146 Subpart B—PC/UMS Net Tonnage Measurement

Total Page:16

File Type:pdf, Size:1020Kb

146 Subpart B—PC/UMS Net Tonnage Measurement § 135.4 35 CFR Ch. I (7±1±97 Edition) documentation may result in the Com- line of the flat of the bottom continued mission's developing a figure that ac- inwards cuts the side of the keel. curately reflects the vessel's volume. (2) In ships having rounded gunwales, the moulded depth shall be measured (Approved by Office of Management and Budget (OMB) under control number 3207± to the point of intersection of the 0001) moulded lines of the deck and side shell plating, the lines extending as [59 FR 43255, Aug. 22, 1994, as amended at 61 though the gunwales were of angular FR 60612, Nov. 29, 1996] design. § 135.4 Administration and interpreta- (3) Where the upper deck is stepped tion of rules. and the raised part of the deck extends over the point at which the moulded The rules of measurement provided depth is to be determined, the moulded in this part shall be administered and depth shall be measured to a line of ref- interpreted by the Administrator of erence extending from the lower part of the Panama Canal Commission. the deck along a line parallel with the raised part. Subpart BÐPC/UMS Net Tonnage (c) Breadth or moulded breadth means Measurement the maximum breadth of the ship, measured amidships to the moulded § 135.11 Tonnage. line of the frame in a ship with a metal (a) The tonnage of a ship shall con- shell and to the outer surface of the sist of PC/UMS Net Tonnage. hull in a ship with a shell of any other (b) The net tonnage shall be deter- material. mined in accordance with the provi- (d) Enclosed spaces mean all spaces sions of the regulations in this subpart. which are bounded by the ship's hull, (c) The net tonnage of novel types of by fixed or portable partitions or bulk- craft whose constructional features are heads, by decks or coverings other than such as to render the application of the permanent or movable awnings. No provisions of the regulations in this break in a deck, nor any opening in the subpart unreasonable or impracticable ship's hull, in a deck or in a covering of shall be determined in a manner which a space, or in the partitions or bulk- is acceptable to the Panama Canal heads of a space, nor the absence of a Commission. partition or bulkhead, shall preclude a space from being included in the en- § 135.12 Definitions. closed space. (a) Upper Deck means the uppermost (e) Excluded spaces mean, notwith- complete deck exposed to weather and standing the provisions of paragraph sea, which has permanent means of (d) of this section, the spaces referred weathertight closing of all openings in to in paragraphs (e)(1) to (e)(5) of this the weather part thereof, and below section. Excluded spaces shall not be which all openings in the sides of the included in the volume of enclosed ship are fitted with permanent means spaces, except that any such space of watertight closing. In a ship having which fulfills at least one of the follow- a stepped upper deck, the lowest line of ing three conditions shall be treated as the exposed deck and the continuation an enclosed space: of that line parallel to the upper part ÐThe space is fitted with shelves or other of the deck is taken as the upper deck. means for securing cargo or stores; (b) Moulded Depth means the vertical ÐThe openings are fitted with any means of distance measured from the top of the closure; or keel to the underside of the upper deck ÐThe construction provides any possibility at side. of such openings being closed. (1) In wood and composite ships the (1)(i) A space within an erection op- distance is measured from the lower posite an end opening extending from edge of the keel rabbet. Where the form deck to deck except for a curtain plate at the lower part of the midship sec- of a depth not exceeding by more than tion is of a hollow character, or where 25 millimeters (one inch) the depth of thick garboards are fitted, the distance the adjoining deck beams, such opening is measured from the point where the having a breadth equal to or greater 146 VerDate 06-NOV-97 13:12 Nov 06, 1997 Jkt 174126 PO 00000 Frm 00146 Fmt 8010 Sfmt 8010 Y:\OLD_ECFR\174126.044 174126 Panama Canal Regulations § 135.12 than 90 percent of the breadth of the In the figure: deck at the line of the opening of the O = excluded space space. This provision shall be applied C = enclosed space so as to exclude from the enclosed I = space to be considered as an enclosed spaces only the space between the ac- space Hatched-in parts to be included as enclosed tual end opening and a line drawn par- spaces. allel to the line or face of the opening B = breadth of the deck in way of the open- at a distance from the opening equal to ing. one-half of the width of the deck at the In ships with rounded gunwales the line of the opening (Figure 1). breadth is measured as indicated in Figure 11 in paragraph (e)(5). 