High Expression of Human Carboxypeptidase M in Pichia Pastoris

Total Page:16

File Type:pdf, Size:1020Kb

High Expression of Human Carboxypeptidase M in Pichia Pastoris Brazilian Journal of Medical and Biological Research (2006) 39: 211-217 Expression of human carboxypeptidase M in Pichia pastoris 211 ISSN 0100-879X High expression of human carboxypeptidase M in Pichia pastoris. Purification and partial characterization R.B. Craveiro1, 1Departamento de Biofísica, 2Departamento de Nefrologia, J.D. Ramalho3, Escola Paulista de Medicina, Universidade Federal de São Paulo, J.R. Chagas3, São Paulo, SP, Brasil P.H.M. Wang2, 3Universidade de Mogi das Cruzes, São Paulo, SP, Brasil D.E. Casarini2, 4Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, J.L. Pesquero3,4, Belo Horizonte, MG, Brasil R.C. Araújo3 and J.B. Pesquero1 Abstract Correspondence Carboxypeptidase M (CPM) is an extracellular glycosylphosphatidyl- Key words J.B. Pesquero inositol-anchored membrane glycoprotein, which removes the C- • Kinins Departamento de Biofísica terminal basic residues, lysine and arginine, from peptides and pro- • Human carboxypeptidase M EPM, UNIFESP teins at neutral pH. CPM plays an important role in the control of • Recombinant protein Rua Botucatu, 862, 7º andar peptide hormones and growth factor activity on the cell surface. The • Pichia pastoris 04023-062 São Paulo, SP Brasil present study was carried out to clone and express human CPM in the Fax: +55-11-5571-5780 yeast Pichia pastoris in order to evaluate the importance of this E-mail: [email protected] enzyme in physiological and pathological processes. The cDNA for the enzyme was amplified from total placental RNA by RT-PCR and Research supported by FAPESP cloned in the vector pPIC9, which uses the methanol oxidase promoter (Nos. 00/03850-5, 01/03409-0, and drives the expression of high levels of heterologous proteins in P. 01/07538-9) and CNPq (No. pastoris. The cpm gene, after cloning and transfection, was integrated 52.0012/02). R.B. Craveiro has a master degree fellowship from into the yeast genome, which produced the active protein. The recom- FAPESP (No. 02/04961-0). binant protein was secreted into the medium and the enzymatic activity was measured using the fluorescent substrate dansyl-Ala-Arg. The enzyme was purified by a two-step protocol including gel filtra- tion and ion-exchange chromatography, resulting in a 1753-fold Received June 14, 2005 purified active protein (16474 RFU mg protein-1 min-1). This purifica- Accepted October 27, 2005 tion protocol permitted us to obtain 410 mg of the purified protein per liter of fermentation medium. SDS-PAGE showed that recombinant CPM migrated as a single band with a molecular mass similar to that of native placental enzyme (62 kDa), suggesting that the expression of a glycosylated protein had occurred. These results demonstrate for the first time the establishment of a method using P. pastoris to express human CPM necessary to the development of specific antibodies and antagonists, and the analysis of the involvement of this peptidase in different physiological and pathological processes Braz J Med Biol Res 39(2) 2006 212 R.B. Craveiro et al. Introduction cells (15). By cloning the cDNA from differ- ent human tissues, we could determine the Carboxypeptidase M (CPM) is an extra- molecular structure (16) and show the pres- cellular glycosylphosphatidyl-inositol-an- ence of alternatively spliced messages for chored membrane glycoprotein. This pro- CPM. Furthermore, we could also show that tein is a member of the CPN/E subfamily of the expression of this carboxypeptidase in zinc metallo-carboxypeptidase. It specifically tumor tissues is differently regulated, rais- removes C-terminal basic residues such as ing the question of the role of this enzyme in lysine and arginine from peptides and from cancer (16). Thus, taking into account the proteins at neutral pH (1-4). The highest function played by kinins and nitric oxide in levels of CPM have been found