Eyes on the Sky: Rethinking Verification in Space

Total Page:16

File Type:pdf, Size:1020Kb

Eyes on the Sky: Rethinking Verification in Space UNIDIR SPACE DOSSIER 4 October 2019 — Space Dossier 4 EYES ON THE SKY RETHINKING VERIFICATION IN SPACE 1 EYES ON THE SKY RETHINKING VERIFICATION IN SPACE ACKNOWLEDGEMENTS The author is grateful for the comments and feedback provided by John Borrie, Renata Dwan, Moriba Jah, Larry MacFaul, Paul Meyer and others. Support from UNIDIR’s core funders provides the foundation for all the Institute’s activities. In 2019, dedicated funding for UNIDIR’s space security activities was received from the Governments of Australia, Brazil, the People’s Republic of China, The Holy See, New Zealand, the Russian Federation and Sweden. The author would also like to thank Anatina Weidmann for her support. ABOUT UNIDIR UNIDIR is a voluntarily funded, autonomous institute within the United Nations. One of the few policy institutes worldwide focusing on disarmament, UNIDIR generates knowledge and promotes dialogue and action on disarmament and security. Based in Geneva, UNIDIR assists the international community to develop the practical, innovative ideas needed to find solutions to critical security problems. NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in the publication are the sole responsibility of the individual authors. They do not necessary reflect the views or opinions of the United Nations, UNIDIR, its staff members or sponsors. www.unidir.org © UNIDIR 2019 2 UNIDIR SPACE DOSSIER 4 Table of Contents Key Findings 1 1. Introduction 3 2. Context 5 3. The verification challenge 7 4. Setting criteria for verification 11 5. Detecting space activites 13 6. Identification and threat assessments 21 7. What to expect? 25 8. What to do with this technology? 27 9. Conclusion 33 List of Tables & Figures Figure 1 - GEO Satellite 8 Figure 2 - Astriagraph 19 Table 1 - Summary of scope options 32 3 EYES ON THE SKY RETHINKING VERIFICATION IN SPACE ABOUT THE AUTHOR DANIEL PORRAS is the Space Security Fellow at UNIDIR. He focuses on political/legal issues surrounding space security and the progressive development of sustainable norms of behaviour for space. He conducts research on the emergence of new technologies and approaches to strategic stability in space. He holds an LLM in International Economics Law from Georgetown University Law Center, a Juris Doctorate from the California Western School of Law and a bachelor’s degree in political science from Baylor University. ACRONYMS & ABBREVIATIONS AGI Analytical Graphics Inc. ASAT anti-satellite GEO geosynchronous orbit LEO low Earth orbit LIDAR light detection and ranging PAROS Prevention of an Arms Race in Outer Space SSA space situational awareness SSN US Space Surveillance Network 4 UNIDIR SPACE DOSSIER 4 Key Findings One of the main challenges to the By combining new sensors and development of international le- computing methodologies, it is 1gally binding instruments for space 3 possible today to effectively veri- security is “effective verification” of fy at least some types of activities re- compliance. For an agreement to be ef- lated to space security. Measures such fectively verifiable, it must be possible as prohibiting the testing of anti-sat- to detect a “militarily meaningful” vio- ellite technology or rules of behaviour lation in time to deny the benefits of a for on-orbit service vehicles, while lim- violation. While there are many factors ited in scope, can be effectively ver- inhibiting the negotiation of measures ified. These might be incorporated to address space security threats among into a larger space traffic management States, one of the obstacles frequently framework, which could be effectively cited is a lack of technological means verified with existing space situational to overcome the physical challenges to awareness technology. conducting verification in space. Developments in space situation- al awareness technology are en- 2 abling a clearer and more detailed picture of space activities, particularly in the geosynchronous orbit. In compar- ison to 10 years ago, today there are more sensors, improved sensors and greater computing power. 