147 VerDate 06-NOV-97 13:12 Nov 06, 1997 Jkt 174126 PO 00000 Frm 00147 Fmt 8010 Sfmt 8010 Y:\OLD_ECFR\174126.044 174126 § 135.12 35 CFR Ch. I (7±1±97 Edition) (ii) Should the width of the space be- In the figures: cause of any arrangement except by O = excluded space convergence of the outside plating, be- C = enclosed space come less than 90 percent of the I = space to be considered as an enclosed breadth of the deck, only the space be- space tween the line of the opening and a Hatched-in parts to be included as enclosed parallel line drawn through the point spaces. where the athwartships width of the B = breadth of the deck in way of the open- space becomes equal to, or less than, 90 ing. percent of the breadth of the deck shall In ships with rounded gunwales the be excluded from the volume of en- breadth is measured as indicated in Figure 11 closed spaces. (Figures 2, 3 and 4). in paragraph (e)(5). 148 VerDate 06-NOV-97 13:12 Nov 06, 1997 Jkt 174126 PO 00000 Frm 00148 Fmt 8010 Sfmt 8010 Y:\OLD_ECFR\174126.044 174126 Panama Canal Regulations § 135.12 149 VerDate 06-NOV-97 13:12 Nov 06, 1997 Jkt 174126 PO 00000 Frm 00149 Fmt 8010 Sfmt 8006 Y:\OLD_ECFR\174126.044 174126 § 135.12 35 CFR Ch. I (7±1±97 Edition) (iii) Where an interval which is com- In the figures: pletely open except for bulwarks or O = excluded space open rails separates any two spaces, C = enclosed space the exclusion of one or both of which is I = space to be considered as an enclosed permitted under paragraphs (e)(1)(i) space and/or (e)(1)(ii) of this section, such ex- Hatched-in parts to be included as enclosed spaces. clusion shall not apply if the separa- B = breadth of the deck in way of the open- tion between the two spaces is less ing. than the least half breadth of the deck In ships with rounded gunwales the in way of the separation. (Figures 5 and breadth is measured as indicated in Figure 11 6). in paragraph (e)(5). 150 VerDate 06-NOV-97 13:12 Nov 06, 1997 Jkt 174126 PO 00000 Frm 00150 Fmt 8010 Sfmt 8010 Y:\OLD_ECFR\174126.044 174126 Panama Canal Regulations § 135.12 151 VerDate 06-NOV-97 13:12 Nov 06, 1997 Jkt 174126 PO 00000 Frm 00151 Fmt 8010 Sfmt 8006 Y:\OLD_ECFR\174126.044 174126 § 135.12 35 CFR Ch. I (7±1±97 Edition) (2) A space under an overhead deck side, provided that the distance be- covering open to the sea and weather, tween the top of the rails or the bul- having no other connection on the ex- wark and the curtain plate is not less posed sides with the body of the ship than 0.75 meters (2.5 feet) or one-third than the stanchions necessary for its of the height of the space, whichever is support. In such a space, open rails or the greater. (Figure 7). a bulwark and curtain plate may be fitted or stanchions fitted at the ship's (3) A space in a side-to-side erection In the figures: directly in way of opposite side open- O = excluded space ings not less in height than 0.75 meters C = enclosed space (2.5 feet) or one-third of the height of I = space to be considered as an enclosed the erection, whichever is the greater. space If the opening in such an erection is Hatched-in parts to be included as enclosed provided on one side only, the space to spaces. be excluded from the volume of en- B = breadth of the deck in way of the open- closed spaces shall be limited inboard ing. from the opening to a maximum of one- In ships with rounded gunwales the half of the breadth of the deck in way breadth is measured as indicated in Figure 11 of the opening. (Figure 8). in paragraph (e)(5). 152 VerDate 06-NOV-97 13:12 Nov 06, 1997 Jkt 174126 PO 00000 Frm 00152 Fmt 8010 Sfmt 8010 Y:\OLD_ECFR\174126.044 174126 Panama Canal Regulations § 135.12 (4) A space in an erection imme- and the space excluded from enclosed diately below an uncovered opening in spaces is limited to the area of the the deck overhead, provided that such opening.
