New Constraints on Sterile Neutrino Dark Matter from $ Nustar $ M31
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1908.09037V3 [Astro-Ph.HE] 8 May 2020
NuSTAR tests of sterile-neutrino dark matter: New Galactic bulge observations and combined impact Brandon M. Roach,1, ∗ Kenny C. Y. Ng,2, y Kerstin Perez,1, z John F. Beacom,3, 4, 5, x Shunsaku Horiuchi,6, { Roman Krivonos,7, ∗∗ and Daniel R. Wik8, yy 1Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 2Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot, Israel 3Center for Cosmology and AstroParticle Physics (CCAPP), Ohio State University, Columbus, OH 43210, USA 4Department of Physics, Ohio State University, Columbus, OH 43210, USA 5Department of Astronomy, Ohio State University, Columbus, OH 43210, USA 6Center for Neutrino Physics, Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA 7Space Research Institute of the Russian Academy of Sciences (IKI), Moscow 117997, Russia 8Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA (Dated: Received 4 October 2019; accepted 2 April 2020; published 8 May 2020) We analyze two dedicated NuSTAR observations with exposure ∼190 ks located ∼10◦ from the Galactic plane, one above and the other below, to search for x-ray lines from the radiative decay of sterile-neutrino dark matter. These fields were chosen to minimize astrophysical x-ray backgrounds while remaining near the densest region of the dark matter halo. We find no evidence of anomalous x-ray lines in the energy range 5{20 keV, corresponding to sterile neutrino masses 10{40 keV. Interpreted in the context of sterile neutrinos produced via neutrino mixing, these observations provide the leading constraints in the mass range 10{12 keV, improving upon previous constraints in this range by a factor ∼2. -
Kerstin M. Perez
Kerstin M. Perez Address Massachusetts Institute of Technology Laboratory of Nuclear Science 77 Massachusetts Ave, 26-541 Cambridge, MA 02139 Email [email protected] Phone (617) 324-1522 APPOINTMENTS Assistant Professor of Physics 2016 { present MIT, Cambridge, MA Assistant Professor of Physics 2015 { 2016 Haverford College, Haverford, PA NSF Astronomy & Astrophysics Postdoctoral Fellow 2012 { 2014 Postdoctoral Research Scientist 2011 { 2012 Columbia University, New York, NY EDUCATION California Institute of Technology, Pasadena, CA Ph.D., Physics 2011 Thesis: Inclusive Jet Cross Sections in Proton-Proton Collisions at 7.0 TeV Center-of-Mass Energy with the ATLAS Detector at the Large Hadron Collider Columbia University, New York, NY B.A. in Physics, Minor in Mathematics 2005 AWARDS AND HONORS Cottrell Scholar Award 2019 { 2022 Sloan Research Fellowship 2017 { 2019 MIT School of Science Teaching Prize for Undergraduate Education 2018 MIT Buechner Special Teaching Award 2018 NSF Astronomy and Astrophysics Postdoctoral Fellowship 2012 { 2014 NSF US LHC Graduate Student Support Award 2010 - 2011 Robert A. Millikan Graduate Fellowship 2006 { 2007 GRANTS RCSA Cottrell Scholar Award (PI) 2019 - 2022 Closing in on Sterile Neutrino Dark Matter, ID 25928. Cottrell Scholar Collaborative (Co-I) 2019 - 2021 Establishing a Network for Effective Interventions in STEM Classrooms Heising-Simons Foundation, Fundamental Physics Grant (PI) 2019 - 2020 Fabricating the Si(Li) Tracker Array for the GAPS Experiment, ID 2019-1357. NASA NuSTAR Guest Observer Cycle-5 (PI) 2019 - 2020 A Novel Probe of Low-Mass Axion Dark Matter Using Betelgeuse, Prop. 5057. Heising-Simons Foundation, Fundamental Physics Grant (PI) 2018 - 2021 Construction, flight, and first dark matter results of the GAPS Si system, ID 2018-0766. -
The Higgs Boson and the Cosmology of the Early Universe Mikhail Shaposhnikov Blois 2018
