Upper Cretaceous Ammonites from Haiti

Total Page:16

File Type:pdf, Size:1020Kb

Upper Cretaceous Ammonites from Haiti If you no longer need this publication write to the Geological Survey in Washington for an official mailing label to use in returning it UNITED STATES DEPARTMENT OF THE INTERIOR UPPER CRETACEOUS AMMONITES FROM HAITI GEOLOGICAL SURVEY PROFESSIONAL PAPER 214-A UNITED STATES DEPARTMENT OF THE INTERIOR J. A. Krug, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director Professional Paper 214-A UPPER CRETACEOUS AMMONITES FROM HAITI BY JOHN B. REESIDE, JR. Shorter contributions to general geology. 1947 (Pages 1-11) UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1947 For sale by the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. Price 15 cents CONTENTS Abstract-...-..______.___-..__._._.__.,___.__^_-_________________________________ .____-_-_--__--__--__-_ _ _.. 1 General statement ____________________________________________________________________________ ________________ 1 The fossils and their correlation_________________________________________________________________________________ 1 Description of species __________________________________________________________________________________________ 2 References---_-___---_--__---___-_-______________..______ -_-___--__-______-__-_-___---__--_-_____-_--_--__-.-- 5 Index._______________________-__--____-______-_-______________-___-_-___-----___. ___-_-___--._._.__-_ _._.._ 11 ILLUSTRATIONS PLATES 1-3. Cretaceous ammonites from Haiti_____________-__--__--___-______-__-__--___ _._--__ .-_ _.___ __. _ 7-10 n UPPER CRETACEOUS AMMONITES FROM HAITI By JOHN B. REESIDE, Jr. ABSTRACT Pachydiscus ("Parapachydiscus") woodringi Reeside Ammonites of the genera Baculites, Parapuzosial, Pachydiscus, Paralenticeras sieAersi (Gerhardt) Texanites, and Paralenticeras are described from Haiti. Two Texanites ("Mortoniceras") cf. T. canaensis (Gerhardt) new species of Pachydiscus are proposed. The age of the fauna is interpreted as late lower Senonian. The nearest recorded occurrence of Upper Cretaceous ammonites in the West Indies is that in Jamaica re­ GENERAL STATEMENT ported by Spath (1925). From Providence, near Port Antonia, in shales underlying a limestone with Rudistae In recent work in the Republic of Haiti Messrs. and rather low in the sequence, were described Epigoni- W. P. Woodring and L. S. Gardner, of the Geological ceras sp., Parapachydiscus aff. P. stallauensis (Imkellcr), Survey, made a collection of Upper Cretaceous ammon­ Parapachydiscus aff. P. gollevillensis (D'Orbigny), Glyp- ites that seems worthy of record. From the neighbor­ toxoceras cf. G. rugatum (Forbes), and Baculites sp. This ing Dominican Republic Gabb (1873, p. 87) long ago fauna is assigned by Spath to the upper Senonian reported an ammonite and a dubious baculite, but the (Campanian-Maestrichtian). writer knows of no other published report of such From Jamaica also Trechmann (1936) reported the fossils from the island of Hispaniola. occurrence of an ammonite in "probably the lowest Dr. Woodring has kindly supplied the following known fossiliferous shales, 800 feet below a Barreftia statement: limestone," that was identified by Spath as Nowakites The ammonites were collected from boulders of weathered, aff. N. paillettei (D'Orbigny). This form is said to relatively soft calcareous sandstone, containing pebbles and suggest a "Senonian (upper Coniacian or lower San- granules of basalt, at two localities in Riviere Corail, a south­ eastward-flowing stream entering Grand Riviere about 8 miles tonian) age." north of Jacmel. The country rock is basalt, part of an exten­ The next nearest occurrence of Upper Cretaceous sive area of basalt in the interior of the Southern Peninsula. ammonites is that in central Puerto Rico recorded by About 6 miles to the west-northwest limy sediments interbedded Meyerhoff (1932), who reports identifications by Ree­ with the basalt and including basalt pillows contain caprinids side of Barroisiceras aff. B. haberfellneri (Von Hauer) indicating late Lower Cretaceous age (Aptian-Albian). The fossiliferous boulders found on Riviere Corail may represent and Parapuzosia aff. P. corbarica (Grossbuvre) from sediments interbedded with the basalt, or an Upper Cretaceous tuft'aceous deposits. These were assigned to the lower formation overlying the basalt, or may have been derived from Senonian (Coniacian). conglomerate at the base of Eocene limestone, which