1 EYES ON THE SKY RETHINKING VERIFICATION IN SPACE 2 UNIDIR SPACE DOSSIER 4 © NASA/Bill Ingalls 1 Introduction ecent developments in space to what that agreement should be or Rsecurity indicate that future conflicts whether compliance is even verifiable.1 will increasingly feature the targeting of satellites and their related networks for In this context, advances in certain intentional disruption and destruction. space technologies, particularly in The effects of such attacks could be space situational awareness (SSA), may considerable, impacting both military provide a technical basis for verification and civilian activities around the world. that States can use to consider legal and In view of this, United Nations Member policy options for future agreements on States are exploring possible multilateral space security. By understanding the political and legal measures and extent and limitations of SSA, States arrangements intended to strengthen might be able to focus on those space stability and security in space. security challenges that are verifiable, and which could be the subject of Within these discussions, the issue successful international negotiations. of verification of any arrangement is a divisive issue. While there is broad agreement among the international community on the need to strengthen the governance framework for space activities, there is little consensus as 1 See Report of the Conference on Disarmament Subsidiary Body 3: Prevention of an Arms Race in Outer Space, CD/WP.611, 3 September 2018, pp. 2–3, 5. 3 EYES ON THE SKY RETHINKING VERIFICATION IN SPACE 4 UNIDIR SPACE DOSSIER 4 © ESA/Victor R. Ruiz 2 Context arallel trends are driving an increase warning, targeting and delivery systems Pin threats to space security. First, for both nuclear and some advanced space is increasingly important for conventional weapons. States’ reliance nearly all aspects of modern human on military space systems will continue activities, especially military activities.2 to increase in coming years. Conventional forces rely heavily on military and commercial satellites for Second, new technological devel- telecommunications, data transmission opments are enabling ‘counterspace and reconnaissance.3 Satellites play a capabilities’, namely the ability to fundamental role in command, control, deny an adversary the use of their communication and intelligence space systems through disruption systems.4 Satellites are also key for early- or destruction. Some technologies 2 See “Competing in Space”, National Air and Space Intelligence Center, December 2018, p. 1, https://media.defense.gov/2019/Jan/16/2002080386/-1/-1/1/190115-F-NV711-0002.PDF. See also “2016 White Paper on Chinese Space Activities”, Information Office of the State Council of China, 27 December 2016, http://english.www.gov.cn/archive/white_paper/2016/12/28/content_281475527159496.htm. See also “Space Strategy for Europe”, communication from the Commission to the European Parliament, the Council, the European Economic Social Committee and the Committee of the Regions, COM(2016) 705 final, 26 October 2016, file:///C:/Users/PORRAS/Downloads/COM_2016_705_F1_COMMUNICATION_ FROM_COMMISSION_TO_INST_EN_V12_P1_864471.PDF. 3 “Shared Risks: An Examination of Universal Space Security Challenges”, UNIDIR, briefing paper for the Disarmament Commission, p. 7, http://www.unidir.org/files/publications/pdfs/shared-risks-an-examina- tion-of-universal-space-security-challenges-en-775.pdf. 4 James Acton, Tong Zhao and Li Bin, “Reducing the Risk of Nuclear Entanglement”, Carnegie Endowment for International Peace, 12 September 2018, https://carnegieendowment.org/2018/09/12/re- ducing-risks-of-nuclear-entanglement-pub-77236. 5 EYES ON THE SKY RETHINKING VERIFICATION IN SPACE can cause temporary disruptions to specific space objects, like jamming a telecommunication satellite or blinding DEBRIS CAN REMAIN a remote-sensing satellite.5 Others, such as direct-ascent kinetic anti- IN ORBIT FOR satellite (ASAT) missiles, can physically MANY YEARS AND destroy a space object, leaving behind space debris.6 This debris can remain POSES A THREAT in orbit for many years and poses a OF COLLISION WITH threat of collision with other objects in the same orbit. Thus, counterspace OTHER OBJECTS IN capabilities—which several States are actively pursuing7 —can have serious THE SAME ORBIT. consequences for third parties, such as civil or commercial operators. With ever United Nations Member States decreasing barriers to entry into space, undertook several efforts throughout even non-State actors may be able to 2018 and 2019 to clarify or reinforce interfere with national space objects the existing regime for space activities. soon. However, due to the technical and political complexity of space security When one considers these trends in issues, including verification, these combination with current geopolitical efforts have thus far had limited success.8 rivalries among states such as China, India, the Russian Federation and the United States, it suggests that space systems are at greater risk from intentional direct and collateral harm than ever before. For this reason, 5 Rajeswari Pilai Rajagopalan, “Electronic