in human inflammatory diseases and cancer (11), and lung and placenta, but significant amounts the fact that specific inhibitors of this car- are present in kidney, blood vessels, intes- boxypeptidase are still lacking, CPM might tine, brain, and peripheral nerves (1,5-7). be an important target for the development CPM has been found also in soluble form in of new drugs to treat these pathologies. various body fluids, including amniotic fluid, Recently, a human CPM (hCPM) was seminal plasma and urine (5,8,9). Due to its expressed by using a system based on bacu- wide distribution in a variety of tissues, it is lovirus-infected insect cells (Sf9) (17). The believed to play important roles in the con- cited study aimed to identify the membrane- trol of peptide hormone and growth factor anchor signal and the glycosylphosphatidyl- activity on the cell surface, and in the mem- inositol attachment site and to investigate brane-localized degradation of extracellular the roles of the two conserved glutamic acid proteins (10). residues, Glu260 and Glu264, in kinetic param- By removing the C-terminal Arg residue eters and in protein stability. Furthermore, of the intact kinins (and related peptides), the same group determined the crystal struc- CPM can switch the receptor specificity (11), ture of the human enzyme (18). inactivating the agonist for the B2 receptor Therefore, the objective of the present and concomitantly producing an agonist for study was to obtain an active glycosylated the B1 receptor (1). Recent results from our protein using the expression system of the group have shown that the kinin B1 receptor yeast Pichia pastoris. This system has sev- is important for neutrophil migration into eral advantages, including the use of the inflamed tissues (12,13) and for glucose/ alcohol oxidase I gene promoter, the ability insulin homeostasis (Araujo RC, unpublished to stably integrate expression plasmids at data). Furthermore, CPM is recognized by specific sites, the ability of the cells to be antibodies that detect cell surface antigens cultivated at high density, and a simplified on macrophages and is strongly induced in purification procedure for secreted heterolo- the differentiation of monocytes to macro- gous proteins. Moreover, similar to mam- phages (14). Therefore, the mechanism for malian and insect cells, P. pastoris can carry neutrophil migration could be dependent on out certain co- and post-translational modi- the CPM present in the cell membrane of fications of foreign proteins (19,20). The macrophages, indicating a relevant role of results described in the present report dem- this enzyme at sites of inflammation. In ad- onstrate a high level of expression of the dition, the conversion of agonistic activity active recombinant hCPM with a molecular was shown to result in an enhanced and mass similar to the native glycoprotein (62 prolonged output of nitric oxide in response kDa), indicating that the P. pastoris expres- to bradykinin or kallidin in cytokine-stimu- sion system can be useful for the production lated human lung microvascular endothelial of active CPM at relevant levels. Braz J Med Biol Res 39(2) 2006 Expression of human carboxypeptidase M in Pichia pastoris 213 Material and Methods for the restriction enzymes EcoRI and NotI, respectively, 2 U platinum TaqDNA poly- Enzymes, primers and vectors for molec- merase, 1.5 mM MgCl2, 50 mM KCl, and 20 ular biology procedures were purchased from mM Tris-HCl, pH 8.3, in a 50-µL volume. Invitrogen (Carlsbad, CA, USA) and Pro- PCR amplification was performed by incu- mega (Madison, WI, USA). The dansyl-Ala- bating the samples at 94ºC for 1 min, fol- Arg substrate was from Bachem (King of lowed by 30 cycles at 94ºC for 1 min, and at Prussia, PA, USA). DNA sequencing was 60ºC for 90 s, with a final extension at 72ºC performed using an ABI377 sequencer (Ap- for 7 min. At the end of amplification, plied Biosystems, Foster City, CA, USA). samples were submitted to electrophoresis The