chromatographic techniques actually only very often used. ion exchange chromatography is able to separate efficiently more complicated mixtures. In the molecular mass area of proteins electrophoretic methods are by far more efficient. That is why Chromatographic Separation in proteome analysis (e.g., the analysis of all proteins of a cell), where several thousand proteins Techniques, Chapter 10 have to be separated, electrophoretic procedures (linear and two-dimensional) are very often used. From the figure is also evident that almost no efficient separation procedures exist for large molecules, for example, for protein complexes with molecular masses greater than Proteome Analysis, Chapter 39 150 kDa, or for organelles. The separation efficiency of a method is not always the relevant parameter in a protein purification. If selective purification steps are available the separation capacity is no longer significant and the selectivity becomes the crucial issue. Consequently, an affinity purification, which is based on the specific binding interaction of a substance to an affinity matrix, for example, an immune precipitation or an antibody affinity chromatography, has a quite low separation capacity of 1, but has an extremely high selectivity. Due to this highly selectivity a protein can easily be isolated even from a complex mixture in a one-step procedure. With the most common purification techniques, electrophoresis and chromatography, the analytes must be present in a dissolved form. Thus, the solubility of the protein in aqueous buffer media is a further important parameter when planning a protein purification. Many intracellular proteins, located in the cytosol (e.g., enzymes), are readily soluble while structure- forming proteins like cytoskeletal proteins or membrane proteins most often are much less soluble. Especially difficult to handle in aqueous solutions are hydrophobic integral membrane proteins, which are usually surrounded by lipid membranes. Without the presence of detergents Detergents, Section 1.8 such proteins will aggregate and precipitate during the purification. 1 Protein Purification 5 Available Quantity The quantity available in the raw material plays a crucial role in determining the effort that must be invested for a protein purification. A protein intended for the isolation is present perhaps only as a few copies per cell (e.g., transcription factors) or as a few thousand copies (e.g., many receptors). On the other hand, abundant proteins (e.g., enzymes) can constitute percentage shares of the total protein of a cell. Overexpressed proteins of proteins are often present in in clearly higher quantities (>50% in a cell) as well as some proteins in body fluids (e.g., albumin in plasma >60%). Purification with higher quantities of a protein is usually much simpler. Especially with the isolation of rare proteins different sources of raw material should be checked for the content of the protein of interest. Acid/Base Properties Proteins have certain acidic or basic properties because of their amino acid composition, properties that are used in separations via ion exchange chromatography and electrophoresis. The net charge of a protein is dependent on the pH of the surrounding solution. At a low pH-value it is positive, at high pH negative, and at the isoelectric point it is zero. Positive and negative charges compensate at the latter pH. Biological Activity The purification of a protein is often complicated by the fact that a particular protein often can be detected and localized among the various other proteins only due to its biological activity and location. Hence, one must take into account at every stage of protein isolation the preservation of this biological activity. Usually the biological activity is based on a specific molecular and spatial structure. If it is destroyed, one speaks of denaturation. This often is irreversible. To avoid denaturation, one must exclude in practice the application of Enzyme Activity Testing, some procedures. Chapter 3 The biological activity is often stable to different extents under different environmental conditions. Too high or too low buffer concentrations, temperature extremes, contacts with artificial surfaces such as glass or missing cofactors can change biological characteristics of proteins. Some of these changes are reversible: small proteins in particular are, after denatura- tion and loss of activity, often able to renature under certain conditions, regaining the biologically active form. For larger proteins, this is rarely the case and often results in only a poor yield. Measurement of the biological (e.g., enzymatic) activity makes it possible to monitor the purification of a protein.