Recommended publications
  • Moriba Kemessia Jah, Ph.D. August 2020 THE
    Moriba Kemessia Jah, Ph.D. August 2020 THE UNIVERSITY OF TEXAS AT AUSTIN Cockrell School of Engineering Resume FULL NAME: Moriba Kemessia Jah TITLE: Associate Professor DEPARTMENT: Aerospace Engineering and Engineering Mechanics EDUCATION: Embry-Riddle Aeronautical University Aerospace Engineering B.S. 1999 University of Colorado (Boulder) Aerospace Engineering Sci M.S. 2001 University of Colorado (Boulder) Aerospace Engineering Sci Ph.D. 2005 PROFESSIONAL REGISTRATION: Not Registered CURRENT AND PREVIOUS ACADEMIC POSITIONS: Associate Professor (with Tenure), The University of Texas at Austin, • Department of Aerospace Engineering and Engineering Mechanics, February 2020 – present Affiliate Faculty, The University of Texas at Austin • Environmental Sciences Institute, October 2019 – present Visiting Professor, Australian National University • Research School of Aerospace, Mechanical, and Environmental Engineering (RSAMEE), July 2019 – present Core Faculty, The University of Texas at Austin, • Oden Institute for Computational Engineering and Sciences, August 2018 – present Director, The University of Texas at Austin, • Oden Institute Computational Astronautical Sciences and Technologies Group, August 2018 - present Associate Professor (Tenure-Track), The University of Texas at Austin, • Department of Aerospace Engineering and Engineering Mechanics, April 2017 – February 2020 • Statistics and Data Science Department (Courtesy), October 2017 – present Program Lead and Distinguished Scholar, The University of Texas at Austin, • Robert Strauss
    [Show full text]
  • ASTRIA Ontology: Open, Standards-Based, Data-Aggregated Representation of Space Objects
    Space Traffic Management Conference 2019 Progress through Collaboration Feb 26th, 2:00 PM ASTRIA Ontology: Open, Standards-based, Data-aggregated Representation of Space Objects Jennie Wolfgang The University of Texas at Austin, [email protected] Kathleen Krysher The University of Texas at Austin, [email protected] Michael Slovenski The University of Texas at Austin, [email protected] Unmil P. Karadkar The University of Texas at Austin, [email protected] Shiva Iyer The University of Texas at Austin, [email protected] See next page for additional authors Follow this and additional works at: https://commons.erau.edu/stm Part of the Cataloging and Metadata Commons, Databases and Information Systems Commons, and the Space Vehicles Commons Wolfgang, Jennie; Krysher, Kathleen; Slovenski, Michael; Karadkar, Unmil P.; Iyer, Shiva; and Jah, Moriba K., "ASTRIA Ontology: Open, Standards-based, Data-aggregated Representation of Space Objects" (2019). Space Traffic Management Conference. 2. https://commons.erau.edu/stm/2019/presentations/2 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in Space Traffic Management Conference by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Presenter Information Jennie Wolfgang, Kathleen Krysher, Michael Slovenski, Unmil P. Karadkar, Shiva Iyer, and Moriba K. Jah This event is available at Scholarly Commons: https://commons.erau.edu/stm/2019/presentations/2
    [Show full text]
  • IAA Situation Report on Space Debris - 2016
    IAA Situation Report on Space Debris - 2016 Editors: Christophe Bonnal Darren S. McKnight International A cadem y of A stronautics Notice: The cosmic study or position paper that is the subject of this report was approved by the Board of Trustees of the International Academy of Astronautics (IAA). Any opinions, findings, conclusions, or recommendations expressed in this report are those of the authors and do not necessarily reflect the views of the sponsoring or funding organizations. For more information about the International Academy of Astronautics, visit the IAA home page at www.iaaweb.org. Copyright 2017 by the International Academy of Astronautics. All rights reserved. The International Academy of Astronautics (IAA), an independent nongovernmental organization recognized by the United Nations, was founded