Amicon Ultra 30,000 MWCO mem- on 1% agarose gel with a 100-bp DNA lad- brane was from Millipore (Billerica, MA, der as a size marker. The amplified bands of USA), and the Superdex 200 HR 10/30 and 1313 bp were visualized by ethidium bro- Mono Q HR 5/5 columns were from Amer- mide staining. sham Biosciences (Piscataway, NJ, USA). Construction of expression vector pPIC9-cpm RNA extraction and reverse transcription polymerase chain reaction The PCR-amplified fragment encoding hCPM was cloned into the pGEM-T-Easy Total RNA from human placenta was (Promega) cloning vector and subjected to isolated using the Trizol reagent according double-stranded DNA sequencing (ABI 377, to the manufacturer’s protocol and its purity Applied Biosystems) After EcoRI-NotI di- was evaluated by electrophoresis on 1% aga- gestion, the cpm gene was cloned in frame rose gel. Contamination of RNA samples into the pPIC9 (Invitrogen) vector between with genomic DNA was avoided by treat- the EcoRI (5' end) and NotI (3' end) restric- ment for 1 h at 37ºC with 1 U RNAse-free/ tion sites to generate the plasmid pPIC9- DNAse I per 2 µg RNA. For the same amount cpm. of RNA, the reaction also contained 20 U RnaseOUT-Rnase inhibitor and 3 mM Transformation of Pichia pastoris and MgCl2. After incubation, samples were selection of high-level expression colonies heated to 95ºC and immediately chilled on ice for DNAse I denaturation. Reverse trans- The following culture media used for cription was performed using 2 µg total RNA, transformation of P. pastoris, selection of 200 U Moloney murine leukemia virus II recombinant clones, and expression of CPM reverse transcriptase, 5 mM DTT, 50 ng were prepared according to manufacturer random hexamer primers, 1X PCR buffer, recommendations (Invitrogen): minimal dex- 0.5 mM dNTPs, and 3 mM MgCl2. Reac- trose medium (MD), minimal methanol me- tions were carried out at 20ºC for 10 min, dium (MM), buffered glycerol-complex 42ºC for 45 min, 95ºC for 5 min, and 4ºC for medium (BMGY), and buffered minimal 10 min.
Recommended publications
  • Effects of Glycosylation on the Enzymatic Activity and Mechanisms of Proteases
    International Journal of Molecular Sciences Review Effects of Glycosylation on the Enzymatic Activity and Mechanisms of Proteases Peter Goettig Structural Biology Group, Faculty of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria; [email protected]; Tel.: +43-662-8044-7283; Fax: +43-662-8044-7209 Academic Editor: Cheorl-Ho Kim Received: 30 July 2016; Accepted: 10 November 2016; Published: 25 November 2016 Abstract: Posttranslational modifications are an important feature of most proteases in higher organisms, such as the conversion of inactive zymogens into active proteases. To date, little information is available on the role of glycosylation and functional implications for secreted proteases. Besides a stabilizing effect and protection against proteolysis, several proteases show a significant influence of glycosylation on the catalytic activity. Glycans can alter the substrate recognition, the specificity and binding affinity, as well as the turnover rates. However, there is currently no known general pattern, since glycosylation can have both stimulating and inhibiting effects on activity. Thus, a comparative analysis of individual cases with sufficient enzyme kinetic and structural data is a first approach to describe mechanistic principles that govern the effects of glycosylation on the function of proteases. The understanding of glycan functions becomes highly significant in proteomic and glycomic studies, which demonstrated that cancer-associated proteases, such as kallikrein-related peptidase 3, exhibit strongly altered glycosylation patterns in pathological cases. Such findings can contribute to a variety of future biomedical applications. Keywords: secreted protease; sequon; N-glycosylation; O-glycosylation; core glycan; enzyme kinetics; substrate recognition; flexible loops; Michaelis constant; turnover number 1.