Recommended publications
  • Structural and Functional Studies on Photoactive Proteins and Proteins Involved in Cell Differentiation
    Technische Universität München Fakultät für Organishe Chemie und Biochemie Max-Planck-Institut für Biochemie Abteilung Strukturforschung Biologische NMR-Arbeitsgruppe STRUCTURAL AND FUNCTIONAL STUDIES ON PHOTOACTIVE PROTEINS AND PROTEINS INVOLVED IN CELL DIFFERENTIATION Pawel Smialowski Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. Dr. A. Bacher Prüfer der Dissertation: 1. apl. Prof. Dr. Dr. h.c. R. Huber 2. Univ.-Prof. Dr. W. Hiller Die Dissertation wurde am 10.02.2004 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 17.03.2004 angenommen. PUBLICATIONS Parts of this thesis have been or will be published in due course: Markus H. J. Seifert, Dorota Ksiazek, M. Kamran Azim, Pawel Smialowski, Nedilijko Budisa and Tad A. Holak Slow Exchange in the Chromophore of a Green Fluorescent Protein Variant J. Am. Chem. Soc. 2002, 124, 7932-7942. Markus H. J. Seifert, Julia Georgescu, Dorota Ksiazek, Pawel Smialowski, Till Rehm, Boris Steipe and Tad A. Holak Backbone Dynamics of Green Fluorescent Protein and the effect of Histidine 148 Substitution Biochemistry. 2003 Mar 11; 42(9): 2500-12. Pawel Smialowski, Mahavir Singh, Aleksandra Mikolajka, Narashimsha Nalabothula, Sudipta Majumdar, Tad A. Holak The human HLH proteins MyoD and Id–2 do not interact directly with either pRb or CDK6. FEBS Letters (submitted) 2004. ABBREVIATIONS ABBREVIATIONS
    [Show full text]
  • Protein G Agarose
    Protein G Agarose Item No Size 223-51-01 10 mL INTRODUCTION Table 1. Relative Affinity of Immobilized Protein G and Protein A for Various Antibody Species and Subclasses of Protein G Agarose consists of recombinant protein G, which is (8) produced in E. coli and after purification, is covalently polyclonal and monoclonal IgG’s . immobilized onto 4% cross-linked agarose beads. Protein G agarose is suitable for the isolation of IgG antibodies using Species/ Subclass Protein G Protein A column or immunoprecipitation methods. DNA sequencing of MONOCLONAL native protein G (from Streptococcal group G) has revealed Human two IgG-binding domains as well as sites for albumin and cell IgG 1 ++++ ++++ surface binding (1 - 6). Protein G has been designed to IgG 2 ++++ ++++ eliminate the albumin and cell surface binding domains to IgG 3 ++++ --- reduce nonspecific binding while maintaining efficient IgG 4 ++++ ++++ binding of the Fc region of IgG’s. With the removal of these binding domains, Protein G can be used to separate albumin Mouse from crude human IgG samples(7). IgG 1 ++++ + IgG 2a ++++ ++++ Covalently coupled Protein G Agarose has been widely used IgG 2b +++ +++ for the isolation of a wide variety of immunoglobulin IgG 3 +++ ++ molecules from several mammalian species. Protein G has greater affinity for many more mammalian IgGs than Protein Rat A (Table 1). IgG 1 + --- IgG 2a ++++ --- FORM/STORAGE IgG 2b ++ --- IgG ++ + Protein G Agarose is supplied in a total volume of 15 mL 2c consisting of 10 mL Protein G agarose suspended in 20% POLYCLONAL ethanol/PBS. Store at 2 - 8°C.
    [Show full text]
  • Thermo Scientific Pierce Protein Purification Technical Handbook
    Thermo Scientific Pierce Protein Purification Technical Handbook O O H H2N O N N + Version 2 O Bead Bead H2N Agarose O O NH2 NH2 Table of Contents Introduction for Protein Purification 1-5 Antibody Purification 58-67 Overview 58 Purification Accessories – Protein Extraction, Immobilized Protein L, Protein A, Protein G 59-61 and Protein A/G Binding and Elution Buffers 6-11 IgG Binding and Elution Buffers for 62 Protease and Phosphatase Inhibitors 8 Protein A, G, A/G and L for Protein Purification Melon Gel Purification Products 63 Buffers for Protein Purification 9 Thiophilic Gel Antibody Purification 64 Spin Cups and Columns 10 IgM and IgA Purification 65 Disposable Plastic and Centrifuge Columns 11 Avidin:Biotin Binding 66-69 Fusion Protein Purification 12-21 Biotin-binding Proteins 66 His-Tagged Protein Purification Resin 14-15 Immobilized Avidin Products 67 Cobalt Resin, Spin Columns and 16-17 Immobilized Streptavidin Products 67 Chromatography Cartridges Immobilized NeutrAvidin Products 68 High-quality purification of GST-fusion proteins 18-19 Immobilized Monomeric Avidin and Kit 68 GST- and PolyHis-Tagged Pull-Down Assay Kits 20-21 Immobilized Iminobiotin and Biotin 69 Covalent Coupling of Affinity Ligands FPLC Cartridges 70-77 to Chromatography Supports 22-35 Overview 70 Covalent Immobilization of Ligands 22-25 His-tagged Protein FPLC Purification 71-72 Products for Immobilizing Ligands 26-29 GST-Tagged Protein FPLC Purification 72 through Primary Amines Antibody FPLC Purification 73-75 Products for Immobilizing Ligands 30-32 through Sulfhydryl Groups Phosphoprotein FPLC Purification 75 Products for Immobilizing Ligands 33 Biotinylated Protein FPLC Purification 76 through Carbonyl Groups Protein Desalting 77 Products for Immobilizing Ligands 34-35 through Carboxyl Groups Affinity Supports 78-80 IP/Co-IP 36-45 Immunoprecipitation 36 Traditional Methods vs.