overlies A third occurrence is that recorded by Rutten 1936, the basalt at localities examined. pp. 35, 36), who lists apparently preliminary identifica­ The precise location of the two finds is as follows: tions by Jaworski of ammonites from three localities in U. S. Geological Survey Mesozoic locality 18723. the central part of Santa Clara Province, Cuba. These Petite Riviere (or Riviere Corail), about 2 miles north­ are reported as from limestones intercalated in the tuff west of junction with Grande Riviere de Jacmel, Arron- series, which underlies the Habana formation, of dissement of Jacmel, southern part of the Republic of Maestrichtian age. The forms found at the three Haiti. localities are as follows: (1) Austiniceras dibleyi Spath, U. S. Geological Survey Mesozoic locality 18724. Pachydiscus cf. P. colligatus Binckhorst, Peroniceras Same as 18723 but 200 feet northwest of junction. aff. P. tricarinatum (Fric) Burckhardt, P. cf. P. csorrigi (Redtenbacher); (2) Peroniceras cocchi Meiieghini, P. THE FOSSILS AND THEIR CORRELATION aff. P. tricarinatum, Crioceras sp.; and (3) Austiniceras The ammonites contained in this collection are as dibleyi Spath, Barroisiceras sp. This fauna is assigned follows: to a Turonian-Emscherian (Coniacian) age. A pertinent fauna is found in Venezuela. Gerhardt Baculites sp. Parapuzosia? sp. (1897, pp. 70-84) recorded an Upper Cretaceous ammo­ Pachydiscus ("Parapachydiscus") gardneri Reeside nite fauna from western Venezuela, giving the source of 732202—47 1 SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY, 1947 the material as a blue-black bituminous limestone near of Texas, that is, Campanian. To the present writer Rubio, between Cana and Amarillo, State of Tachira. it seems most likely that the Haitian ammonites are to The species recorded are: Mortoniceras texanum (Roe- be placed as approximately Santonian, that is, late mer), M. canaen.se Gerhardt, Gauthien'ceras lenti Ger- lower Senonian. hardt, 0. margae (Schluter), Amaltheus siewrsi Gerhardt, and Lenticeras andii Gerhardt. These were assigned DESCRIPTION OF SPECIES to the lower Seiionian (Coiiiacian-Santoiiian). Liddle Genus BACULITES Lamarck (1928, p. 168) assigned Gerhardt's locality to the Colon shale, to include the La Luna limestone as that term Baculites sp. indet. was used by Liddle. He also cited from the lower part Plate 3, figures 1-6 of the Colon shale at a locality on the road between Three small fragments of an apparently smooth San Cristobal and Cucuta, in the State of Tachira, species of baculite with broad-ovate cross section and Amaltheus siei^ersi and Lenticeras andii, and from a simple suture were found. One specimen measures 3.1 locality on Quebrada La Luna, in the District of Perija, mm. in greatest diameter and 2.8 mm. in least State of Zulia, Mortoniceras texanum, Amaltheus sie- diameter; the second is very nearly the same; the third versi, and Gauthiericeras lenti. At both these localities is smaller but is much crushed. As these specimens other species also are cited. Liddle (p. 169) says of the are juvenile it is not profitable to make comparisons, sequence in the vicinity of Rubio, hence near Gerhardt's and they are recorded and illustrated for what they are locality: worth. To the west and southwest of Rubio there are good sections of Figured specimens: U. S. N. M. 104163. the Colon shales exposed. Limestone nodules and lentils carry Occurrence: U. S. G. S. 18723. a good ammonite fauna. The few thin limestone beds, which are intercalated with the shales, are very poorly fossiliferous. Most of the ammonites come from a cherty, nodular horizon near Genus PAEAPUZOSIA Nowak the base of the shales. Parapuzosia? sp. Kehrer (1937, pp. 48-51) describes the La Luna lime­ stone near Colon, Tachira, as including black and gray Plate 3, figures 7-10 cherts above and dark well-bedded limestone below. A single, very young specimen that retains parts of The overlying Colon shale is said to be dark shale with the shell differs from all others of similar size in the some intercalated limestones. It would seem that collection. Gerhardt's locality and Liddle's locality in Tachira are The shell is compressed. Cross section of whorl oval, in the upper part of the La Luna limestone of present higher than wide, flanks and venter evenly rounded. usage. Hedberg and Sass (1937, p. 80) refer Liddle's Umbilicus moderately wide, with low but distinct locality in Perija also to the La Luna. umbilical wall; umbilical