    [Show full text]
  • Mouse Carboxypeptidase M / CPM Protein (His Tag)
    Mouse Carboxypeptidase M / CPM Protein (His Tag) Catalog Number: 50990-M08H General Information SDS-PAGE: Gene Name Synonym: 1110060I01Rik; 5730456K23Rik; AA589379; E030045M14Rik Protein Construction: A DNA sequence encoding the extracellular domain of mouse CPM isoform 1 (Q80V42-1) (Met 1-His 422), without the propeptide, was fused with a C- terminal polyhistidine tag. Source: Mouse Expression Host: HEK293 Cells QC Testing Purity: > 97 % as determined by SDS-PAGE Bio Activity: Protein Description Measured by its ability to release Larginine from BenzoylAlaArg, with Carboxypeptidase M, also known as CPM, is a membrane-bound detection of the arginine amino group by ophthaldialdehyde. The arginine/lysine carboxypeptidase which is a member of the specific activity is >40,000 pmoles/min/μg. carboxypeptidases family. These enzymes remove C-terminal amino acids from peptides and proteins and exert roles in the physiological processes Endotoxin: of blood coagulation/fibrinolysis, inflammation, food digestion and pro- hormone and neuropeptide processing. Among the carboxypeptidases < 1.0 EU per μg of the protein as determined by the LAL method CPM is of particular importance because of its constitutive expression in an active form at the surface of specialized cells and tissues in the human Stability: body. CPM in the brain appears to be membrane-bound via a Samples are stable for up to twelve months from date of receipt at -70 ℃ phosphatidylinositol glycan anchor. CPM is widely distributed in a variety of tissues and cells. The amino acid sequence of CPM indicated that the C- Predicted N terminal: Leu 18 terminal hydrophobic region might be a signal for membrane attachment via a glycosylphosphatidylinositol (GPI) anchor.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Appendix 2. Significantly Differentially Regulated Genes in Term Compared with Second Trimester Amniotic Fluid Supernatant
    Appendix 2. Significantly Differentially Regulated Genes in Term Compared With Second Trimester Amniotic Fluid Supernatant Fold Change in term vs second trimester Amniotic Affymetrix Duplicate Fluid Probe ID probes Symbol Entrez Gene Name 1019.9 217059_at D MUC7 mucin 7, secreted 424.5 211735_x_at D SFTPC surfactant protein C 416.2 206835_at STATH statherin 363.4 214387_x_at D SFTPC surfactant protein C 295.5 205982_x_at D SFTPC surfactant protein C 288.7 1553454_at RPTN repetin solute carrier family 34 (sodium 251.3 204124_at SLC34A2 phosphate), member 2 238.9 206786_at HTN3 histatin 3 161.5 220191_at GKN1 gastrokine 1 152.7 223678_s_at D SFTPA2 surfactant protein A2 130.9 207430_s_at D MSMB microseminoprotein, beta- 99.0 214199_at SFTPD surfactant protein D major histocompatibility complex, class II, 96.5 210982_s_at D HLA-DRA DR alpha 96.5 221133_s_at D CLDN18 claudin 18 94.4 238222_at GKN2 gastrokine 2 93.7 1557961_s_at D LOC100127983 uncharacterized LOC100127983 93.1 229584_at LRRK2 leucine-rich repeat kinase 2 HOXD cluster antisense RNA 1 (non- 88.6 242042_s_at D HOXD-AS1 protein coding) 86.0 205569_at LAMP3 lysosomal-associated membrane protein 3 85.4 232698_at BPIFB2 BPI fold containing family B, member 2 84.4 205979_at SCGB2A1 secretoglobin, family 2A, member 1 84.3 230469_at RTKN2 rhotekin 2 82.2 204130_at HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 81.9 222242_s_at KLK5 kallikrein-related peptidase 5 77.0 237281_at AKAP14 A kinase (PRKA) anchor protein 14 76.7 1553602_at MUCL1 mucin-like 1 76.3 216359_at D MUC7 mucin 7,
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110747 A1 Ramseier Et Al
    US 200601 10747A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110747 A1 Ramseier et al. (43) Pub. Date: May 25, 2006 (54) PROCESS FOR IMPROVED PROTEIN (60) Provisional application No. 60/591489, filed on Jul. EXPRESSION BY STRAIN ENGINEERING 26, 2004. (75) Inventors: Thomas M. Ramseier, Poway, CA Publication Classification (US); Hongfan Jin, San Diego, CA (51) Int. Cl. (US); Charles H. Squires, Poway, CA CI2O I/68 (2006.01) (US) GOIN 33/53 (2006.01) CI2N 15/74 (2006.01) Correspondence Address: (52) U.S. Cl. ................................ 435/6: 435/7.1; 435/471 KING & SPALDING LLP 118O PEACHTREE STREET (57) ABSTRACT ATLANTA, GA 30309 (US) This invention is a process for improving the production levels of recombinant proteins or peptides or improving the (73) Assignee: Dow Global Technologies Inc., Midland, level of active recombinant proteins or peptides expressed in MI (US) host cells. The invention is a process of comparing two genetic profiles of a cell that expresses a recombinant (21) Appl. No.: 11/189,375 protein and modifying the cell to change the expression of a gene product that is upregulated in response to the recom (22) Filed: Jul. 26, 2005 binant protein expression. The process can improve protein production or can improve protein quality, for example, by Related U.S. Application Data increasing solubility of a recombinant protein. Patent Application Publication May 25, 2006 Sheet 1 of 15 US 2006/0110747 A1 Figure 1 09 010909070£020\,0 10°0 Patent Application Publication May 25, 2006 Sheet 2 of 15 US 2006/0110747 A1 Figure 2 Ester sers Custer || || || || || HH-I-H 1 H4 s a cisiers TT closers | | | | | | Ya S T RXFO 1961.