in 1960. The purposes of the IAA are to foster the development of astronautics for peaceful purposes, to recognize individuals who have distinguished themselves in areas related to astronautics, and to provide a program through which the membership can contribute to international endeavours and cooperation in the advancement of aerospace activities. © International Academy of Astronautics (IAA) May 2017. This publication is protected by copyright. The information it contains cannot be reproduced without written authorization. Title: IAA Situation Report on Space Debris - 2016 Editors: Christophe Bonnal, Darren S. McKnight Printing of this Study was sponsored by CNES International Academy of Astronautics 6 rue Galilée, Po Box 1268-16, 75766 Paris Cedex 16, France www.iaaweb.org ISBN/EAN IAA : 978-2-917761-56-4 Cover Illustration: NASA IAA Situation Report on Space Debris - 2016 Editors Christophe Bonnal Darren S.
    [Show full text]
  • Allocation of Commercial Space Industry Components 1
    May 2018 Allocation of Commercial S pace Industry Components A Virtual Think Tank (ViTTa)® Report Deeper Analyses Clarifying Insights Better Decisions Produced in support of the Strategic Multilayer Assessment (SMA) Office (Joint Staff, J39) www.NSIteam.com Allocation of Commercial Space Industry Components 1 Authors Dr. Belinda Bragg Dr. Sabrina Pagano Please direct inquiries to Belinda Bragg at [email protected] ViTTa® Project Team Dr. Allison Astorino-Courtois Sarah Canna Nicole Peterson Executive VP Principal Analyst Analyst Weston Aviles Dr. Larry Kuznar George Popp Analyst Chief Cultural Sciences Officer Senior Analyst Dr. Belinda Bragg Dr. Sabrina Pagano Dr. John A. Stevenson Principal Research Scientist Principal Research Scientist Principal Research Scientist Interview Team1 Weston Aviles Nicole Peterson Analyst Analyst Sarah Canna George Popp Principal Analyst Senior Analyst What is ViTTa®? NSI’s Virtual Think Tank (ViTTa®) provides rapid response to critical information needs by pulsing our global network of subject matter experts (SMEs) to generate a wide range of expert insight. For this SMA Contested Space Operations project, ViTTa was used to address 23 unclassified questions submitted by the Joint Staff and US Air Force project sponsors. The ViTTa team received written and verbal input from over 111 experts from National Security Space, as well as civil, commercial, legal, think tank, and academic communities working space and space policy. Each Space ViTTa report contains two sections: 1) a summary response to the question asked; and 2) the full written and/or transcribed interview input received from each expert contributor organized alphabetically. Biographies for all expert contributors have been collated in a companion document.
    [Show full text]
  • Orbit Estimation of Geosynchronous Objects Via Ground-Based and Space-Based Optical Tracking
    Orbit Estimation of Geosynchronous Objects Via Ground-Based and Space-Based Optical Tracking by Jill Tombasco B.S., Pennsylvania State University, 2005 M.S., University of Colorado, 2009 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Aerospace Engineering Sciences 2011 This thesis entitled: Orbit Estimation of Geosynchronous Objects Via Ground-Based and Space-Based Optical Tracking written by Jill Tombasco has been approved for the Department of Aerospace Engineering Sciences Dr. Penina Axelrad Dr. George Born Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii Tombasco, Jill (Ph.D., Aerospace Engineering Sciences) Orbit Estimation of Geosynchronous Objects Via Ground-Based and Space-Based Optical Tracking Thesis directed by Dr. Penina Axelrad Angles-only orbit estimation of geosynchronous objects is a unique challenge due to the dense population of clustered geosynchronous objects, the singularities of and perturbations to geosynchronous motion, and the error inherent to experimental observations of geosynchronous objects. Passive optical tracking of geosynchronous space objects has traditionally been performed by ground-based sensors, and the capability has advanced significantly through the introduction of space-based angles-only tracking. This research addresses three key facets of geosynchronous orbit estimation accuracy: improvement to the accuracy via appropriate coordinate modeling, empirical characterization of achievable ground-based angles-only estimation accuracy, and analytic mod- eling of the space-based angles-only estimated uncertainty.