Recommended publications
  • Eskola Juho Makinen Jarno.Pdf (1.217Mt)
    Juho Eskola Jarno Mäkinen MERENKULKIJA Merenkulun koulutusohjelma Merikapteenin suuntautumisvaihtoehto 2014 MERENKULKIJA Eskola, Juho Mäkinen, Jarno Satakunnan ammattikorkeakoulu Merenkulun koulutusohjelma Merikapteenin suuntautumisvaihtoehto Toukokuu 2014 Ohjaaja: Teränen, Jarmo Sivumäärä: 126 Liitteitä: 3 Asiasanat: historia, komentosilta, slangi ja englanti, lastinkäsittely ja laivateoria, Meriteidensäännöt ja sopimukset, yleistä merenkulusta. ____________________________________________________________________ Opinnäytetyömme aiheena oli luoda merenkulun tietopeli, joka sai myöhemmin nimekseen Merenkulkija. Työmme sisältää 1200 sanallista kysymystä, ja 78 kuvakysymystä. Kysymysten lisäksi teimme pelille ohjeet ja pelilaudan, jotta Merenkulkija olisi mahdollisimman valmis ja ymmärrettävä pelattavaksi. Pelin sanalliset kysymykset on jaettu kuuteen aihealueeseen. Aihealueita ovat: historia, komentosilta, slangi ja englanti, lastinkäsittely ja laivateoria, meriteidensäännöit, lait ja sopimukset ja viimeisenä yleistä merenkulusta. Kuvakysymykset ovat sekalaisia. Merenkulkija- tietopeli on suunnattu merenkulun opiskelijoille, tarkemmin kansipuolen päällystöopiskelijoille. Toki kokeneemmillekin merenkulkijoille peli tarjoaa varmasti uutta tietoa ja palauttaa jo unohdettuja asioita mieleen. Merenkulkija- tietopeli soveltuu oppitunneille opetuskäyttöön, ja vapaa-ajan viihdepeliksi. MARINER Eskola, Juho Mäkinen, Jarno Satakunnan ammattikorkeakoulu, Satakunta University of Applied Sciences Degree Programme in maritime management May 2014 Supervisor:
    [Show full text]
  • Malacca-Max the Ul Timate Container Carrier
    MALACCA-MAX THE UL TIMATE CONTAINER CARRIER Design innovation in container shipping 2443 625 8 Bibliotheek TU Delft . IIIII I IIII III III II II III 1111 I I11111 C 0003815611 DELFT MARINE TECHNOLOGY SERIES 1 . Analysis of the Containership Charter Market 1983-1992 2 . Innovation in Forest Products Shipping 3. Innovation in Shortsea Shipping: Self-Ioading and Unloading Ship systems 4. Nederlandse Maritieme Sektor: Economische Structuur en Betekenis 5. Innovation in Chemical Shipping: Port and Slops Management 6. Multimodal Shortsea shipping 7. De Toekomst van de Nederlandse Zeevaartsector: Economische Impact Studie (EIS) en Beleidsanalyse 8. Innovatie in de Containerbinnenvaart: Geautomatiseerd Overslagsysteem 9. Analysis of the Panamax bulk Carrier Charter Market 1989-1994: In relation to the Design Characteristics 10. Analysis of the Competitive Position of Short Sea Shipping: Development of Policy Measures 11. Design Innovation in Shipping 12. Shipping 13. Shipping Industry Structure 14. Malacca-max: The Ultimate Container Carrier For more information about these