    [Show full text]
  • Substrate Specificity and Structural Modeling of Human
    International Journal of Molecular Sciences Article Substrate Specificity and Structural Modeling of Human Carboxypeptidase Z: A Unique Protease with a Frizzled-Like Domain Javier Garcia-Pardo 1 , Sebastian Tanco 1,2 , Maria C. Garcia-Guerrero 1, Sayani Dasgupta 3, Francesc Xavier Avilés 1 , Julia Lorenzo 1,* and Lloyd D. Fricker 3,* 1 Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; [email protected] (J.G.-P.); [email protected] (S.T.); [email protected] (M.C.G.-G.); [email protected] (F.X.A.) 2 BiosenSource BV, B-1800 Vilvoorde, Belgium 3 Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; [email protected] * Correspondence: [email protected] (J.L.); [email protected] (L.D.F.); Tel.: +34-93-5868936 (J.L.); +1-718-430-4225 (L.D.F.) Received: 24 October 2020; Accepted: 14 November 2020; Published: 18 November 2020 Abstract: Metallocarboxypeptidase Z (CPZ) is a secreted enzyme that is distinguished from all other members of the M14 metallocarboxypeptidase family by the presence of an N-terminal cysteine-rich Frizzled-like (Fz) domain that binds Wnt proteins. Here, we present a comprehensive analysis of the enzymatic properties and substrate specificity of human CPZ. To investigate the enzymatic properties, we employed dansylated peptide substrates. For substrate specificity profiling, we generated two different large peptide libraries and employed isotopic labeling and quantitative mass spectrometry to study the substrate preference of this enzyme. Our findings revealed that CPZ has a strict requirement for substrates with C-terminal Arg or Lys at the P10 position.