shoulder rounded. Measure­ The ammonites from Haiti seem to have little in com­ ments in millimeters and percentage of diameter: mon with those from Jamaica, for the species of Pachy­ Diameter, 11.7; height of outer whorl, 4.6, 39; thickness discus present are not closely related, and there is still of outer whorl, 4.1, 35; width of umbilicus, 3.4, 29. less in common with the ammonites listed from Puerto The shell is apparently nearly smooth throughout. Rico and Cuba. On the contrary, the fauna reported At a diameter of approximately 7 mm., the internal by Gerhardt from southwestern Venezuela appears to mold shows a clear constriction running from the inner be closely related. Gerhardt's list includes both a part
Recommended publications
  • Non-Invasive Imaging Methods Applied to Neo- and Paleo-Ontological Cephalopod Research
    Biogeosciences, 11, 2721–2739, 2014 www.biogeosciences.net/11/2721/2014/ doi:10.5194/bg-11-2721-2014 © Author(s) 2014. CC Attribution 3.0 License. Non-invasive imaging methods applied to neo- and paleo-ontological cephalopod research R. Hoffmann1, J. A. Schultz2, R. Schellhorn2, E. Rybacki3, H. Keupp4, S. R. Gerden1, R. Lemanis1, and S. Zachow5 1Institut für Geologie, Mineralogie und Geophysik, Ruhr Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany 2Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 8, 53115 Bonn, Germany 3Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum GFZ Sektion 3.2, Geomechanik und Rheologie, Telegrafenberg, D 429, 14473 Potsdam, Germany 4Institut für Geologische Wissenschaften, Fachrichtung Paläontologie, Freie Universität Berlin, Malteserstrasse 74–100, 12249 Berlin, Germany 5Zuse Institut Berlin, Takustrasse 7, 14195 Berlin, Germany Correspondence to: R. Hoffmann ([email protected]) Received: 28 October 2013 – Published in Biogeosciences Discuss.: 29 November 2013 Revised: 14 March 2014 – Accepted: 29 March 2014 – Published: 22 May 2014 Abstract. Several non-invasive methods are common prac- tially preserved within the surrounding rocks, requires imag- tice in natural sciences today. Here we present how they ing methods that are primarily used in non-destructive test- can be applied and contribute to current topics in cephalo- ing. The conservation of the specimen is of main importance pod (paleo-) biology. Different methods will be compared in using these methods since former techniques used destruc- terms of time necessary to acquire the data, amount of data, tive methods leading to the loss of the specimen or parts accuracy/resolution, minimum/maximum size of objects that of the specimen.
    [Show full text]
  • ALBIAN AMMONITES of POLAND (Plates 1—25)
    PALAEONTOLOGIA POLQNICA mm ■'Ъ-Ь POL T S H ACADEMY OF SCIENCES INSTITUTE OF PALEOBIOLOGY PALAEONTOLOGIA POLONICA—No. 50, 1990 t h e a l b ia w AMMONITES OF POLAND (AMQNITY ALBU POLS К I) BY RYSZARD MARCINOWSKI AND JOST WIEDMANN (WITH 27 TEXT-FIGURES, 7 TABLES AND 25 PLATES) WARSZAWA —KRAKÔW 1990 PANSTWOWE WYDAWNICTWO NAUKOWE KEDAKTOR — EDITOR JOZEP KA2MIERCZAK 2ASTEPCA HEDAKTOHA _ ASSISTANT EDITOR m AôDAlenA BÛRSUK-BIALYNICKA Adres Redakcjl — Address of the Editorial Office Zaklad Paleobiologij Polska Akademia Nauk 02-089 Warszawa, AI. 2w irki i Wigury 93 KOREKTA Zespol © Copyright by Panstwowe Wydawnictwo Naukowe Warszawa — Krakôw 1990 ISBN 83-01-09176-2 ISSN 0078-8562 Panstwowe Wydawnielwo Naukowe — Oddzial w Krakowie Wydanie 1, Naklad 670 + 65 cgz. Ark. wyd. 15. Ark. druk. 6 + 25 wkladek + 5 wklejek. Papier offset, sat. Ill kl. 120 g. Oddano do skiadania w sierpniu 1988 r. Podpisano do druku w pazdzierniku 1990 r. Druk ukoriczono w listopadzie 1990 r. Zara. 475/87 Drukarnia Uniwersytetu Jagielloriskiego w Krakowie In Memory of Professor Edward Passendorfer (1894— 1984) RYSZARD MARCINOWSKI and JOST WIEDMANN THE ALBIAN AMMONITES OF POLAND (Plates 1—25) MARCINOWSKI, R. and WIEDMANN, J.: The Albian ammonites of Poland. Palaeonlologia Polonica, 50, 3—94, 1990. Taxonomic and ecological analysis of the ammonite assemblages, as well as their general paleogeographical setting, indicate that the Albian deposits in the Polish part of the Central European Basin accumulated under shallow or extremely shallow marine conditions, while those of the High-Tatra Swell were deposited in an open sea environment. The Boreal character of the ammonite faunas in the epicontinental area of Poland and the Tethyan character of those in the Tatra Mountains are evident in the composition of the analyzed assemblages.