publications, see : http://www-mt.wbmt.tudelft.nl/rederijkunde/index.htm MALACCA-MAX THE ULTIMATE CONTAINER CARRIER Niko Wijnolst Marco Scholtens Frans Waals DELFT UNIVERSITY PRESS 1999 Published and distributed by: Delft University Press P.O. Box 98 2600 MG Delft The Netherlands Tel: +31-15-2783254 Fax: +31-15-2781661 E-mail: [email protected] CIP-DATA KONINKLIJKE BIBLIOTHEEK, Tp1X Niko Wijnolst, Marco Scholtens, Frans Waals Shipping Industry Structure/Wijnolst, N.; Scholtens, M; Waals, F.A .J . Delft: Delft University Press. - 111. Lit. ISBN 90-407-1947-0 NUGI834 Keywords: Container ship, Design innovation, Suez Canal Copyright <tl 1999 by N. Wijnolst, M .
    [Show full text]
  • International Convention on Tonnage Measurement of Ships, 1969
    No. 21264 MULTILATERAL International Convention on tonnage measurement of ships, 1969 (with annexes, official translations of the Convention in the Russian and Spanish languages and Final Act of the Conference). Concluded at London on 23 June 1969 Authentic texts: English and French. Authentic texts of the Final Act: English, French, Russian and Spanish. Registered by the International Maritime Organization on 28 September 1982. MULTILAT RAL Convention internationale de 1969 sur le jaugeage des navires (avec annexes, traductions officielles de la Convention en russe et en espagnol et Acte final de la Conf rence). Conclue Londres le 23 juin 1969 Textes authentiques : anglais et fran ais. Textes authentiques de l©Acte final: anglais, fran ais, russe et espagnol. Enregistr e par l©Organisation maritime internationale le 28 septembre 1982. Vol. 1291, 1-21264 4_____ United Nations — Treaty Series Nations Unies — Recueil des TVait s 1982 INTERNATIONAL CONVENTION © ON TONNAGE MEASURE MENT OF SHIPS, 1969 The Contracting Governments, Desiring to establish uniform principles and rules with respect to the determination of tonnage of ships engaged on international voyages; Considering that this end may best be achieved by the conclusion of a Convention; Have agreed as follows: Article 1. GENERAL OBLIGATION UNDER THE CONVENTION The Contracting Governments undertake to give effect to the provisions of the present Convention and the annexes hereto which shall constitute an integral part of the present Convention. Every reference to the present Convention constitutes at the same time a reference to the annexes. Article 2. DEFINITIONS For the purpose of the present Convention, unless expressly provided otherwise: (1) "Regulations" means the Regulations annexed to the present Convention; (2) "Administration" means the Government of the State whose flag the ship is flying; (3) "International voyage" means a sea voyage from a country to which the present Convention applies to a port outside such country, or conversely.