    [Show full text]
  • Orbital Traffic Management Study
    Orbital Traffic Management Study Final Report 21 November 2016 Prepared for: National Aeronautics and Space Administration (NASA) Headquarters Prepared by: Science Applications International Corporation . Report on Space Traffic Management Assessments, Frameworks and Recommendations In reply to Public Law No. 114-90, “U.S. Commercial Space Launch Competitiveness Act” Title I, “Spurring Private Aerospace Competitiveness and Entrepreneurship” Section 109, “Orbital Traffic Management” 21 November 2016 Produced by: Authors: Owen Brown, Ph.D., SAIC Travis Cottom, SAIC Michael “Mick” Gleason, Ph.D., SAIC Matthew Hallex, SAIC Andrew Long, SAIC Edgar Rivera, SAIC David Finkleman, Ph.D., SkySentry, LLC. Theresa Hitchens, Center for International and Security Studies at Maryland, UMD Moriba Jah, Ph.D., University of Arizona David Koplow, J.D., Georgetown University Law Center Ray Sedwick, Ph.D., James Clark School of Engineering, UMD Orbital Traffic Management Study – Final Report to NASA HQ – 18 November 2016 TABLE OF CONTENTS Table of Contents ........................................................................................................................................... i List of Tables ................................................................................................................................................ iii List of Figures ............................................................................................................................................... iii Executive Summary .....................................................................................................................................
    [Show full text]
  • The Role of Space Weather in Creating a Safe, Stable, and Operationally Sustainable Space Environment Friday, November 19, 2020
    Session 8: The Role of Space Weather in Creating a Safe, Stable, and Operationally Sustainable Space Environment Friday, November 19, 2020 Mr. Steph Earle is currently the Acting Deputy Division Chief for the Policy and Innovation Division within the Federal Aviation Administration’s Office of Commercial Space Transportation. He is responsible for outreach to industry, international, and interagency stakeholders; space policy, including space traffic management orbital debris; integrating commercial space operations into the National Airspace; enhancing launch collision avoidance effectiveness; and updating and developing commercial space transportation regulation, policies, and advisory circulars. Steph has been the subject expert and lead for the FAA Office of Commercial Space Transportation in numerous national space policy initiatives including space traffic management, orbital safety for launch and reentry vehicles, orbital debris mitigation practices, and national space cyberspace practices. Steph holds degrees from the Air Force Academy, the University of North Dakota, and the Air Force Institute of Technology. During his Air Force career, he worked as a Missile Combat Crew Commander for the Minuteman ICBM, performed space surveillance and tracked ballistic missiles, space launches, and all low and mid Earth-orbiting satellites at a space surveillance radar facility, and at Cape Canaveral Air Station he served as the lead Air Force launch controller for numerous rocket launches to include missions to Mars and a Global Positioning Satellite. In addition to a number of headquarter assignments, Steph’s last active duty assignment was as Chief of the Space Policy Branch on the Joint Staff where he worked countless national level space issues including national strategies, policies, and issues.