    [Show full text]
  • 12. Lower Cretaceous Ammonites from the South Atlantic Leg 40 (Dsdp), Their Stratigraphic Value and Sedimentologic Properties
    12. LOWER CRETACEOUS AMMONITES FROM THE SOUTH ATLANTIC LEG 40 (DSDP), THEIR STRATIGRAPHIC VALUE AND SEDIMENTOLOGIC PROPERTIES Jost Wiedmann and Joachim Neugebauer, Geol.-palaont. Institut der Universitat Tubingen, BRD ABSTRACT Eleven ammonites have been cored during Leg 40. They were found concentrated in the lower parts of the drilled section at Sites 363 (Walvis Ridge) and 364 (Angola Basin), and permit recognition of upper Albian, middle Albian, and upper Aptian. So far, no lower Albian could be recognized. A high ammonite density can be assumed for the South Atlantic Mid-Cretaceous. In contrast to data available so far, the Walvis Ridge associations consisting of phylloceratids and desmoceratids show more open- basin relationships than those of the Angola Basin, which are composed of mortoniceratids, desmoceratids, and heteromorphs. Paleobiogeographically, the South Atlantic fauna can be related to the well-known onshore faunas of Angola, South Africa, and Madagascar as well as to the European Mid-Cretaceous. This means that the opening of the South Atlantic and its connection with the North Atlantic occurred earlier as was generally presumed, i.e., in the middle Albian. Records of lower Aptian ammonite faunas from Gabon and Brazil remain doubtful. High rates of sedimentation prevailed especially in the Aptian and Albian, in connection with the early deepening of the South Atlantic basins. The mode of preservation of the ammonites suggests that they were deposited on the outer shelf or on the upper continental slope and were predominantly buried under sediments of slightly reducing conditions. In spite of a certain variability of the depositional environment, the ammonites show a uniform and particular mode of preservation.
    [Show full text]
  • First Record of Non-Mineralized Cephalopod Jaws and Arm Hooks
    Klug et al. Swiss J Palaeontol (2020) 139:9 https://doi.org/10.1186/s13358-020-00210-y Swiss Journal of Palaeontology RESEARCH ARTICLE Open Access First record of non-mineralized cephalopod jaws and arm hooks from the latest Cretaceous of Eurytania, Greece Christian Klug1* , Donald Davesne2,3, Dirk Fuchs4 and Thodoris Argyriou5 Abstract Due to the lower fossilization potential of chitin, non-mineralized cephalopod jaws and arm hooks are much more rarely preserved as fossils than the calcitic lower jaws of ammonites or the calcitized jaw apparatuses of nautilids. Here, we report such non-mineralized fossil jaws and arm hooks from pelagic marly limestones of continental Greece. Two of the specimens lie on the same slab and are assigned to the Ammonitina; they represent upper jaws of the aptychus type, which is corroborated by fnds of aptychi. Additionally, one intermediate type and one anaptychus type are documented here. The morphology of all ammonite jaws suggest a desmoceratoid afnity. The other jaws are identifed as coleoid jaws. They share the overall U-shape and proportions of the outer and inner lamellae with Jurassic lower jaws of Trachyteuthis (Teudopseina). We also document the frst belemnoid arm hooks from the Tethyan Maastrichtian. The fossils described here document the presence of a typical Mesozoic cephalopod assemblage until the end of the Cretaceous in the eastern Tethys. Keywords: Cephalopoda, Ammonoidea, Desmoceratoidea, Coleoidea, Maastrichtian, Taphonomy Introduction as jaws, arm hooks, and radulae are occasionally found Fossil cephalopods are mainly known from preserved (Matern 1931; Mapes 1987; Fuchs 2006a; Landman et al. mineralized parts such as aragonitic phragmocones 2010; Kruta et al.