    [Show full text]
  • International Convention on Tonnage Measurement of Ships, 1969
    Page 1 of 47 Lloyd’s Register Rulefinder 2005 – Version 9.4 Tonnage - International Convention on Tonnage Measurement of Ships, 1969 Tonnage - International Convention on Tonnage Measurement of Ships, 1969 Copyright 2005 Lloyd's Register or International Maritime Organization. All rights reserved. Lloyd's Register, its affiliates and subsidiaries and their respective officers, employees or agents are, individually and collectively, referred to in this clause as the 'Lloyd's Register Group'. The Lloyd's Register Group assumes no responsibility and shall not be liable to any person for any loss, damage or expense caused by reliance on the information or advice in this document or howsoever provided, unless that person has signed a contract with the relevant Lloyd's Register Group entity for the provision of this information or advice and in that case any responsibility or liability is exclusively on the terms and conditions set out in that contract. file://C:\Documents and Settings\M.Ventura\Local Settings\Temp\~hh4CFD.htm 2009-09-22 Page 2 of 47 Lloyd’s Register Rulefinder 2005 – Version 9.4 Tonnage - International Convention on Tonnage Measurement of Ships, 1969 - Articles of the International Convention on Tonnage Measurement of Ships Articles of the International Convention on Tonnage Measurement of Ships Copyright 2005 Lloyd's Register or International Maritime Organization. All rights reserved. Lloyd's Register, its affiliates and subsidiaries and their respective officers, employees or agents are, individually and collectively, referred to in this clause as the 'Lloyd's Register Group'. The Lloyd's Register Group assumes no responsibility and shall not be liable to any person for any loss, damage or expense caused by reliance on the information or advice in this document or howsoever provided, unless that person has signed a contract with the relevant Lloyd's Register Group entity for the provision of this information or advice and in that case any responsibility or liability is exclusively on the terms and conditions set out in that contract.
    [Show full text]
  • SIMPLIFIED MEASUREMENT TONNAGE FORMULAS (46 CFR SUBPART E) Prepared by U.S
    SIMPLIFIED MEASUREMENT TONNAGE FORMULAS (46 CFR SUBPART E) Prepared by U.S. Coast Guard Marine Safety Center, Washington, DC Phone (202) 366-6441 GROSS TONNAGE NET TONNAGE SAILING HULLS D GROSS = 0.5 LBD SAILING HULLS 100 (PROPELLING MACHINERY IN HULL) NET = 0.9 GROSS SAILING HULLS (KEEL INCLUDED IN D) D GROSS = 0.375 LBD SAILING HULLS 100 (NO PROPELLING MACHINERY IN HULL) NET = GROSS SHIP-SHAPED AND SHIP-SHAPED, PONTOON AND CYLINDRICAL HULLS D D BARGE HULLS GROSS = 0.67 LBD (PROPELLING MACHINERY IN 100 HULL) NET = 0.8 GROSS BARGE-SHAPED HULLS SHIP-SHAPED, PONTOON AND D GROSS = 0.84 LBD BARGE HULLS 100 (NO PROPELLING MACHINERY IN HULL) NET = GROSS 1. DIMENSIONS. The dimensions, L, B and D, are the length, breadth and depth, respectively, of the hull measured in feet to the nearest tenth of a foot. See the conversion table on the back of this form for converting inches to tenths of a foot. LENGTH (L) is the horizontal distance between the outboard side of the foremost part of the stem and the outboard side of the aftermost part of the stern, excluding rudders, outboard motor brackets, and other similar fittings and attachments. BREADTH (B) is the horizontal distance taken at the widest part of the hull, excluding rub rails and deck caps, from the outboard side of the skin (outside planking or plating) on one side of the hull, to the outboard side of the skin on the other side of the hull. DEPTH (D) is the vertical distance taken at or near amidships from a line drawn horizontally through the uppermost edges of the skin (outside planking or plating) at the sides of the hull (excluding the cap rail, trunks, cabins, deck caps, and deckhouses) to the outboard face of the bottom skin of the hull, excluding the keel.