    [Show full text]
  • Chapter 2. Materials and Methods 2 Materials and Methods 2.1
    Chapter 2. Materials and Methods 20 2 Materials and Methods 2.1 Materials 2.1.1 Apparatus FLA-3000 Fuji-Film FPLC Amersham Pharmacia Heraeus Biofuge Stratos, Centrifuges Kendro (Honau) LSM 510 Zeiss pH-meter Mettler Toledo GmbH SLM Aminco French pressure SLM Aminco Sorvall RC5B Plus, Centrifuge Kendro Thermo-block Bioblock Scientific Trio-Thermocycler Biometra 2.1.2 Chemicals Acrylamid/Bisacrylamid 37:5:1 Roth, Karlsruhe, Germany Acrylamid 30% Roth, Karlsruhe, Germany Agar AppliChem, Darmstadt, Germany Agarose Serva, Heidelberg, Germany Ammonium persulphate Roth, Karlsruhe, Germany Ampicilin Roche, Mannheim, Germany Boric Acid Sigma, St Loius, MO, USA Coomassie Brilliant Blue R G25 Serva, Heidelberg, Germany Dimetylsulphoxide Sigma, St Loius, MO, USA EDTA Serva, Heidelberg, Germany EGTA Serva, Heidelberg, Germany β-Mercaptoethanol Sigma, St Loius, MO, USA Paraformaldehyde Sigma, St Loius, MO, USA Sodium fluoride Serva, Heidelberg, Germany TEMED Merck, Darmstadt, Germany Tris AppliChem, Darmstadt, Germany Trypsin Biochrom KG, Berlin, Germany Tween-20 Sigma, St Loius, MO, USA Triton X-100 Serva, Heidelberg, Germany Chapter 2. Materials and Methods 21 2.1.3 Standards and kits ECL Western Blotting Reagents Amersham Pharmacia, Uppsala, Sweden Coomassie Protein Assay kit Pierce, Illinois, USA Qiagen Plasmid Mini Kit Qiagen, Hilden The Netherlands Qiagen Plasmid Midi Kit Qiagen, Hilden, The Netherlands QIAquick Gel Extraction Kit Qiagen, Hilden, The Netherlands QIAquick PCR Extraction Kit Qiagen, Hilden, The Netherlands QIAquick Nucleotide Extraction
    [Show full text]
  • A Tool to Detect Cis-Acting Elements Near Promoter Regions in Rice
    Planta (2021) 253:40 https://doi.org/10.1007/s00425-021-03572-w ORIGINAL ARTICLE Rice protein‑binding microarrays: a tool to detect cis‑acting elements near promoter regions in rice Joung Sug Kim1 · SongHwa Chae1 · Kyong Mi Jun2 · Gang‑Seob Lee3 · Jong‑Seong Jeon4 · Kyung Do Kim1 · Yeon‑Ki Kim1 Received: 27 October 2020 / Accepted: 8 January 2021 / Published online: 21 January 2021 © The Author(s) 2021 Abstract Main conclusion The present study showed that a rice (Oryza sativa)-specifc protein-binding microarray (RPBM) can be applied to analyze DNA-binding motifs with a TF where binding is evaluated in extended natural promoter regions. The analysis may facilitate identifying TFs and their downstream genes and constructing gene networks through cis-elements. Abstract Transcription factors (TFs) regulate gene expression at the transcriptional level by binding a specifc DNA sequence. Thus, predicting the DNA-binding motifs of TFs is one of the most important areas in the functional analysis of TFs in the postgenomic era. Although many methods have been developed to address this challenge, many TFs still have unknown DNA- binding motifs. In this study, we designed RPBM with 40-bp probes and 20-bp of overlap, yielding 49 probes spanning the 1-kb upstream region before the translation start site of each gene in the entire genome. To confrm the efciency of RPBM technology, we selected two previously studied TFs, OsWOX13 and OsSMF1, and an uncharacterized TF, OsWRKY34. We identifed the ATT GAT TG and CCA CGT CA DNA-binding sequences of OsWOX13 and OsSMF1, respectively. In total, 635 and 932 putative feature genes were identifed for OsWOX13 and OsSMF1, respectively.