    [Show full text]
  • Sucesión De Amonitas Del Cretácico Superior (Cenomaniano – Coniaciano) De La Parte Más Alta De La Formación Hondita Y De L
    Boletín de Geología Vol. 33, N° 1, enero-junio de 2011 SUCESIÓN DE AMONITAS DEL CRETÁCICO SUPERIOR (CENOMANIANO – CONIACIANO) DE LA PARTE MÁS ALTA DE LA FORMACIÓN HONDITA Y DE LA FORMACIÓN LOMA GORDA EN LA QUEBRADA BAMBUCÁ, AIPE - HUILA (COLOMBIA, S. A.) Pedro Patarroyo1 RESUMEN La sección de la quebrada Bambucá (Aipe - Huila) posee una buena exposición de los depósitos del Cretácico del Valle Superior del Magdalena. De la parte alta de la Formación Hondita se recolectaron Acanthoceras sp. y Rhynchostreon sp. del Cenomaniano superior. Dentro del segmento inferior de la Formación Loma Gorda se hallaron Choffaticeras (C.) cf. segne, Fagesia cf. catinus, Neoptychites cf. andinus, Mitonia gracilis, Morrowites sp., Nannovascoceras ? sp., Quitmaniceras ? sp., Benueites ? sp. junto con Mytiloides kossmati, M. goppelnensis y Anomia sp. del Turoniano inferior. Estratigráficamente arriba aparecen Paramammites ? sp., Hoplitoides sp. H. ingens, H. cf. lagiraldae, Codazziceras ospinae, Allocrioceras sp., que pueden estar representando entre el Turoniano inferior y medio. Para la parte alta de este segmento se encontraron Prionocycloceras sp. P. guayabanum, Reesidites subtuberculatum, Subprionotropis colombianus, Mytiloides scupini, Dydimotis sp., Gauthiericeras sp., Anagaudryceras ? sp., Eulophoceras jacobi, Paralenticeras sieversi, Hauericeras cf. madagascarensis, Peroniceras (P.) subtricarinatum, Forresteria (F.) sp., Barroisiceras cf. onilahyense, Ankinatsytes venezolanus que abarcan entre el Turoniano superior y el Coniaciano. Con base en la fauna colectada no es posible establecer los límites Cenomaniano/Turoniano y Turoniano/Coniaciano. Palabras clave: Amonitas, Cretácico superior, Valle Superior del Magdalena, Aipe-Huila-Colombia. UPPER CRETACEOUS AMMONITE SUCCESSION (CENOMANIAN – CONIACIAN) RELATED TO THE UPPER HONDITA AND LOMA GORDA FORMATIONS ALONG THE BAMBUCÁ CREEK, AIPE - HUILA (COLOMBIA, S.A.) ABSTRACT The Bambucá creek section (Aipe - Huila) shows a very good exposition of the Upper Magdalena Valley Cretaceous deposits.
    [Show full text]
  • Palaeontological Society of Japan
    Transactions and Proceedings of the Palaeontological Society of Japan New Series No. 87 Palaeontological Society of Japan September 30, 1972 Editor: Takashi HAMADA Associate editor: Yasuhide IWASAKI Officers for 1971 -1972 President: · Tokio SHIKAMA Councillors (* Executives): Kiyoshi ASANO*, Kiyotaka CHINZEI*, Takashi HAMADA*, Tetsuro HANAI*, Kotora HATAI, Itaru HAYAMI, Koichiro IcHIKAWA, Taro KANAYA, Kametoshi KANMERA, Tamio KOTAKA, Tatsuro MATSUMOTO*, Hiroshi OZAKI*, Tokio SHIKAMA *, Fuyuji TAKA!*, Yokichi TAKA YANAGI Secretaries: W ataru HASHIMOTO, Saburo KANNO Executive Committee General Affairs: Tetsuro HANAI, Naoaki AOKI Membership: Kiyotaka CHINZEI, Toshio KOIKE Finance: Fuyuji T AKAI, Hisayoshi !Go Planning : Hiroshi OZAKI, Kazuo ASAMA Publications Transactions : Takashi HAMADA, Y asuhide IwASAKI Special Papers: Tatsuro MATSUMOTO, Tomowo OzAWA " Fossils": Kiyoshi ASANO, Toshiaki TAKAYAMA All communications relating to this journal should be addressed to the PALAEONTOLOGICAL SOCIETY OF JAPAN c/o Business Center for Academic Societies, Japan Yayoi 2-4-16, Bunkyo-ku, Tokyo 113, Japan. Sole agent: University of Tokyo Press, Hongo, Tokyo Trans. Proc. Palaeont. Soc. Japan; N.S., No. 87, pp. 377-394, pl. 47, September 30, 1972 601. TWO SMALL DESMOCERATID AMMONITES FROM HOKKAIDO (STUDIES OF THE CRETACEOUS AMMONITES FROM HOKKAIDO AND SAGHALIEN-XXIV)* TATSURO MATSUMOTO!), TATSUO MURAMOT02> and AKITOSHI INOMN> ~l::.ffljitffti:-T:A.:c-e 7 :Af31.'H~~7 :..-'.:C-;1-1 ~ 2 f!fi: -t'O) 1 fi~~}]IJ!I!!)JJ3.!1E.;'f-O)r$-e / ~ =- 7 :..-'0) Mantelliceras japonicum 1\'.'17• t?:>iit L. t: "b 0)'"(', Wfr~Wfrm! C. VC:::.. :::.lr.ilcl!lXT .Qo :::.. hvinl<:f*~O)fE:Q~ 2 em JE.l?:>fO)'J''!!'t', JLI:l~v'ijWiWTrilfi~ "b t:,, mi»EEIB~Jl!:Q~y L.