    [Show full text]
  • Measurement of Fishing
    35 Rapp. P.-v. Réun. Cons. int. Explor. Mer, 168: 35-38. Janvier 1975. TONNAGE CERTIFICATE DATA AS FISHING POWER PARAMETERS F. d e B e e r Netherlands Institute for Fishery Investigations, IJmuiden, Netherlands INTRODUCTION London, June 1969 — An entirely new system of The international exchange of information about measuring the gross and net fishing vessels and the increasing scientific approach tonnage was set up called the to fisheries in general requires the use of a number of “International Convention on parameters of which there is a great variety especially Tonnage Measurement of in the field of main dimensions, coefficients, propulsion Ships, 1969” .1 data (horse power, propeller, etc.) and other partic­ ulars of fishing vessels. This variety is very often caused Every ship which has been measured and marked by different historical developments in different in accordance with the Convention concluded in Oslo, countries. 1947, is issued with a tonnage certificate called the The tonnage certificate is often used as an easy and “International Tonnage Certificate”. The tonnage of official source for parameters. However, though this a vessel consists of its gross tonnage and net tonnage. certificate is an official one and is based on Inter­ In this paper only the gross tonnage is discussed national Conventions its value for scientific purposes because net tonnage is not often used as a parameter. is questionable. The gross tonnage of a vessel, expressed in cubic meters and register tons (of 2-83 m3), is defined as the sum of all the enclosed spaces. INTERNATIONAL REGULATIONS ON TONNAGE These are: MEASUREMENT space below tonnage deck trunks International procedures for measuring the tonnage tweendeck space round houses of ships were laid down as follows : enclosed forecastle excess of hatchways bridge spaces spaces above the upper- Geneva, June 1939 - International regulations for break(s) deck included as part of tonnage measurement of ships poop the propelling machinery were issued through the League space.
    [Show full text]
  • Maritime Transport Over Danish Ports 2015 Quarter 4
    Documentation of statistics for Maritime Transport over Danish Ports 2015 Quarter 4 Statistics Denmark Sejrøgade 11 DK 2100 København Ø 1 / 11 1 Introduction The purpose of statistics on maritime transport over Danish ports is to describe the volume of and the development in ship traffic to and from Danish ports. The statistics have been compiled in the present form since 1997. Maritime statistics have been produced since 1834 and published annually from about 1900. In the period from 1991 to 1996, Statistics Denmark compiled only summary statistics on the throughput of ports. 2 Statistical presentation The most important variables used in the statistics are: Calls at port, type of ship, size of ship, flag state, port of loading/unloading, weight of goods and type of goods and passengers. The statistics are based on two separate data collections: Maritime traffic on larger Danish ports (quarterly) and Maritime traffic on minor Danish ports (annually). It is supplemented with information on goods on ferries from the data collection on Ferries and Passenger ships (quarterly). 2.1 Data description The statistics contain information on calls at port, type of ship, size of ship, flag state, port of loading/unloading, weight of goods and type of goods and passengers. The statistics are based on two separate data collections: Maritime traffic on larger Danish ports (quarterly) and Maritime traffic on minor Danish ports (annually). It is supplemented with information on goods on ferries from the data collection on Ferries and Passenger ships (quarterly). The larger ports that handles at least 1 mill. tonnes of goods annually report every single port call with detailed information on the vessel, origin or destination port and type of goods.
    [Show full text]
  • AFRAMAX Tanker Design
    The Society of Naval Architects and Marine Engineers (SNAME) Greek Section – Technical Meeting 15. March 2012, Athens HOLISTIC SHIP DESIGN OPTIMISATION: Theory and Applications by Apostolos Papanikolaou National Technical University of Athens - NTUA Ship Design Laboratory – SDL http://www.naval.ntua.gr/sdl A. Papanikolaou HOLISTIC SHIP DESIGN OPTIMISATION 1 List of contents 1. Introduction to Holistic Ship Design Optimisation • Important Design Optimization Notions • Holistic Optimisation Methodology 2. Optimization of RoPax ships – Case study • Projects ROROPROB (2000-2003) and EPAN-MET4 (2004-2007) 3. Optimisation of High-Speed vessels • Project FLOWMART (2000-2003) 4. Holistic Optimisation of Tanker Ships – Projects SAFEDOR and BEST (2005-2011) • Multi-objective Optimization of Tanker Ships • Case study-reference ship • Alternative configurations • Discussion of results 5. Conclusions- The Way Ahead A. Papanikolaou HOLISTIC SHIP DESIGN OPTIMISATION 2 Important Design Optimization Notions (1) • Holism (from Greek όλος, meaning entire, total)-holistic The properties of a system cannot be determined or explained by looking at its component parts alone; instead of, the system as a whole determines decisively how the part components behave or perform. “The whole is more than the sum of the parts” (Aristotle Metaphysics) • Reductionism-reduction: is sometimes interpreted as the opposite of holism. “A complex system can be approached by reduction to its fundamental parts” • Holism and reductionism need, for proper account of complex systems, to be regarded as complementary approaches to system analysis. • Systemic and analytical approaches are also complementary and strongly related to holism and reductionism • Risk (financial): “A quantifiable likelihood of loss or of less-than-expected returns” • Risk (general): “A quantifiable likelihood of loss of an acceptable state or of a worse-than-expected state condition” • Safety: may be defined as “An acceptable state of risk” A.
