Scientific Proposal for Enabling Research Project (Max 10 Pages, Excluding Title Page)

Total Page:16

File Type:pdf, Size:1020Kb

Scientific Proposal for Enabling Research Project (Max 10 Pages, Excluding Title Page) CfP‐ADMIN‐AWP19‐ENR‐01 Scientific proposal for Enabling Research project (max 10 pages, excluding title page) Title Routes to High Gain for Inertial Fusion Energy Principal Investigator Peter A Norreys, Professor of Inertial Fusion Science, University of Oxford Beneficiary CCFE (United Kingdom) Project 24 months duration Abstract The award of the two EUROfusion Enabling Research grants “Towards Inertial Fusion Energy (ToIFE)” from 2014‐2018 enabled our consortium to make significant progress in achieving a fundamental understanding of the physics needed to demonstrate the viability of laser‐driven fusion as an alternative, complementary road towards sustainable, clean and secure energy source. We plan to build on these achievements by further integrating our activities by undertaking a series of collaborative experiments on existing European facilities to qualify new diagnostics, instruments and techniques, in preparation for deployment on the new PETAL/LMJ facility in Bordeaux early in the next decade. We also plan to support these investigations by state of the art theoretical and computational modelling. Our proposal has three main objectives: a) Studying fundamental materials properties and laser‐plasma interactions to acquire new insights into basic physics for ignition on MJ‐scale facilities, including the development of new X‐ray, particle and optical diagnostics on the Vulcan laser facility, in preparation for commissioning on the PETAL/LMJ facility at CEA; b) critically evaluating advanced alternative schemes for the high gain target designs that are required for inertial fusion energy, including the exciting new auxiliary heating approach that was developed under the ToIFE project; c) developing key IFE innovative materials, lasers and target fabrication technologies. The two previously awarded ToIFE grants improved the co‐ordination between the European partners, as indicated by the growing number of collaborative studies, and enabled us to identify more clearly the commonalities between Inertial and Magnetic Confinement Fusion activities, thus providing a route to reinforce links between the two communities. 1 | Scientific Proposal CfP‐ADMIN‐AWP19‐ENR‐01 Introduction. This new “Routes to High Gain for Inertial Fusion Energy” proposal here builds upon the insights and strong collaborations established under the 2014‐2018 “Towards Inertial Fusion Energy (ToIFE)” project1, albeit it with a rotation of the project co‐ordinator from France (S. Jacquemot) to the United Kingdom (P.A. Norreys). From the commencement of the ToIFE project in 2014, thanks to EUROfusion financial support, substantial quantities of high quality experimental data related to inertial confinement fusion experiments at the National Ignition Facility and the Laboratory for Laser Energetics have been made available to the consortium, either through the published literature or through active collaborative contacts with American colleagues. From this data, along with the pioneering work undertaken within the ToIFE grants, we have significantly advanced our scientific understanding of the physics of thermonuclear ignition and have identified a number of critical issues that must be addressed in order to achieve a burning hot‐spot, including the implosion energetics, the pusher adiabat, tamping effects, and extending the inertial confinement time. The new approaches, described here in this proposal, have a new focus on the Vulcan laser facility and the PETAL/LMJ facility in Bordeaux that will enable European leadership for some of these topical questions into the next decade. Objectives and expected outcomes. We propose here to build upon our recent successes to reinforce three main axes: a) Studying fundamental materials properties and laser‐plasma interactions to acquire new insights into basic physics for ignition on MJ‐scale facilities, including the development of new X‐ray, particle and optical diagnostics on the Vulcan laser facility, in preparation for commissioning on the PETAL/LMJ facility at CEA; b) critically evaluating advanced alternative schemes for the high gain target designs that are required for inertial fusion energy, including the exciting new auxiliary heating approach that was developed under the ToIFE project; c) developing key IFE innovative materials, lasers and target fabrication technologies The two previously awarded ToIFE grants improved the co‐ordination between the European partners, as indicated by the growing number of collaborative studies1, and enabled us to identify more clearly the commonalities between Inertial and Magnetic Confinement Fusion activities, thus providing a route to reinforce links