    [Show full text]
  • Transdifferentiation of Human Mesenchymal Stem Cells
    Transdifferentiation of Human Mesenchymal Stem Cells Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg vorgelegt von Tatjana Schilling aus San Miguel de Tucuman, Argentinien Würzburg, 2007 Eingereicht am: Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Martin J. Müller Gutachter: PD Dr. Norbert Schütze Gutachter: Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am: Hiermit erkläre ich ehrenwörtlich, dass ich die vorliegende Dissertation selbstständig angefertigt und keine anderen als die von mir angegebenen Hilfsmittel und Quellen verwendet habe. Des Weiteren erkläre ich, dass diese Arbeit weder in gleicher noch in ähnlicher Form in einem Prüfungsverfahren vorgelegen hat und ich noch keinen Promotionsversuch unternommen habe. Gerbrunn, 4. Mai 2007 Tatjana Schilling Table of contents i Table of contents 1 Summary ........................................................................................................................ 1 1.1 Summary.................................................................................................................... 1 1.2 Zusammenfassung..................................................................................................... 2 2 Introduction.................................................................................................................... 4 2.1 Osteoporosis and the fatty degeneration of the bone marrow..................................... 4 2.2 Adipose and bone
    [Show full text]
  • Supplemental Table 1A. Differential Gene Expression Profile of Adehcd40l and Adehnull Treated Cells Vs Untreated Cells
    Supplemental Table 1a. Differential Gene Expression Profile of AdEHCD40L and AdEHNull treated cells vs Untreated Cells Fold change Regulation Fold change Regulation ([AdEHCD40L] vs ([AdEHCD40L] ([AdEHNull] vs ([AdEHNull] vs Probe Set ID [Untreated]) vs [Untreated]) [Untreated]) [Untreated]) Gene Symbol Gene Title RefSeq Transcript ID NM_001039468 /// NM_001039469 /// NM_004954 /// 203942_s_at 2.02 down 1.00 down MARK2 MAP/microtubule affinity-regulating kinase 2 NM_017490 217985_s_at 2.09 down 1.00 down BAZ1A fibroblastbromodomain growth adjacent factor receptorto zinc finger 2 (bacteria-expressed domain, 1A kinase, keratinocyte NM_013448 /// NM_182648 growth factor receptor, craniofacial dysostosis 1, Crouzon syndrome, Pfeiffer 203638_s_at 2.10 down 1.01 down FGFR2 syndrome, Jackson-Weiss syndrome) NM_000141 /// NM_022970 1570445_a_at 2.07 down 1.01 down LOC643201 hypothetical protein LOC643201 XM_001716444 /// XM_001717933 /// XM_932161 231763_at 3.05 down 1.02 down POLR3A polymerase (RNA) III (DNA directed) polypeptide A, 155kDa NM_007055 1555368_x_at 2.08 down 1.04 down ZNF479 zinc finger protein 479 NM_033273 /// XM_001714591 /// XM_001719979 241627_x_at 2.15 down 1.05 down FLJ10357 hypothetical protein FLJ10357 NM_018071 223208_at 2.17 down 1.06 down KCTD10 potassium channel tetramerisation domain containing 10 NM_031954 219923_at 2.09 down 1.07 down TRIM45 tripartite motif-containing 45 NM_025188 242772_x_at 2.03 down 1.07 down Transcribed locus 233019_at 2.19 down 1.08 down CNOT7 CCR4-NOT transcription complex, subunit 7 NM_013354
    [Show full text]
  • A Genomic Analysis of Rat Proteases and Protease Inhibitors
    A genomic analysis of rat proteases and protease inhibitors Xose S. Puente and Carlos López-Otín Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006-Oviedo, Spain Send correspondence to: Carlos López-Otín Departamento de Bioquímica y Biología Molecular Facultad de Medicina, Universidad de Oviedo 33006 Oviedo-SPAIN Tel. 34-985-104201; Fax: 34-985-103564 E-mail: [email protected] Proteases perform fundamental roles in multiple biological processes and are associated with a growing number of pathological conditions that involve abnormal or deficient functions of these enzymes. The availability of the rat genome sequence has opened the possibility to perform a global analysis of the complete protease repertoire or degradome of this model organism. The rat degradome consists of at least 626 proteases and homologs, which are distributed into five catalytic classes: 24 aspartic, 160 cysteine, 192 metallo, 221 serine, and 29 threonine proteases. Overall, this distribution is similar to that of the mouse degradome, but significatively more complex than that corresponding to the human degradome composed of 561 proteases and homologs. This increased complexity of the rat protease complement mainly derives from the expansion of several gene families including placental cathepsins, testases, kallikreins and hematopoietic serine proteases, involved in reproductive or immunological functions. These protease families have also evolved differently in the rat and mouse genomes and may contribute to explain some functional differences between these two closely related species. Likewise, genomic analysis of rat protease inhibitors has shown some differences with the mouse protease inhibitor complement and the marked expansion of families of cysteine and serine protease inhibitors in rat and mouse with respect to human.