    [Show full text]
  • Course Objectives Chapter 2 2. Hull Form and Geometry
    COURSE OBJECTIVES CHAPTER 2 2. HULL FORM AND GEOMETRY 1. Be familiar with ship classifications 2. Explain the difference between aerostatic, hydrostatic, and hydrodynamic support 3. Be familiar with the following types of marine vehicles: displacement ships, catamarans, planing vessels, hydrofoil, hovercraft, SWATH, and submarines 4. Learn Archimedes’ Principle in qualitative and mathematical form 5. Calculate problems using Archimedes’ Principle 6. Read, interpret, and relate the Body Plan, Half-Breadth Plan, and Sheer Plan and identify the lines for each plan 7. Relate the information in a ship's lines plan to a Table of Offsets 8. Be familiar with the following hull form terminology: a. After Perpendicular (AP), Forward Perpendiculars (FP), and midships, b. Length Between Perpendiculars (LPP or LBP) and Length Overall (LOA) c. Keel (K), Depth (D), Draft (T), Mean Draft (Tm), Freeboard and Beam (B) d. Flare, Tumble home and Camber e. Centerline, Baseline and Offset 9. Define and compare the relationship between “centroid” and “center of mass” 10. State the significance and physical location of the center of buoyancy (B) and center of flotation (F); locate these points using LCB, VCB, TCB, TCF, and LCF st 11. Use Simpson’s 1 Rule to calculate the following (given a Table of Offsets): a. Waterplane Area (Awp or WPA) b. Sectional Area (Asect) c. Submerged Volume (∇S) d. Longitudinal Center of Flotation (LCF) 12. Read and use a ship's Curves of Form to find hydrostatic properties and be knowledgeable about each of the properties on the Curves of Form 13. Calculate trim given Taft and Tfwd and understand its physical meaning i 2.1 Introduction to Ships and Naval Engineering Ships are the single most expensive product a nation produces for defense, commerce, research, or nearly any other function.
    [Show full text]
  • The Impact of Mega-Ships
    The Impact of Mega-Ships Case-Specific Policy Analysis The Impact of Mega-Ships Case-Specific Policy Analysis INTERNATIONAL TRANSPORT FORUM The International Transport Forum at the OECD is an intergovernmental organisation with 54 member countries. It acts as a strategic think tank with the objective of helping shape the transport policy agenda on a global level and ensuring that it contributes to economic growth, environmental protection, social inclusion and the preservation of human life and well-being. The International Transport Forum organises an Annual Summit of ministers along with leading representatives from industry, civil society and academia. The International Transport Forum was created under a Declaration issued by the Council of Ministers of the ECMT (European Conference of Ministers of Transport) at its Ministerial Session in May 2006 under the legal authority of the Protocol of the ECMT, signed in Brussels on 17 October 1953, and legal instruments of the OECD. The Members of the Forum are: Albania, Armenia, Australia, Austria, Azerbaijan, Belarus, Belgium, Bosnia and Herzegovina, Bulgaria, Canada, Chile, China (People’s Republic of), Croatia, Czech Republic, Denmark, Estonia, Finland, France, Former Yugoslav Republic of Macedonia, Georgia, Germany, Greece, Hungary, Iceland, India, Ireland, Italy, Japan, Korea, Latvia, Liechtenstein, Lithuania, Luxembourg, Malta, Mexico, Republic of Moldova, Montenegro, Netherlands, New Zealand, Norway, Poland, Portugal, Romania, Russian Federation, Serbia, Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Turkey, Ukraine, United Kingdom and United States. The International Transport Forum’s Research Centre gathers statistics and conducts co-operative research programmes addressing all modes of transport. Its findings are widely disseminated and support policy making in Member countries as well as contributing to the Annual Summit.