The Higgs Boson and the Cosmology of the Early Universe Mikhail Shaposhnikov Blois 2018 Rencontres de Blois, June 4, 2018 – p. 1 Almost 6 years with the Higgs boson: July 4, 2012, Higgs at ATLAS and CMS 3500 ATLAS Data Sig+Bkg Fit (m =126.5 GeV) 3000 H Bkg (4th order polynomial) 2500 Events / 2 GeV 2000 1500 s=7 TeV, ∫Ldt=4.8fb-1 1000 s=8 TeV, ∫Ldt=5.9fb-1 γγ→ 500 H (a) 200100 110 120 130 140 150 160 100 0 -100 Events - Bkg (b) -200 100 110 120 130 140 150 160 Data S/B Weighted 100 Sig+Bkg Fit (m =126.5 GeV) H Bkg (4th order polynomial) 80 weights / 2 GeV Σ 60 40 20 (c) 8100 110 120 130 140 150 160 4 0 -4 (d) -8 Σ weights - Bkg 100 110 120 130 140 150 160 m γγ [GeV] Rencontres de Blois, June 4, 2018 – p. 2 What did we learn from the Higgs discovery for particle physics? Rencontres de Blois, June 4, 2018 – p. 3 The ideas of the authors of the BEH mechanism were right Rencontres de Blois, June 4, 2018 – p. 4 The Standard Model is now complete Rencontres de Blois, June 4, 2018 – p. 5 126 125 U U U GeV Triumph of the SM in particle physics No significant deviations from the SM have been observed Rencontres de Blois, June 4, 2018 – p. 6 126 125 U U U GeV Triumph of the SM in particle physics No significant deviations from the SM have been observed The masses of the top quark and of the Higgs boson, the Nature has chosen, make the SM a self-consistent effective field theory all the way up to the quantum gravity Planck scale MP . -
The Grand Battle
the grand battle Alexander Kartavtsev 23 July 2013 23 July 2013 Alexander Kartavtsev 1 Angels and demons Outline 1. Experimental observations 2. Theoretical advancements 3. Electroweak baryogenesis 4. Baryogenesis via leptogenesis 5. Current status 6. Summary 23 July 2013 Alexander Kartavtsev 3 Antimatter predicted (1928) … during his postgraduate years he concentrated solely on his research, and stopped only on Sunday, when he took long strolls alone … Paul Dirac 23 July 2013 Alexander Kartavtsev 5 Antimatter discovered (1932) Carl Anderson 23 July 2013 Alexander Kartavtsev 7 Cosmic rays (1936) Homi Bhabha 23 July 2013 Alexander Kartavtsev 8 Cosmic rays contain positrons and antiprotons 23 July 2013 Alexander Kartavtsev 9 Cosmic rays would contain complex antiatoms 23 July 2013 Alexander Kartavtsev 10 23 July 2013 Alexander Kartavtsev 11 CMB (1965) Robert Woodrow Wilson Arno Allan Penzias 23 July 2013 Alexander Kartavtsev 13 Baryon to photon ratio = 6.1x10-10 23 July 2013 Alexander Kartavtsev 14 23 July 2013 Alexander Kartavtsev 15 BBN η = 5.8x10-10 23 July 2013 Alexander Kartavtsev 16 Inflation Alan Guth 23 July 2013 Alexander Kartavtsev 17 Generation of the baryon asymmetry 23 July 2013 Alexander Kartavtsev 18 Sakharov conditions (1967) Violation of baryon number C- and CP-violation Deviation from equilibrium Andrei Sakharov 23 July 2013 Alexander Kartavtsev 19 Standard model (1967) Sheldon Glashow Steven Weinberg Abdus Salam 23 July 2013 Alexander Kartavtsev 20 Baryon number violation ? 23 July 2013 Alexander Kartavtsev 21 Dirac sea 23 July 2013 Alexander Kartavtsev 23 Dirac sea 23 July 2013 Alexander Kartavtsev 24 Sphalerons (1984) Frans Klinkhamer Nick Manton 23 July 2013 Alexander Kartavtsev 26 CP-violation James Cronin Val Fitch 23 July 2013 Alexander Kartavtsev 27 Deviation from equilibrium 23 July 2013 Alexander Kartavtsev 28 First order transition ? 23 July 2013 Alexander Kartavtsev 29 Electroweak baryogenesis (1985) Valery Rubakov Vadim Kuzmin Mikhail Shaposhnikov 23 July 2013 Alexander Kartavtsev 30 B-L = const. -
Scale Invariant Models for BSM Physics and Cosmology Mikhail Shaposhnikov
Scale invariant models for BSM physics and cosmology Mikhail Shaposhnikov SUSY: Model-building and Phenomenology IPMU, 4 December 2013 Tokyo, 4 December 2013 – p. 1 M.S., Daniel Zenhäusern, Phys. Lett. B 671 (2009) 162 M.S., Daniel Zenhäusern, Phys. Lett. B 671 (2009) 187 F. Tkachov, M.S., arXiv:0905.4857 Diego Blas, M.S., Daniel Zenhäusern, Phys. Rev. D84 (2011) 044001 Juan García-Bellido, Javier Rubio, M.S., Daniel Zenhäusern, Phys. Rev. D84 (2011) 123504 F. Bezrukov, M. Kalmykov, B. Kniehl, M.S. JHEP 1210(2012) 140 Juan García-Bellido, Javier Rubio, M.S., Phys. Lett. (2012) F. Bezrukov, G. K. Karananas, J. Rubio and M.S., Phys. Rev. D 87, 096001 (2013) R. Armillis, A. Monin and M.S., JHEP 1310, 030 (2013) A. Monin and M. S., Phys. Rev. D 88, 067701 (2013) Tokyo, 4 December 2013 – p. 2 Outline The proposal in short Diff versus TDiff Field theory: classical scale invariance and its spontaneous breakdown Unimodular gravity Scale invariance, unimodular gravity, cosmological constant, inflation and dark energy Quantum scale invariance Dilaton as a part of the metric in TDiff gravity Conclusions Tokyo, 4 December 2013 – p. 3 An alternative to SUSY, large extra dimensions, technicolor, etc Effective Theory Of Everything Tokyo, 4 December 2013 – p. 4 An alternative to SUSY, large extra dimensions, technicolor, etc Effective Theory Of Everything Tokyo, 4 December 2013 – p. 5 Definitions “Effective”: valid up to the Planck scale, quantum gravity problem is not addressed. No new particles heavier than the Higgs boson. “Everything”: neutrino masses and oscillations dark matter baryon asymmetry of the Universe inflation dark energy Tokyo, 4 December 2013 – p. -