between the two communities. Description and methodology. Axis A. Studying fundamental material properties and laser‐plasma interaction mechanisms The implosion energetics still need to be optimised, of course, in order to achieve a burning hot spot and, beyond that, ignition. In particular, it is necessary to increase the implosion kinetic energy that is available so that there is more thermal energy in the hot spot at stagnation, which is a key limitation at this point in time. This can be done by either enhancing the drive coupling energy or by optimization of the capsule design, e.g. by deploying different ablator materials, studying the variations in mass, along with their dependence on the target thickness. Similarly, the reduction in the pusher adiabat – i.e. the degree of departure of the pressure of the compressed fuel from the ideal Fermi degenerate pressure ‐ can be achieved by controlling both the fast electron and the hard X‐ray preheat, primarily arising from laser‐ plasma instabilities, as well as Rayleigh‐Taylor induced mixing, the latter by reducing the coasting time of the implosion. The increase of the effective disassembly time can be achieved by improvements to the implosion symmetry. Certainly, the recent successes on the National Ignition Facility, such as the 1 The “Towards Inertial Fusion Energy (ToIFE)” project, which started in 2014 with the award of the two EUROfusion Enabling Research grants, was aimed at achieving a fundamental understanding of the physics needed to demonstrate the viability of laser‐driven fusion as an alternative road towards sustainable, clean and secure energy sources. The projects have allowed significant progress to be made in the field of laser‐ plasma interaction physics and inertial fusion energy science, as shown on the pages of the ToIFE website (http://web.luli.polytechnique.fr/IFE‐KiT/ToIFE.htm), which details the major results from the start of the project in 2014 until the latest reporting stage, at the end of 2017. 2 | Scientific Proposal CfP‐ADMIN‐AWP19‐ENR‐01 demonstration of a fusion output energy that is more than twice the total kinetic energy of the imploding fuel with unprecedented yields and stagnation pressures, show that increased capsule performance can indeed be achieved through the mitigation of mix in both the hotspot and the compressed DT fuel [S. Le Pape et al., Phys. Rev. Lett. 120, 245003 (2018)]. A.1 Atomic physics In most capsule designs deployed until now on the National Ignition Facility, mid‐Z elements have been used as dopants (Ge or Si / Cu) to the ablator material (plastic / high density carbon / beryllium) to increase the preheat shielding and to image the shell in‐flight. In the ToIFE grants, we concentrated on the atomic physics associated with this problem, to great success. A series of indirectly‐ driven near‐LTE opacity experiments were performed on the LULI2000 laser facility. Thanks to an inventive twin‐hohlraum target concept and a dual‐channel spectrometer developed at LIDyL, XUV and x‐ray photo‐ absorption spectra of mid‐Z elements (copper and nickel) have been, for the first time, simultaneously recorded [M. Dozières et al., HEDP 17, 231 (2015); F. Thais IFSA2017]. A final campaign on the ELFIE laser facility of the three‐year X‐ray and XUV emission spectroscopy program is being conducted in 2018 on germanium and its analysis, together with the one of the 2nd experiment, postponed to the end of 2017 due to a laser breakdown, will be carried out in order to complement the LULI2000 data and further benchmark the codes. The LiDyL High Energy Density Matter group in Saclay recently had some insight into the relative contributions of electric‐dipole and magnetic‐dipole transitions in highly ionized plasmas. The approach involves the Flexible Atomic Code, using either a detailed or "statistical" approach dealing the transitions within the Unresolved Transition Array formalism. The Wigner Research Centre for Physics has experience in plasma diagnostics, either in light scattering or in x‐ray spectroscopy. Tasks 2019‐2020 – (CEA/LULI, CEA/LIDyL and Wigner Institute). We intend to complete the data analysis of the emission experiments conducted on the ELFIE laser facility in 2019 [ATOM1]. We will also analyze the contribution of various transition types to the radiative processes in low‐electronic‐ density tungsten plasmas present in the divertor of tokamaks. Such plasmas being out of thermodynamic equilibrium, this objective requires to solve large systems of kinetic equations. Among other results, this will help in determining the radiative losses in the tokamak divertor, which may have a strong influence on its operation [ATOM2]. At present a new spectrometer (based on conically bent von Hamos arrangement) is being designed now at the Wigner Institute which allows simultaneous observation of K‐shell lines from different microdots.