    [Show full text]
  • Probe Set Name Symbol 1598 G at Growth Arres
    Supplementary Table 2. List of stroma related genes (i.e. probe sets overexpressed in core relative to FNA biopsies of the same cancer) Probe set Name Symbol 1598_g_at growth arrest-specific 6 GAS6 200048_s_at jumping translocation breakpoint JTB 200054_at zinc finger protein 259 ZNF259 200055_at TAF10 RNA polymerase II, TATA box binding protein (TBP)-associatedTAF10 factor, 30kDa 200059_s_at ras homolog gene family, member A RHOA 200060_s_at RNA binding protein S1, serine-rich domain RNPS1 200070_at chromosome 2 open reading frame 24 C2orf24 200613_at adaptor-related protein complex 2, mu 1 subunit AP2M1 200663_at CD63 molecule CD63 200665_s_at secreted protein, acidic, cysteine-rich (osteonectin) SPARC 200671_s_at spectrin, beta, non-erythrocytic 1 SPTBN1 200696_s_at gelsolin (amyloidosis, Finnish type) GSN 200704_at lipopolysaccharide-induced TNF factor LITAF 200738_s_at phosphoglycerate kinase 1 PGK1 200760_s_at ADP-ribosylation-like factor 6 interacting protein 5 ARL6IP5 200762_at dihydropyrimidinase-like 2 DPYSL2 200770_s_at laminin, gamma 1 (formerly LAMB2) LAMC1 200771_at laminin, gamma 1 (formerly LAMB2) LAMC1 200772_x_at prothymosin, alpha PTMA 200778_s_at septin 2 2-Sep 200782_at annexin A5 ANXA5 200784_s_at low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)LRP1 200785_s_at low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)LRP1 200795_at SPARC-like 1 (hevin) SPARCL1 200799_at heat shock 70kDa protein 1A HSPA1A 200807_s_at heat shock 60kDa protein 1 (chaperonin) HSPD1 200811_at
    [Show full text]
  • Supplementary Table 3. Genes Specifically Regulated by Zol (Non-Significant for Fluva)
    Supplementary Table 3. Genes specifically regulated by Zol (non-significant for Fluva). log2 Genes Probe Genes Symbol Genes Title Zol100 vs Zol vs Set ID Control (24h) Control (48h) 8065412 CST1 cystatin SN 2,168 1,772 7928308 DDIT4 DNA-damage-inducible transcript 4 2,066 0,349 8154100 VLDLR very low density lipoprotein 1,99 0,413 receptor 8149749 TNFRSF10D tumor necrosis factor receptor 1,973 0,659 superfamily, member 10d, decoy with truncated death domain 8006531 SLFN5 schlafen family member 5 1,692 0,183 8147145 ATP6V0D2 ATPase, H+ transporting, lysosomal 1,689 0,71 38kDa, V0 subunit d2 8013660 ALDOC aldolase C, fructose-bisphosphate 1,649 0,871 8140967 SAMD9 sterile alpha motif domain 1,611 0,66 containing 9 8113709 LOX lysyl oxidase 1,566 0,524 7934278 P4HA1 prolyl 4-hydroxylase, alpha 1,527 0,428 polypeptide I 8027002 GDF15 growth differentiation factor 15 1,415 0,201 7961175 KLRC3 killer cell lectin-like receptor 1,403 1,038 subfamily C, member 3 8081288 TMEM45A transmembrane protein 45A 1,342 0,401 8012126 CLDN7 claudin 7 1,339 0,415 7993588 TMC7 transmembrane channel-like 7 1,318 0,3 8073088 APOBEC3G apolipoprotein B mRNA editing 1,302 0,174 enzyme, catalytic polypeptide-like 3G 8046408 PDK1 pyruvate dehydrogenase kinase, 1,287 0,382 isozyme 1 8161174 GNE glucosamine (UDP-N-acetyl)-2- 1,283 0,562 epimerase/N-acetylmannosamine kinase 7937079 BNIP3 BCL2/adenovirus E1B 19kDa 1,278 0,5 interacting protein 3 8043283 KDM3A lysine (K)-specific demethylase 3A 1,274 0,453 7923991 PLXNA2 plexin A2 1,252 0,481 8163618 TNFSF15 tumor necrosis
    [Show full text]