    [Show full text]
  • Redalyc.SUCESIÓN DE AMONITAS DEL CRETÁCICO SUPERIOR (CENOMANIANO – CONIACIANO) DE LA PARTE MÁS ALTA DE LA FORMACIÓN HONDIT
    Boletín de Geología ISSN: 0120-0283 [email protected] Universidad Industrial de Santander Colombia Patarroyo, Pedro SUCESIÓN DE AMONITAS DEL CRETÁCICO SUPERIOR (CENOMANIANO – CONIACIANO) DE LA PARTE MÁS ALTA DE LA FORMACIÓN HONDITA Y DE LA FORMACIÓN LOMA GORDA EN LA QUEBRADA BAMBUCÁ, AIPE - HUILA (COLOMBIA, S. A.) Boletín de Geología, vol. 33, núm. 1, enero-junio, 2011, pp. 69-92 Universidad Industrial de Santander Bucaramanga, Colombia Disponible en: http://www.redalyc.org/articulo.oa?id=349632022005 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Boletín de Geología Vol. 33, N° 1, enero-junio de 2011 SUCESIÓN DE AMONITAS DEL CRETÁCICO SUPERIOR (CENOMANIANO – CONIACIANO) DE LA PARTE MÁS ALTA DE LA FORMACIÓN HONDITA Y DE LA FORMACIÓN LOMA GORDA EN LA QUEBRADA BAMBUCÁ, AIPE - HUILA (COLOMBIA, S. A.) Pedro Patarroyo1 RESUMEN La sección de la quebrada Bambucá (Aipe - Huila) posee una buena exposición de los depósitos del Cretácico del Valle Superior del Magdalena. De la parte alta de la Formación Hondita se recolectaron Acanthoceras sp. y Rhynchostreon sp. del Cenomaniano superior. Dentro del segmento inferior de la Formación Loma Gorda se hallaron Choffaticeras (C.) cf. segne, Fagesia cf. catinus, Neoptychites cf. andinus, Mitonia gracilis, Morrowites sp., Nannovascoceras ? sp., Quitmaniceras ? sp., Benueites ? sp. junto con Mytiloides kossmati, M. goppelnensis y Anomia sp. del Turoniano inferior. Estratigráficamente arriba aparecen Paramammites ? sp., Hoplitoides sp.
    [Show full text]
  • Mollusca of the Cretaceous Bald Hills Formation of California
    MOLLUSCA OF THE CRETACEOUS BALD HILLS FORMATION OF CALIFORNIA M. A. MURPHY AND P. U. RODDA Reprinted from JOURNAL OF PALEONTOLOGY Vol. 34, No. 5, September, 1960 JOURNAL OF PALEONTOLOGY, V. 34, NO. 5, P. 835-858, PLS. 101-107, 2 TEXT-FIGS., SEPTEMBER, 1960 MOLLUSCA OF THE CRETACEOUS BALD HILLS FORMATION OF CALIFORNIA PART I MICHAEL A. MURPHY AND PETER U. RODDA1 University of California, Riverside, and Bureau of Economic Geology, Austin, Texas ABSTRACT—A well preserved molluscan fauna has been collected from previously undescribed Cretaceous rocks in the northwestern Sacramento Valley, California. The fossils occur in the Bald Hills formation, a 1000-foot to 1900-foot thick south- east dipping conglomerate, graywacke, and mudstone unit which ranges in age from Late Albian to Late Cenomanian. The gastropod and cephalopod elements of this fauna number thirty-two species, seventeen of which are new. New species described are: Solariella Stewarti, Tessarolax trinalis, Gyrodes allisoni, Gyrodes greeni, Ampullina stantoni, Ampullina mona, Euspira popenoei, Euspira marianus, Paleosephaea sacramentica, Clinura anassa, Acteon sullivanae, Cylichia andersoni, Marietta (Marietta) fricki, Turritites (Turritites) dilleri, Puzosia puma, Puzosia sullivanae, Eogunnarites matsumotoi. INTRODUCTION unit. The formation as presently recognized has been traced from the Igo-Cottonwood LARGE number of well preserved Cre- A taceous mollusks has been collected road south-southwest to Roaring River and from previously undescribed rocks in the supports the relatively high ridges of the northwestern Sacramento Valley, Shasta Bald Hills from which it derives its name. County, California. This paper describes The conglomerate units in this part of the and discusses the cephalopod and gastropod section on Dry Creek in Tehama County elements of this fauna and defines the Bald probably should be included in the forma- Hills formation, the unit in which they oc- tion but detailed mapping in that area is not cur.