Recommended publications
  • To Download the Proceedings
    Russian Academy of Sciences Institute of Applied Physics International Symposium TTOOPPIICCAALL PPRROOBBLLEEMMSS OOFF NNOONNLLIINNEEAARR WWAAVVEE PPHHYYSSIICCSS 22 – 28 July, 2017 Moscow – St. Petersburg, Russia P R O C E E D I N G S Nizhny Novgorod, 2017 NWP-1: Nonlinear Dynamics and Complexity NWP-2: Lasers with High Peak and High Average Power NWP-3: Nonlinear Phenomena in the Atmosphere and Ocean WORKSHOP: Magnetic Fields in Laboratory High Energy Density Plasmas (LaB) CREMLIN WORKSHOP: Key Technological Issues in Construction and Exploitation of 100 Pw Lass Lasers Board of Chairs Henrik Dijkstra, Utrecht University, The Netherlands Alexander Feigin, Institute of Applied Physics RAS, Russia Julien Fuchs, CNRS, Ecole Polytechnique, France Efim Khazanov, Institute of Applied Physics RAS, Russia Juergen Kurths, Potsdam Institute for Climate Impact Research, Germany Albert Luo, Southern Illinois University, USA Evgeny Mareev, Institute of Applied Physics RAS, Russia Catalin Miron, Extreme Light Infrastructure, Romania Vladimir Nekorkin, Institute of Applied Physics RAS, Russia Vladimir Rakov, University of Florida, USA Alexander Sergeev, Institute of Applied Physics RAS, Russia Ken-ichi Ueda, Institute for Laser Science, the University of Electro-Communications, Japan Symposium Web site: http://www.nwp.sci-nnov.ru Organized by Institute of Applied Physics of the Russian Academy of Sciences www.iapras.ru GYCOM Ltd www.gycom.ru International Center for Advanced Studies in Nizhny Novgorod (INCAS) www.incas.iapras.ru Supported by www.avesta.ru www.lasercomponents.ru www.coherent.com www.lasertrack.ru www.thalesgroup.com www.standa.lt www.phcloud.ru www.epj.org The electron version of the NWP-2017 Symposium materials was prepared at the Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Str., 603950 Nizhny Novgorod, Russia CONTENTS PLENARY TALKS J.-C.
    [Show full text]
  • Preparatory Document
    Joint thematic Workshop of Institut Lasers Plasmas, and LaserLab-Europe NA3 networking activity : Thematic Network on High Energy Lasers Next generation high energy lasers for basic research : Need for versatile high rep rate facilities Bordeaux University, September 3rd, 2010 1. RATIONALE The French government has issued a call for medium-size Research Infrastructures, which may represent a major opportunity to boost High Energy Density research, both at French and European levels. Under the aegis of Institut Lasers Plasmas (France), and LaserLab- Europe 2 , a dedicated workshop should unravel the general needs and scientific cases for a next generation HED laser facility of high repetition rates (one shot per few minutes) but moderate energies, and discuss how such a facility can be coordinated with other HED facilities and programs at French and European levels. 2. SCIENTIFIC CONTEXT The physics of laser-matter interaction in the domain of High Energy Density (HED) matter requires large scale laser facilities with laser pulses of many kilojoules. The technological frontier is now provided by such lasers systems as the National Ignition Facility (NIF), USA, and Laser MegaJoule (LMJ) near Bordeaux, or by Petawatt high energy lasers such as Omega-EP, Rochester University, USA, LFEX, Osaka University, Japan, or PETAL, Bordeaux. However, because of their extremely high operational cost and relatively low number of shots available, smaller sized facilities, so called "intermediate", are absolutely crucial to all scientific and technological developments in the field. The French national taskforce on the development of powerful lasers, ILP/GRALE, has identified four classes of high energy lasers: – Lasers of megajoule level; – Lasers of large but intermediate scale with a pulse energy larger than 10 kJ; – Lasers of kilojoule scale, such as LULI2000; – Sub-kilojoule scale lasers providing a combination of accessibility and flexibility of use.