Standard Model Meets Gravity: Electroweak Symmetry Breaking and Inflation
PHYSICAL REVIEW D 103, 033006 (2021) Standard model meets gravity: Electroweak symmetry breaking and inflation † ‡ Mikhail Shaposhnikov ,* Andrey Shkerin , and Sebastian Zell Institute of Physics, Laboratory for Particle Physics and Cosmology, École Polytechnique F´ed´erale de Lausanne, CH-1015 Lausanne, Switzerland (Received 19 February 2020; revised 23 November 2020; accepted 2 February 2021; published 25 February 2021) We propose a model for combining the Standard Model (SM) with gravity. It relies on a nonminimal coupling of the Higgs field to the Ricci scalar and on the Palatini formulation of gravity. Without introducing any new degrees of freedom in addition to those of the SM and the graviton, this scenario achieves two goals. First, it generates the electroweak symmetry breaking by a nonperturbative gravitational effect. In this way, it does not only address the hierarchy problem but opens up the possibility to calculate the Higgs mass. Second, the model incorporates inflation at energies below the onset of strong-coupling of the theory. Provided that corrections due to new physics above the scale of inflation are not unnaturally large, we can relate inflationary parameters to data from collider experiments. DOI: 10.1103/PhysRevD.103.033006 I. INTRODUCTION Other experimental and observational data that calls for The results of LHC have been very exciting. First, it has new physics, such as dark matter, neutrino oscillations and found the last missing particle of the Standard Model (SM), baryon asymmetry of the Universe, does not require the presence of any new particle populating the desert between the Higgs boson [1,2]. Second, it has significantly con- 2 strained physics beyond the SM. -
1 KERSTIN MARIE PEREZ Curriculum Vitae MIT Physics Department Phone
1 KERSTIN MARIE PEREZ Curriculum Vitae MIT Physics Department Phone: (617) 324-1522 77 Massachusetts Ave., 26-506 Email: [email protected] Cambridge MA 02139 Degrees: PhD in Physics, California Institute of Technology, 2011. Dissertation advisor: Emlyn Hughes. M.S. in Physics, California Institute of Technology, 2008. B.A. in Physics, Columbia University, 2005. Employment: Postdoctoral researcher, Columbia University, 2011-2012. Supervisor: Charles Hailey. NSF Astronomy & Astrophysics Postdoctoral Fellow, Columbia University, 2012-2014. Assistant Professor of Physics, Haverford College, 2015-2016. Assistant Professor of Physics, Massachusetts Institute of Technology, 2016-Current. Honors: Cottrell Scholar Award, Research Corporation for Science Advancement, 2019. Class of 1948 Career Development Professorship, MIT, 2019. School of Science Teaching Prize for Undergraduate Education, MIT, 2018. Buechner Faculty Teaching Prize, MIT Physics Department, 2018. Sloan Research Fellowship, Sloan Foundation, 2017. NASA Group Achievement Award for NuSTAR Galactic Plane Survey Team, NASA, 2016. Cottrell College Science Award, Research Corporation for Science Advancement, 2015. NASA Group Achievement Award for NuSTAR Science Team, NASA, 2015. Astronomy & Astrophysics Postdoctoral Fellowship, National Science Foundation, 2012. US Large Hadron Collider Graduate Student Support Award, National Science Foundation, 2010. Robert A. Millikan Graduate Fellowship, California Institute of Technology, 2006. Undergraduate Students Supervised: Wang, Cindy ('23): Summer 2020. Protyasha, Nishat (`22): Summer 2019, Fall 2019, Spring 2020. Seyler, Devin (`22): Fall 2019, Spring 2020, Summer 2020. Bouche, Ian ('21): Summer 2020. 2 Faustina, Aidan ('21): Summer 2020. Hernandez, Analyce ('21): Spring 2020, Summer 2020. Taylor, Afura (`21): Summer 2018, Fall 2018, Spring 2019. Brown, Jonathon (`20): Fall 2016, Spring 2017, Fall 2018, Spring 2018. Li, Ivy (`20): Summer 2017, Fall 2017, Spring 2018, Fall 2018, Spring 2019, Fall 2019; Currently: Fulbright Scholar and Rice University Ph.D. -