    [Show full text]
  • The Upper Campanian – Lower Maastrichtian Cephalopod Fauna of Botellos, Nuevo León: a Key to Understand Faunal Turnover Acros
    Acta Geologica Polonica, Vol. 67 (2017), No. 1, pp. 145–162 DOI: 10.1515/agp-2017-0009 The Upper Campanian – lower Maastrichtian cephalopod fauna of Botellos, Nuevo León: a key to understand faunal turnover across the Campanian–Maastrichtian boundary in NE Mexico CHRISTINA IFRIM1*, JACOBO EDGAR LARA DE LA CERDA2, VICTOR HUGO PEÑA PONCE2 and WOLFGANG STINNESBECK1 1Institut für Geowissenschaften, Ruprecht-Karls-Universität, D-69120 Heidelberg, Germany *E-mail: [email protected] 2Universidad Humanista De Las Americas, Martin de Zavala # 510, Monterrey, C.P. 64000, N.L., México ABSTRACT: Ifrim, C., Lara de la Cerda, J.E., Peña Ponce, V.H. and Stinnesbeck, W. 2017. The Upper Campanian – lower Maastrichtian cephalopod fauna of Botellos, Nuevo León: a key to understand faunal turnover across the Campanian–Maastrichtian boundary in NE Mexico. Acta Geologica Polonica, 67 (1), 145–162. Warszawa. A new cephalopod collection from the Campanian-Maastrichtian boundary interval of NE Mexico, consisting of 1076 individuals assigned to 29 species and 22 genera is presented. This collection is a mix of ammonoids, one coleoid and one nautilid, which originate from at least three ammonoid biozones: The upper Campan- ian Exiteloceras jenneyi and Nostoceras (Nostoceras) hyatti zones, and the lower Maastrichtian Pachydiscus (Pachydiscus) neubergicus Zone. The age of the collection is thus middle late Campanian to late early Maas- trichtian, and it closes a stratigraphic gap between faunas described formerly from this region. The specimens are nuclei collected from the desert pavement. The abundance of specimens allows for a comparison to other Campanian–Maastrichtian ammonoid records from Mexico, North America and Europe.
    [Show full text]
  • Cretaceous Ammonite Distributions and the Opening of the South Atlantic
    Cretaceous ammonite distributions and the opening of the South Atlantic WILLIAM JAMES KENNEDY & MICHAEL COOPER SUMMARY Analysis of distribution patterns of middle to absence of early Turonian marine deposits in late Cretaceous ammonites along the line of Southern Africa), but such evidence as is the opening S. Atlantic suggest that open available also suggests continued connection. marine connections, if not actual rifting, Palaeobiogeographic evidence is thus corn- developed during early upper Albian times, patible with sea floor spreading and palaeo- and extended continuously to the close of the magnetic data, rather than in conflict, as Cenomanian. Evidence of early Turonian previouslysuggested. distributions is equivocal (due largely to an PALAEOMAONETIC and sea floor spreading data (Creer et al. I965; Amaral et al. I966; McDougaU & Ruegg I966; Saito et al. x966; Siedner & Miller x968; Maxwell et al. I97o; Valencio & Vilas I97o ) have suggested to recent authors that initial rifling between Africa and S. America began in early or mid- Cretaceous times, while the recovery of chalks and nannofossil oozes of Albian to Cenomanian date from the Walvis Ridge (Pastouret & Goslin I974) confirms this view. In contrast, studies of distribution patterns of Cretaceous marine invertebrates, notably ammonites, from coastal basins flanking the south Atlantic (Beurlen I96I , Reyment i969-72 , Reyment & Tait I972, Cooper x972-I974) are held to indicate that a continuous marine connection between N. and S. Atlantic areas was not established until the close of the early Turonian. We would suggest on the basis of recent work on mid to late Cretaceous faunas from Angola (Cooper I972-I974) , Zululand and Natal (South Africa) (Kennedy & Klinger I97I , in press) that faunal distributions rather confirm a far earlier open marine N.-S.