    [Show full text]
  • 7 Upgrade to the Vulcan Laser System to Support the TAW Upgrade
    LASER SCIENCE AND DEVELOPMENT I Vulcan 7 Upgrade to the Vulcan laser system to support the TAW upgrade Contact [email protected] B. T. Parry, T. B. Winstone, P. N. Anderson, A. J. Frackiewicz, M. Galimberti, S. Hancock, C. Hernandez-Gomez, A. K. Kidd, M. M. Notley, M. Read and C. Wise Central Laser Facility, STFC, Rutherford Appleton Laboratory, HSIC, Didcot, Oxon OX11 0QX, UK Introduction chains. One of the rod amplifier beam lines is split The Vulcan laser facility has recently been upgraded to into two to form beams 7 and 8, the other is split into deliver an additional short pulse beam to Target Area beams 1-6. Beams 7 and 8 are normally used as short West (TAW) [1]. This new beamline is capable of pulse (CPA) beamlines. operating in the same mode as the previously existing Modelling showed that the extra amplification needed one, at energies up to 100 J in 1 ps. It also allows the to deliver the increased energy could be carried out at laser to reach new, previously inaccessible regimes, smaller beam diameter while still keeping the B-integral with the capability to deliver up to 500 J in pulses of below three, the limit for what was acceptable for a 10 ps or longer (100ps max). 10 ps pulse. This meant that rod amplifiers, rather than The increase in the delivered energy was made possible large, costly disk amplifiers, could be used. An by the use of dielectric gratings for this new 10 ps additional 45 mm diameter rod amplifier was installed beamline.
    [Show full text]
  • Europe for Inertial Confinement Fusion
    EuropeEurope forfor InertialInertial ConfinementConfinement FusionFusion Technology Watch Workshop on IFE-KIT Madrid March 22, 2010 Jiri Ullschmied Association EURATOM IPP.CR PALS Research Centre, a joint laboratory of the Institute of Physics and Institute of Plasma Physics, Academy of Sciences of the Czech Republic www.pals.cas.cz Paper Layout State of the art - where are we now Lasers on the path to fusion National Ignition Facility Indirect drive / direct drive European lasers, LMJ Coordinated European effort in the laser research Various ignition scenarios - EU KIT contributions SWOT Summary State of the art - where are we now Steadily increasing progress in laser technology since 1960, lasers becoming the most dynamic field of physical research in the last decade. Megajoule and multi-PW lasers have become reality, laser beam focused intensity has been increased up to 1022 W/cm2 (Astra, UK). Last-generation high-power lasers - an unmatched tool for high-energy density physical research and potential fusion drivers. High-energy lasers worldwide Lasers on the path to Fusion Max output energy of single beam systems (Nd-glass, iodine, KrF) in the 1-10 kJ range, while EL > 1 MJ is needed for central ignition => multi-beam laser systems. Various fast ignition schemes are have been proposed, which should decrease the required energy by an order of magnitude. History and future of IFE lasers HiPER Three main tasks demonstrate ignition and burn demonstrate high energy gain develop technology for an IFE power plant Ignition to be demonstrated at NIF (2010?) and LMJ lasers. The natural next step: HiPER. National Ignition Facility NIF is a culmination of long line of US Nd-glass laser systems Nova, OMEGA and NIF shot rates measured in shots/day.