    [Show full text]
  • Analysis of the Biochemical and Cellular Activities of Substrate Binding by the Molecular Chaperone Hsp110/Sse1
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 5-2017 ANALYSIS OF THE BIOCHEMICAL AND CELLULAR ACTIVITIES OF SUBSTRATE BINDING BY THE MOLECULAR CHAPERONE HSP110/SSE1 Veronica M. Garcia Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Biochemistry Commons, Medicine and Health Sciences Commons, Microbiology Commons, Molecular Biology Commons, and the Molecular Genetics Commons Recommended Citation Garcia, Veronica M., "ANALYSIS OF THE BIOCHEMICAL AND CELLULAR ACTIVITIES OF SUBSTRATE BINDING BY THE MOLECULAR CHAPERONE HSP110/SSE1" (2017). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 771. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/771 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. ANALYSIS OF THE BIOCHEMICAL AND CELLULAR ACTIVITIES OF SUBSTRATE BINDING BY THE MOLECULAR CHAPERONE HSP110/SSE1 By Veronica Margarita Garcia, B.S. APPROVED: _______________________________ Supervisory Professor Kevin A. Morano, Ph.D. _______________________________ Catherine Denicourt, Ph.D. _______________________________ Theresa M. Koehler, Ph.D. _______________________________ Michael C.
    [Show full text]
  • Sensitive Single Molecule Protein Quantification and Protein Complex
    Proteomics 2011, 11, 4731–4735 DOI 10.1002/pmic.201100361 4731 TECHNICAL BRIEF Sensitive single-molecule protein quantification and protein complex detection in a microarray format Lee A. Tessler and Robi D. Mitra Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University, St. Louis, MO, USA Single-molecule protein analysis provides sensitive protein quantitation with a digital read- Received: June 30, 2011 out and is promising for studying biological systems and detecting biomarkers clinically. Accepted: October 3, 2011 However, current single-molecule platforms rely on the quantification of one protein at a time. Conventional antibody microarrays are scalable to detect many proteins simultaneously, but they rely on less sensitive and less quantitative quantification by the ensemble averaging of fluorescent molecules. Here, we demonstrate a single-molecule protein assay in a microarray format enabled by an ultra-low background surface and single-molecule imaging. The digital read-out provides a highly sensitive, low femtomolar limit of detection and four orders of magnitude of dynamic range through the use of hybrid digital-analog quantifica- tion. From crude cell lysate, we measured levels of p53 and MDM2 in parallel, proving the concept of a digital antibody microarray for use in proteomic profiling. We also applied the single-molecule microarray to detect the p53–MDM2 protein complex in cell lysate. Our study is promising for development and application of single-molecule protein methods because it represents a technological bridge between single-plex and highly multiplex studies. Keywords: Antibody microarray / Sandwich immunoassay / Single-molecule detection / Technology / Total internal reflection fluorescence Single-molecule protein detection has the potential to cence (TIRF) imaging has provided a platform for single- benefit systems biology and biomarker studies by providing molecule quantification on planar surfaces.