Roadmap for Astronomy in Switzerland 2007-2016
Roadmap for Astronomy in Switzerland 2007– 2016 Cover picture: Marsflash Till Credner, AlltheSky.com Contents 3 Preface The purpose and scope of this document 6 Executive Summary 8 Summary list of the Roadmap Statements, Findings and Recommendations Chapter 1 13 Why is astronomy important today? Chapter 2 20 The broader context of Swiss astrophysics Chapter 3 29 Building on a strong foundation: Swiss astronomy in the past decade Chapter 4 41 The future scientific development of Swiss astrophysics Chapter 5 71 Transforming professional astrophysics education in Switzerland Chapter 6 74 Making science possible: Technology development for astronomy Chapter 7 82 Sharing the excitement: Public education and outreach 86 Concluding Remarks Appendix A 88 Research Networks Appendix B 91 List of acronyms and project names Roadmap for Astronomy 2007-2016 1 A Hubble Space Telescope image of a small region of M27, the Dumbell Nebula, showing small dense knots of gas ejected by the dying star, each containing a few times the mass of the Earth. NASA/ESA Preface The purpose and scope of this document Who was this document prepared by? We are the College of Helvetic Astronomy Profes- sors (CHAPS) which represents the full range of This Roadmap for Astronomy 2007-2016 was pre- astronomical interests within our community, and is pared by the 21 elected Professors in Astrophys- small enough that all members were strongly in- ics at Swiss universities, plus representatives of volved in the production of the Roadmap. The three independent laboratories: IRSOL, -
Why Should We Care About the Top Quark Yukawa Coupling?1
Why should we care about the top quark Yukawa coupling?1 Fedor Bezrukov1, 2, 3, ∗ and Mikhail Shaposhnikov4, y 1CERN, CH-1211 Gen`eve23, Switzerland 2Physics Department, University of Connecticut, Storrs, CT 06269-3046, USA 3RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA 4Institut de Th´eoriedes Ph´enom`enesPhysiques, Ecole´ Polytechnique F´ed´erale de Lausanne, CH-1015 Lausanne, Switzerland (Dated: March 16, 2015) In the cosmological context, for the Standard Model to be valid up to the scale of inflation, crit the top quark Yukawa coupling yt should not exceed the critical value yt , coinciding with good precision (about 0.2 ) with the requirement of the stability of the electroweak vacuum. So, the exact measurementsh of yt may give an insight on the possible existence and the energy scale of new physics above 100 GeV, which is extremely sensitive to yt. We overview the most recent crit theoretical computations of yt and the experimental measurements of yt. Within the theoretical 7 and experimental uncertainties in yt the required scale of new physics varies from 10 GeV to the Planck scale, urging for precise determination of the top quark Yukawa coupling. I. INTRODUCTION This raises a number of questions: \Have we got at last the ultimate theory of Nature?" and \If not, where we In the Spring of 2014 Valery Rubakov was visiting should search for new physics?" CERN and joined a bunch of theorists for a lunch at The answer to the first question is well known and it the CERN canteen. As often happens, the conversation is negative. -
Searching for Slow-Developing Cosmic-Ray Showers: Looking for Evidence of Exotic Primaries at the Pierre Auger Observatory
SEARCHING FOR SLOW-DEVELOPING COSMIC-RAY SHOWERS: LOOKING FOR EVIDENCE OF EXOTIC PRIMARIES AT THE PIERRE AUGER OBSERVATORY by Eric William Mayotte c Copyright by Eric William Mayotte, 2016 All Rights Reserved A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctorate of Science (Applied Physics). Golden, Colorado Date Signed: Eric William Mayotte Signed: Dr. Frederic Sarazin Thesis Advisor Golden, Colorado Date Signed: Dr. Jeff Squier Professor and Head Department of Physics ii ABSTRACT The central purpose of this research was to add the event propagation velocity to the list of shower parameters that the Florescence Detector of Pierre Auger Observatory is capable of measuring. This capability was then leveraged to differentiate exotic slow moving events from the rest of the cosmic ray flux. Clearly, by relativistic necessity, all