    [Show full text]
  • Numerical Modeling of Laser-Driven Experiments Aiming to Demonstrate Magnetic Field Amplification Via Turbulent Dynamo P
    Numerical modeling of laser-driven experiments aiming to demonstrate magnetic field amplification via turbulent dynamo P. Tzeferacos, A. Rigby, A. Bott, A. R. Bell, R. Bingham, A. Casner, F. Cattaneo, E. M. Churazov, J. Emig, N. Flocke, F. Fiuza, C. B. Forest, J. Foster, C. Graziani, J. Katz, M. Koenig, C.-K. Li, J. Meinecke, R. Petrasso, H.-S. Park, B. A. Remington, J. S. Ross, D. Ryu, D. Ryutov, K. Weide, T. G. White, B. Reville, F. Miniati, A. A. Schekochihin, D. H. Froula, G. Gregori, and D. Q. Lamb Citation: Physics of Plasmas 24, 041404 (2017); doi: 10.1063/1.4978628 View online: https://doi.org/10.1063/1.4978628 View Table of Contents: http://aip.scitation.org/toc/php/24/4 Published by the American Institute of Physics Articles you may be interested in Magnetic field production via the Weibel instability in interpenetrating plasma flows Physics of Plasmas 24, 041410 (2017); 10.1063/1.4982044 Particle acceleration in laser-driven magnetic reconnection Physics of Plasmas 24, 041408 (2017); 10.1063/1.4978627 Formation of high-speed electron jets as the evidence for magnetic reconnection in laser-produced plasma Physics of Plasmas 24, 041406 (2017); 10.1063/1.4978883 On the generation of magnetized collisionless shocks in the large plasma device Physics of Plasmas 24, 041405 (2017); 10.1063/1.4978882 A self-consistent analytical model for the upstream magnetic-field and ion-beam properties in Weibel-mediated collisionless shocks Physics of Plasmas 24, 041409 (2017); 10.1063/1.4979187 Development of an inertial confinement fusion platform to study charged-particle-producing nuclear reactions relevant to nuclear astrophysics Physics of Plasmas 24, 041407 (2017); 10.1063/1.4979186 PHYSICS OF PLASMAS 24, 041404 (2017) Numerical modeling of laser-driven experiments aiming to demonstrate magnetic field amplification via turbulent dynamo P.
    [Show full text]
  • FCI in France Status and Perspective
    FCI in France status and perspective Thierry Massard Chief scientist CEA Defense and Security Guy Schurtz (CELIA), Benoit Canaud (CEA), Laurent Grémillet (CEA),Christine Labaune(CNRS) Fusion Power Associates – Washington DC – 1-2 December 2010 Outline • ICF in France : a long history of successes • ICF for energy : a place in the French energy vision ? • LMJ / PETAL a key facility for the IFE in Europe • How France scientific community participates in HiPER (European program for IFE faisability demoinstration) • The French strategy • A world wide forum is necessary for IFE ICF reserach in France was initiated at Ecole Polytechnique, In 1964 with the support of CEA-Limeil In 40 years, 5 national generations of lasers were commissioned, Rubis laser : CO2 laser : Nd laser : 2 beams-200 J – 600 ps (w, 2w, 4w) (1980) Nd laser : 6 beams – 600 J -600 ps (w, 2w, 4w) (1985-2002) Ti/Sa : 100 TW LULI2000 : 2 beams – 2 kJ – 1.5 ns (w, 2w, 3w) 1,00E+15 In 1968 the first fusion events are observed 1,00E+14 100TW Pico2000 1,00E+13 P(W) 1,00E+12 Nd-6F LULI2000 1,00E+11 Nd-1F 1,00E+10 1,00E+09 CO 2 1,00E+08 Rubis 1960 1970 1980 1990 2000 2010 Year C6 laser, delivering up to 600 J Today several critical laser facilities and labs in France • Ecole Polytechnique {LOA, LULI}, • CELIA (Bordeaux) • CEA (Bruyeres, Saclay and Bordeaux) • LCD/ENSMA fs ps ns 6 10 PW LMJ 10 5 LIL 4 10 PW / LIL Nano 2000 1000 ELI TW Pico 2000 Lucia : objectif : 100 J – 10 Hz 100 LULI 100TW Alise 10 LOA LIXAM (Alise) Energie [J] 1 LOA CEA/DSM GW 0,1 CELIA 0,01 0,01 0,1 1 10 100 1000
    [Show full text]
  • Will Fusion Be Ready to Meet the Energy Challenge for the 21St Century?