    [Show full text]
  • Beta-Barrel Scaffold of Fluorescent Proteins: Folding, Stability and Role in Chromophore Formation
    Author's personal copy CHAPTER FOUR Beta-Barrel Scaffold of Fluorescent Proteins: Folding, Stability and Role in Chromophore Formation Olesya V. Stepanenko*, Olga V. Stepanenko*, Irina M. Kuznetsova*, Vladislav V. Verkhusha**,1, Konstantin K. Turoverov*,1 *Institute of Cytology of Russian Academy of Sciences, St. Petersburg, Russia **Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA 1Corresponding authors: E-mails: [email protected]; [email protected] Contents 1. Introduction 222 2. Chromophore Formation and Transformations in Fluorescent Proteins 224 2.1. Chromophore Structures Found in Fluorescent Proteins 225 2.2. Autocatalytic and Light-Induced Chromophore Formation and Transformations 228 2.3. Interaction of Chromophore with Protein Matrix of β-Barrel 234 3. Structure of Fluorescent Proteins and Their Unique Properties 236 3.1. Aequorea victoria GFP and its Genetically Engineered Variants 236 3.2. Fluorescent Proteins from Other Organisms 240 4. Pioneering Studies of Fluorescent Protein Stability 243 4.1. Fundamental Principles of Globular Protein Folding 244 4.2. Comparative Studies of Green and Red Fluorescent Proteins 248 5. Unfolding–Refolding of Fluorescent Proteins 250 5.1. Intermediate States on Pathway of Fluorescent Protein Unfolding 251 5.2. Hysteresis in Unfolding and Refolding of Fluorescent Proteins 258 5.3. Circular Permutation and Reassembly of Split-GFP 261 5.4. Co-translational Folding of Fluorescent Proteins 263 6. Concluding Remarks 267 Acknowledgments 268 References 268 Abstract This review focuses on the current view of the interaction between the β-barrel scaf- fold of fluorescent proteins and their unique chromophore located in the internal helix.
    [Show full text]
  • Protein Precipitation Using Ammonium Sulfate
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Curr Protoc Manuscript Author Protein Sci. Manuscript Author Author manuscript; available in PMC 2016 April 01. Published in final edited form as: Curr Protoc Protein Sci. 2001 May ; APPENDIX 3: Appendix–3F. doi:10.1002/0471140864.psa03fs13. Protein Precipitation Using Ammonium Sulfate Paul T. Wingfield Protein Expression Laboratory (HNB-27), National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) - NIH, Bldg 6B, Room 1B130, 6 Center Drive, Bethesda MD 20814, Tel: 301-594-1313 Paul T. Wingfield: [email protected] Abstract The basic theory of protein precipitation by addition of ammonium sulfate is presented and the most common applications are listed, Tables are provided for calculating the appropriate amount of ammonium sulfate to add to a particular protein solution. Key terms for indexing Ammonium sulfate; ammonium sulfate tables; protein concentration; protein purification BASIC THEORY The solubility of globular proteins increases upon the addition of salt (<0.15 M), an effect termed salting-in. At higher salt concentrations, protein solubility usually decreases, leading to precipitation; this effect is termed salting-out ((Green and Hughes, 1955). Salts that reduce the solubility of proteins also tend to enhance the stability of the native conformation. In contrast, salting-in ions are usually denaturants. The mechanism of salting-out is based on preferential solvation due to exclusion of the cosolvent (salt) from the layer of water closely associated with the surface of the protein (hydration layer). The hydration layer, typically 0.3 to 0.4 g water per gram protein (Rupley et al., 1983), plays a critical role in maintaining solubility and the correctly folded native conformation.
    [Show full text]
  • Reader Biolologische Chemie
    Cursushandleiding Biologische Chemie Oktober 2009 Inhoudsopgave Voorwoord 1 0. Basisvaardigheden 5 1. Spectrofotometrie 17 2. Enzymkinetiek 35 3. Centrifugatie 51 4. Gelfiltratie-chromatografie 69 5. Eiwitbepaling 83 6. Gelelectroforese 91 Veiligheidsvoorschriften 103 Colofon Versie: 20090917 Copyright © 2008 – 2009 Tekst: L. van Zon, met bijdragen van vele medewerkers van de subafdeling Structuurbiologie van de Faculteit der Aard- en Levenswetenschappen, Vrije Universiteit Amsterdam Voorwoord Over dit practicum Het maakt niet uit welke richting je kiest binnen de levenswetenschappen, vroeger of later krijg je te maken met laboratoriumwerk, of met resultaten uit laboratoriumwerk. Dit ligt voor de hand als je zelfstandig wetenschappelijk onderzoek gaat doen aan de universiteit of bij een bedrijf. Maar ook bijvoorbeeld medici hebben direct of indirect te maken artsen- of ziekenhuis- laboratoria, en moeten minimaal de resultaten van een biochemische analyse kunnen inter- preteren. Dit geldt ook voor managers in de farmaceutische industrie, en voor alle andere mensen die indirect of direct met de analyse van processen in het menselijk lichaam of andere levende systemen te maken hebben. Zelfs achter de moderne online databases van genen en proteïnen gaat een grote hoeveelheid laboratoriumonderzoek schuil. Het feit dat steeds meer standaard-analyses geautomatiseerd worden neemt niet weg dat ze nog steeds gebaseerd zijn op slechts een handjevol beproefde methodes en principes. In dit practicum zullen we zes van de belangrijkere methodes behandelen die in de praktijk gebruikt worden voor biochemisch onderzoek. Deze methodes zijn grofweg in te delen in analyse- en scheidingsmethodes. Ook in de biologie geldt “meten is weten”, dus analyse- methodes worden gebruikt om metingen te verrichten aan cellen, moleculen en biologische systemen.