    [Show full text]
  • Cretaceous Ammonites from the Lower Part of the Matanuska Formation Southern Alaska
    Cretaceous Ammonites From the Lower Part of The Matanuska Formation Southern Alaska By DAVID L. JONES With a STRATIGRAPHIC SUMMARY By ARTHUR GRANT2 GEOLOGICAL SURVEY PROFESSIONAL PAPER 547 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1967 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. GS 66-286 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price $1.25 (paper cover) CONTENTS Page Abstract-----------__-------------------------------- 1 Stratigraphic summary of the lower part of the Matanuska Introduction--------------------------------------- 1 Formation-Continued Mid-Cretaceous faunal sequence in southern Alaska- - - - .. 2 Unit B, sandstone of Cenomanian age-- _---------- 3 Unit C, strata of Cenomanian to Santonian(?) age--- Cenomanian - - - - - - _ - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 Unit Gl, lutite of Cenomanian to Coniacian or Stratigraphic summary of the lower part of the Matanuska Santonian age-____----------------------- Formation, by Arthur Grants -------_______--------- Unit G2, composite sequence of Coniacian and Unit A, strata of Albian age ...................... Santonian(?) age .......................... Limestone Hills area- - ----____-------------- Regional correlation of the lower part of the Matanuska North front of the Chugach Mountains--- - - - - - Forrnation_____---------------------------------- Matanuska Valley---------_-____---------
    [Show full text]
  • Albian and Cenomanian Ammonites of the Eastern Margin of the Lut Block (East Iran)
    Carnets Geol. 16 (25) Albian and Cenomanian ammonites of the eastern margin of the Lut block (East Iran) Javad SHARIFI 1 Seyed Naser RAISOSSADAT 2, 3 Maryam MORTAZAVI MEHRIZI 4 Maryam MOTAMEDALSHARIATI 5 Abstract: Upper Albian and Lower Cenomanian ammonites occur on the eastern margin of the Lut block in eastern Iran. The ammonite assemblages described herein are from the Nimbolook and Kerch sections located west of Qayen. The following taxa are described: Mantelliceras mantelli (J. SOWERBY, 1814), Mantelliceras saxbii (SHARPE, 1857), Mantelliceras sp. 1, Mantelliceras sp. 2, Mantelliceras sp. 3, Sharpeiceras laticlavium (SHARPE, 1855), Sharpeiceras schlueteri (HYATT, 1903), Puzosia (Puzosia) mayoriana (ORBIGNY, 1841), Hyphoplites costosus C.W. WRIGHT & E.V. WRIGHT, 1949, Mortoniceras (Mortoniceras) cf. fallax (BREISTROFFER, 1940), Mantelliceras cf. mantelli (J. SOWERBY, 1814), Caly- coceras (Gentoniceras) aff. gentoni (BRONGNIART, 1822), Idiohamites fremonti (MARCOU, 1858), Mariella (Mariella) sp., Mariella (Mariella) dorsetensis (SPATH, 1926), and Turrilites costatus LAMARCK, 1801. The ammonite assemblages clearly indicate a late Albian-middle Cenomanian age for the Nimbolook section and late Albian-early Cenomanian age for the Kerch section. Key-words: • Albian; • Cenomanian; • Cretaceous; • ammonites; • systematic paleontology; • biostratigraphy; • Qayen; • Lut block; • Iran. Citation: SHARIFI J., RAISOSSADAT S.N., MORTAZAVI MEHRIZI M. & MOTAMEDALSHARIATI M. (2016).- Albian and Cenomanian ammonites of the Eastern margin of the Lut block (East Iran).- Carnets Geol., Madrid, vol. 16, no. 25, p. 591-613. Résumé : Ammonites albiennes et cénomaniennes de la bordure orientale du bloc de Lut (E Iran).- Des ammonites de l'Albien supérieur et du Cénomanien inférieur sont présentes sur la bordure orientale du bloc de Lut dans la partie orientale de l'Iran.
    [Show full text]