    Home Search Collections Journals About Contact us My IOPscience Will fusion be ready to meet the energy challenge for the 21st century? This content has been downloaded from IOPscience. Please scroll down to see the full text. 2016 J. Phys.: Conf. Ser. 717 012002 (http://iopscience.iop.org/1742-6596/717/1/012002) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 182.253.72.56 This content was downloaded on 29/06/2016 at 21:10 Please note that terms and conditions apply. 9th International Conference on Inertial Fusion Sciences and Applications (IFSA 2015) IOP Publishing Journal of Physics: Conference Series 717 (2016) 012002 doi:10.1088/1742-6596/717/1/012002 Will fusion be ready to meet the energy challenge for the 21st century? Yves Bréchet – Haut-Commissaire à l’Energie Atomique CEA Saclay 91191 Gif-sur-Yvette, France Thierry Massard CEA DAM-Ile de France, Bruyères le Chatel, 91297 Arpajon, France Abstract. Finite amount of fossil fuel, global warming, increasing demand of energies in emerging countries tend to promote new sources of energies to meet the needs of the coming centuries. Despite their attractiveness, renewable energies will not be sufficient both because of intermittency but also because of the pressure they would put on conventional materials. Thus nuclear energy with both fission and fusion reactors remain the main potential source of clean energy for the coming centuries. France has made a strong commitment to fusion reactor through ITER program. But following and sharing Euratom vision on fusion, France supports the academic program on Inertial Fusion Confinement with direct drive and especially the shock ignition scheme which is heavily studied among the French academic community.
    [Show full text]
  • Laboratory Radiative Accretion Shocks on GEKKO XII Laser Facility for POLAR Project
    Article submitted to: High Power Laser Science and Engineering, 2018 April 10, 2018 Laboratory radiative accretion shocks on GEKKO XII laser facility for POLAR project L. VanBox Som1,2,3, E.´ Falize1,3, M. Koenig4,5, Y.Sakawa6, B. Albertazzi4, P.Barroso9, J.-M. Bonnet- Bidaud3, C. Busschaert1, A. Ciardi2, Y.Hara6, N. Katsuki7, R. Kumar6, F. Lefevre4, C. Michaut10, Th. Michel4, T. Miura7, T. Morita7, M. Mouchet10, G. Rigon4, T. Sano6, S. Shiiba7, H. Shimogawara6, and S. Tomiya8 1CEA-DAM-DIF, F-91297 Arpajon, France 2LERMA, Sorbonne Universit´e,Observatoire de Paris, Universit´ePSL, CNRS, F-75005, Paris, France 3CEA Saclay, DSM/Irfu/Service d’Astrophysique, F-91191 Gif-sur-Yvette, France 4LULI - CNRS, Ecole Polytechnique, CEA : Universit Paris-Saclay ; UPMC Univ Paris 06 : Sorbonne Universit´e- F-91128 Palaiseau Cedex, France 5Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan 6Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871, Japan 7Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan 8Aoyamagakuin University, Japan 9GEPI, Observatoire de Paris, PSL Research University, CNRS, Universit´eParis Diderot, Sorbonne Paris Cit´e,F-75014 Paris, France 10LUTH, Observatoire de Paris, PSL Research University, CNRS, Universit´eParis Diderot, Sorbonne Paris Cit´e,F-92195 Meudon, France Abstract A new target design is presented to model high-energy radiative accretion shocks in polars. In this paper, we present the experimental results obtained on the GEKKO XII laser facility for the POLAR project. The experimental results are compared with 2D FCI2 simulations to characterize the dynamics and the structure of plasma flow before and after the collision.