    [Show full text]
  • A Comparison of Biuret, Lowry, and Bradford Methods for Measuring
    MENDELNET 2015 A COMPARISON OF BIURET, LOWRY AND BRADFORD METHODS FOR MEASURING THE EGG’S PROTEINS VRSANSKA MARTINA1, KUMBAR VOJTECH2 1Department of Chemistry and Biochemistry 2Department of Technology and Automobile Transport Mendel University in Brno Zemedelska 1, 613 00 Brno CZECH REPUBLIC [email protected] Abstract: Quantitation of the total protein content in a sample is a critical step in protein analysis. Molecular UV-Vis absorption spectroscopy is very efficient in quantitative analysis such as protein quantitation and has extensive applications in chemical and biochemical laboratories, medicine and food industry. Traditional spectroscopic methods are cheap, easy-working and the most common way to quantitate protein concentrations. This study compares Biuret, Lowry and Bradford methods for measuring hen albumen and egg yolk as protein samples. These methods are commonly used for determination proteins. The Biuret test uses as a reagent: Biuret reagent. For Lowry assay are used four reagents: reagent A, reagent B, reagent C and reagent D. For last method, Bradford, is used as a reagent Coomassie Brilliant Blue G-250. The absorbance was measured at a wavelength of 750 nm for Lowry, 540 nm for Biuret and 595 nm for Bradford assay. The lowest content of proteins was analysed in albumen (0.706 mg·ml-1) and egg yolk (0.996 mg·ml-1) for Biuret method. According to the Lowry assay, was content of proteins in albumen 0.908 mg·ml-1 and content in egg yolk was 1.003 mg·ml-1. The highest content of proteins, which was analysed using method Bradford, was content of protein in albumen 1.125 mg·ml-1 and content for egg yolk was 1.369 mg·ml-1.
    [Show full text]
  • Methods of Protein Analysis and Variation in Protein Results
    Methods of Protein Analysis and Variation in Protein Results C. E. McDonald Premiums on high-protein hard red spring wheat has created much interest in the protein test. The Kjeldahl method, a chemical procedure for nitrogen, is still the basic method used for protein analysis. The Kjeldahl method, the Udy dye binding method and the new infrared reflectance method for determining protein are described in this paper. In the analysis of wheat protein by the Kjeldahl method, the moximum amount of variance in results expected between different laboratories and within the same laboratory is larger than the increments of pro­ tein on which price premiums have been paid. The causes of protein variance and ways of reducing the variance are discussed. In the past year, the price of hard red spring Table I. Basis of Kjeldahl Protein Procedure. wheat has been substantially influenced by the 1. Protein made of amino acid building blocks. protein content. Price premiums have been paid on increased increments of 0.1 percentage points 2. Amino acids made of carbon, hydrogen, oxygen, of protein. The price expected for wheat on the sulfur, nitrogen. basis of protein as determined by a North Dakota laboratory sometimes is changed because the pro­ 3. Protein calculated from measurement of nitro­ tein found later at Minneapolis or Duluth differs gen. more than the protein increment required for 4. Per cent nitrogen x 5.7 = per cent crude pro­ premium. With barley, an unexpected discount tein of wheat. may be applied against the seller because the pro­ Per cent nitrogen X 6.25 = per cent protein of tein is found to be over the discount protein level other grains.
    [Show full text]