    [Show full text]
  • Kristensen and L Tzen IMDC 06 Jan 2012
    Downloaded from orbit.dtu.dk on: Oct 05, 2021 Existing Design Trends for Tankers and Bulk Carriers - Design Changes for Improvement of the EEDI in the Future Kristensen, Hans Otto Holmegaard; Lützen, Marie Publication date: 2012 Link back to DTU Orbit Citation (APA): Kristensen, H. O. H., & Lützen, M. (2012). Existing Design Trends for Tankers and Bulk Carriers - Design Changes for Improvement of the EEDI in the Future. Paper presented at IMDC2012, Galsgow, United Kingdom. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Existing Design Trends for Tankers and Bulk Carriers - Design Changes for Improvement of the EEDI in the Future Hans Otto Holmegaard Kristensen1 and Marie Lützen2 ABSTRACT To get an idea of the reduction in propulsion power and associated emissions by varying the speed and other ship design main parameters, a generic model for parameter studies has been developed. With only a few input parameters of which the maximum deadweight capacity is the primary one, a proposal for the main dimensions and the necessary installed power is calculated by the model.
    [Show full text]
  • Tolls Calculation Guide for Panamax Tanker Vessels Panamax Tanker Toll Structure Remains in PC/UMS Bands
    Tolls Calculation Guide for Panamax Tanker Vessels Panamax Tanker toll structure remains in PC/UMS bands: Tariff for Panama Canal Net Tonnage PC/UMS Total Toll Example #1: Laden Panamax Tanker – 40,000 DWT = 18,490 PC/UMS * laden tariff 10,000 PC/UMS x $5.50 = $55,000.00 8,490 PC/UMS x $5.39 = $45,761.10 $100,761.10 $100,761.10 Multiplying by $5.50 the first 10K PC/UMS tons + Total Toll multiplying by $5.39 the rest PC/UMS tons, results in Total Toll Example #2: Ballast Panamax Tanker 40,000 DWT = 18,490 PC/UMS * ballast tariff 10,000 PC/UMS x $4.55 = $45,500.00 8,490 PC/UMS x $4.39 = $37,271.10 $82,771.10 $82,771.10 Multiplying by $4.55 the first 10K PC/UMS tons + Total Toll Multiplying by $4.39 the rest PC/UMS tons, results in Total Toll For further details about toll structure please refer to: • The Panama Canal Tolls Structure Source: http://www.pancanal.com/peajes/pdf/tolls-proposal-2015.pdf • Tolls tables Source: http://www.pancanal.com/peajes/ApprovedTollsTables-v2.pdf • Toll Calculator Source: https://peajes.panama-canal.com/ppal.aspx Tolls Calculation Guide for Neopanamax Tanker Vessels Neopanamax Tanker toll structure is composed of: Fixed tariff for Panama Canal Net Tonnage Variable tariff for metric tons of (PC/UMS) cargo transported Total tolls Metric Tons (MT) of cargo= Example #1: Laden Aframax Tanker – 100,000 DWT = 46,136 PC/UMS + 60,000 cargo tons * laden tariff 10,000 PC/UMS x $5.58 = $55,800.00 20,000 MT x $0.34 = $6,800.00 10,000 PC/UMS x $5.40 = $54,000.00 20,000 MT x $0.22 = $4,400.00 15,000 PC/UMS x $5.51 = $82,650.00
    [Show full text]