    [Show full text]
  • Nd Lu Caf2 for High-Energy Lasers Simone Normani
    Nd Lu CaF2 for high-energy lasers Simone Normani To cite this version: Simone Normani. Nd Lu CaF2 for high-energy lasers. Physics [physics]. Normandie Université, 2017. English. NNT : 2017NORMC230. tel-01689866 HAL Id: tel-01689866 https://tel.archives-ouvertes.fr/tel-01689866 Submitted on 22 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE Pour obtenir le diplôme de doctorat Physique Préparée au sein de l’Université de Caen Normandie Nd:Lu:CaF2 for High-Energy Lasers Étude de Cristaux de CaF2:Nd:Lu pour Lasers de Haute Énergie Présentée et soutenue par Simone NORMANI Thèse soutenue publiquement le 19 octobre 2017 devant le jury composé de M. Patrice CAMY Professeur, Université de Caen Normandie Directeur de thèse M. Alain BRAUD MCF HDR, Université de Caen Normandie Codirecteur de thèse M. Jean-Luc ADAM Directeur de Recherche, CNRS Rapporteur Mme. Patricia SEGONDS Professeur, Université de Grenoble Rapporteur M. Jean-Paul GOOSSENS Ingénieur, CEA Examinateur M. Maurizio FERRARI Directeur de Recherche, CNR-IFN Examinateur Thèse dirigée par Patrice CAMY et Alain BRAUD, laboratoire CIMAP Université de Caen Normandie Nd:Lu:CaF2 for High-Energy Lasers Thesis for the Ph.D.
    [Show full text]
  • Advanced Approaches to High Intensity Laser-Driven Ion Acceleration
    Advanced Approaches to High Intensity Laser-Driven Ion Acceleration Andreas Henig M¨unchen2010 Advanced Approaches to High Intensity Laser-Driven Ion Acceleration Andreas Henig Dissertation an der Fakult¨atf¨urPhysik der Ludwig{Maximilians{Universit¨at M¨unchen vorgelegt von Andreas Henig aus W¨urzburg M¨unchen, den 18. M¨arz2010 Erstgutachter: Prof. Dr. Dietrich Habs Zweitgutachter: Prof. Dr. Toshiki Tajima Tag der m¨undlichen Pr¨ufung:26. April 2010 Contents Contentsv List of Figures ix Abstract xiii Zusammenfassung xv 1 Introduction1 1.1 History and Previous Achievements...................1 1.2 Envisioned Applications.........................3 1.3 Thesis Outline...............................5 2 Theoretical Background9 2.1 Ionization.................................9 2.2 Relativistic Single Electron Dynamics.................. 14 2.2.1 Electron Trajectory in a Linearly Polarized Plane Wave.... 15 2.2.2 Electron Trajectory in a Circularly Polarized Plane Wave... 17 2.2.3 Electron Ejection from a Focussed Laser Beam......... 18 2.3 Laser Propagation in a Plasma..................... 18 2.4 Laser Absorption in Overdense Plasmas................. 20 2.4.1 Collisional Absorption...................... 20 2.4.2 Collisionless Absorption..................... 21 2.5 Ion Acceleration.............................. 22 2.5.1 Target Normal Sheath Acceleration (TNSA).......... 22 2.5.2 Shock Acceleration........................ 26 2.5.3 Radiation Pressure Acceleration / Light Sail / Laser Piston. 27 3 Experimental Methods I - High Intensity Laser Systems 33 3.1 Fundamentals of Ultrashort High Intensity Pulse Generation..... 33 vi CONTENTS 3.1.1 The Concept of Mode-Locking.................. 33 3.1.2 Time-Bandwidth Product.................... 37 3.1.3 Chirped Pulse Amplification................... 39 3.1.4 Optical Parametric Amplification (OPA)............ 40 3.2 Laser Systems Utilized for Ion Acceleration Studies.........