known cosmic ray primaries can only cause a measurable extensive air shower at velocities indistinguishably close to the speed of light. Therefore any accurate observation of an event propagating slower than the speed of light would provide an unmistakable indicator of new physics. A particle must possess very specific characteristics in order to be capable of producing a slow shower. High mass Strangelets, macroscopic dark matter, and super-symmetric Q- Balls were identified as strong candidates. Theory supporting high mass Strangelets and macroscopic dark matter appeared too late for full inclusion in this work, however super- symmetric Q-Balls were thoroughly examined. CORSIKA simulations were used to show that the fluorescence detector of the Pierre Auger Observatory has sensitivity to Q-Balls with a mass M > 3.25 1027GeV c−2 while the surface detector is sensitive at a mass Q × M > 1.15 1027GeV c−2. -
BSM Physics with Light Particles Mikhail Shaposhnikov
BSM Physics with Light Particles Mikhail Shaposhnikov Journée SHiP/Physique du secteur caché Paris - LPNHE, October 11, 2017 – p. 1 Motivation The Standard Model in now complete: the last particle - Higgs boson, predicted by the SM, has been found Paris - LPNHE, October 11, 2017 – p. 2 Motivation The Standard Model in now complete: the last particle - Higgs boson, predicted by the SM, has been found No significant deviations from the SM have been observed Paris - LPNHE, October 11, 2017 – p. 2 Motivation The Standard Model in now complete: the last particle - Higgs boson, predicted by the SM, has been found No significant deviations from the SM have been observed The masses of the top quark and of the Higgs boson, the Nature has chosen, make the SM a self-consistent effective field theory all the way up to the quantum gravity Planck scale MP . 1609.02503 The theory is mathematically consistent and does not lose predictability up to very high en- 19 ergies MP ∼ 10 GeV Paris - LPNHE, October 11, 2017 – p. 2 Motivation The Standard Model in now complete: the last particle - Higgs boson, predicted by the SM, has been found No significant deviations from the SM have been observed The masses of the top quark and of the Higgs boson, the Nature has chosen, make the SM a self-consistent effective field theory all the way up to the quantum gravity Planck scale MP . 1609.02503 The theory is mathematically consistent and does not lose predictability up to very high en- 19 ergies MP ∼ 10 GeV How to reconsile this with evidence for new physics? Paris - LPNHE, October 11, 2017 – p. -
The Standard Model Higgs Boson As the Inflaton
The StandardModel Higgsboson as the inflaton Fedor Bezrukov a,b, Mikhail Shaposhnikov a a Institut de Th´eorie des Ph´enom`enes Physiques, Ecole´ Polytechnique F´ed´erale de Lausanne, CH-1015 Lausanne, Switzerland b Institute for Nuclear Research of Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7a, Moscow 117312, Russia Abstract We argue that the Higgs boson of the Standard Model can lead to inflation and produce cosmological perturbations in accordance with observations. An essential requirement is the non-minimal coupling of the Higgs scalar field to gravity; no new particle besides already present in the electroweak theory is required. Key words: Inflation, Higgs field, Standard Model, Variable Planck mass, Non-minimal coupling PACS: 98.80.Cq, 14.80.Bn 1. Introduction tic coupling constant λ 10−13 [7]. This value of the mass is close to the GUT∼ scale, which is often con- The fact that our universe is almost flat, homoge- sidered as an argument in favour of existence of new neous and isotropic is often considered as a strong physics between the electroweak and Planck scales. indication that the Standard Model (SM) of elemen- The aim of the present Letter is to demonstrate that tary particles is not complete. Indeed, these puzzles, the SM itself can give rise to inflation. The spectral together with the problem of generation of (almost) index and the amplitude of tensor perturbations can be scale invariant spectrum of perturbations, necessary for predicted and be used to distinguish this possibility from structure formation, are most elegantly solved by in- other models for inflation; these parameters for the SM flation [1, 2, 3, 4, 5, 6].