    [Show full text]
  • Proton Beams Generated by Ultrashort-Pulse Lasers Will Help
    S&TR December 2003 Proton-Beam Experiments 11 Proton beams ROTONS, the positively charged, Psubatomic particles discovered by Lord Rutherford nearly 100 years ago, are still surprising scientists. Lawrence generated by Livermore researchers are discovering that proton beams created by powerful, ultrashort pulses of laser light can be used to create and even diagnose plasmas, the ultrashort-pulse superhot state of matter that exists in the cores of stars and in detonating nuclear weapons. The proton-beam experiments promise new techniques for maintaining lasers will help the nationʼs nuclear arsenal and for better understanding how stars function. The proton beams used in the Laboratoryʼs experiments are produced advance our by pulses of laser light lasting only about 100 femtoseconds (a femtosecond is 10–15 seconds, or one-quadrillionth of a second) and having a brightness, or understanding of irradiance, up to 5 × 1020 watts per square centimeter. When such fleeting pulses are focused onto thin foil targets, as many as 100 billion protons are emitted, with plasmas. energies up to 25 megaelectronvolts. The protons come from a spot on the foil about 200 micrometers in diameter, and the beamʼs duration is a few times longer than the laser pulse. The highest-energy protons diverge 1 to 2 degrees from the perpendicular, while the lowest-energy protons form a cone about 20 degrees from perpendicular. Funded by the Laboratory Directed Research and Development Program, the Livermore experiments are led by physicists Pravesh Patel and Andrew Mackinnon. Patel, who works in the Laboratoryʼs Physics and Advanced Lawrence Livermore National Laboratory 12 Proton-Beam Experiments S&TR December 2003 Technologies Directorate, is researching per gram) that exist in stars.
    [Show full text]
  • The Vulcan 10 PW Project 7
    LASER SCIENCE AND DEVELOPMENT I Vulcan The Vulcan 10 PW project 7 Contact [email protected] C. Hernandez-Gomez, S. P. Blake, O. Chekhlov, R. J. Clarke, A. M. Dunne, M. Galimberti, S. Hancock, P. Holligan, A. Lyachev, P. Matousek, I. O. Musgrave, D. Neely, P. A. Norreys, I. Ross, Y. Tang, T. B. Winstone, B. E. Wyborn and J. Collier Central Laser Facility, STFC, Rutherford Appleton Laboratory, HSIC, Didcot, Oxfordshire, OX11 0QX, UK Introduction This projects aim is to upgrade the Vulcan high power laser located at the Central Laser Facility (CLF), to beyond the 10 PW power level (1016 W) and provide focused intensities of greater than 1023 Wcm-2 to its international user community [1]. The project was divided in two phases. Phase 1 of 2 year duration, started in December 2006. A proposal for phase 2 has been submitted and reviewed. The start date of phase 2 is still under discussions. We report here on the overall progress made during the first phase. There were essentially three key areas to address as part of phase 1: • A novel “front end” system has been developed for Figure 1. Area photograph of the 10 PW Front End. the overall project and its performance has been verified with respect to key indicators such as wavelength, energy, bandwidth, pulselength, develop this high (150 nm) bandwidth version and the contrast etc. overall design is now based on this approach. • There has been a significant reduction in the risk associated with several key technical elements of the The 910 nm seed currently generated with the chirped project, particularly the large aperture diffraction scheme has a bandwidth of 165 nm and energy of gratings and laser amplifiers Several outstanding 40 µJ per pulse.
    [Show full text]