    [Show full text]
  • Tuesday, January 26 (All Times Are Central Standard Time)
    “Trust, But Verify: Incentivizing Compliance” Space Traffic Management Conference University of Texas at Austin 2021 Virtual Conference DRAFT AGENDA Tuesday, January 26 (All times are Central Standard Time) 8:00 – 8:10 am Opening Ceremony: Jean-Michel Contant, Secretary General IAA Co-chairs: Moriba Jah and Diane Howard 8:10 – 8:50 am Keynote: Kevin O’Connell, Director OSC 8:50 – 9:00 am Break 9:00 – 9:30 am Q&A Session 1: Range Management/Airspace to Orbital Integration Moderator: TBD Eng. Bibhorr Bibhorr Time-Matricized Triangulation Modelling for Space Traffic Management Gustavo Medina Tanco, et al. Scientific Ballooning with Small Payloads: In-flight and On-ground Quantitative Risk Assessment George Anthony Long High Altitude Balloons and Maverick Small Sats D.-R. Schmitt, et al. Spaceport Operations: Integration into the German Airspace Ruth Stilwell Between Air and Space: Can Emerging Concepts in Air Traffic Management for Ultra-High Altitude Uncrewed Aircraft Provide a Model for Orbital Space? 9:30 – 9:40 am Break 1 9:40 – 10:30 am Roundtable Panel 1: US Government Moderator: TBD Jeff Braxton (DoD) Steph Earle (FAA) TBC Diane Howard (DOC) Lauri Newman (NASA) TBC Amber Charlseworth (National Space Council) TBC Ryan Guglietta (State) 10:30 – 10:40 am Break 10:40 – 11:10 am Q&A Session 2: Lifetime, ADR, Disposal, and Demise Moderator: TBD Catherine Doldirina, et al. The case for no waste: autonomous decommissioning devices as a requirement for satellites, an approach for Europe Siwoo Kim, et al. Orbital Lifetime Analysis of a Leo Mega Constellation Using a High-Fidelity Orbit Propagator Hugh G.
    [Show full text]
  • Mars Express Interplanetary Navigation from Launch to Mars Orbit Insertion: the Jpl Experience
    MARS EXPRESS INTERPLANETARY NAVIGATION FROM LAUNCH TO MARS ORBIT INSERTION: THE JPL EXPERIENCE “18TH INTERNATIONAL SYMPOSIUM ON SPACE FLIGHT DYNAMICS” Dongsuk Han (1), Dolan Highsmith (2), Moriba Jah (3), Diane Craig (4), James Border (5), Peter Kroger (6) (1 – 6) Member Technical Staff, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena CA 91109 (USA), [email protected] ABSTRACT December 2003. The following day, MEX performed a The Jet Propulsion Laboratory (JPL), California Institute of Technology and the National Aeronautics maneuver to divert from the impact trajectory necessary for Beagle 2 to a path that allowed the spacecraft to and Space Administration have played a significant role enter orbit around the Red Planet. It arrived at Mars on in supporting the safe arrival of the European Space 25 December 2003, performing a flawless capture Agency (ESA) Mars Express (MEX) orbiter to Mars on maneuver [2]. 25 December 2003. MEX mission is an international collaboration between member nations of the ESA and A critical aspect of such interplanetary navigation is the NASA, where NASA is supporting partner. JPL's orbit determination (OD). The OD evaluates radiometric involvement included providing commanding and and interferometric tracking data to estimate the tracking service with JPL's Deep Space Network (DSN), spacecraft position and velocity, along with other in addition to navigation assurance. The collaborative dynamic modelling quantities like solar radiation navigation effort between European Space Operations pressure. These parameters are then used to predict the Centre (ESOC) and JPL is the first since ESA's last deep trajectory and design maneuvers to keep the spacecraft space mission, Giotto, and began many years before the on its intended path.
    [Show full text]
  • Spaceflight Mechanics 2011
    SPACEFLIGHT MECHANICS 2011 2 AAS PRESIDENT Frank A. Slazer Northrop Grumman VICE PRESIDENT - PUBLICATIONS Dr. David B. Spencer Pennsylvania State University EDITORS Dr. Moriba K. Jah Air Force Research Laboratory/RVSV Dr. Yanping Guo Johns Hopkins University Applied Physics Laboratory Angela L. Bowes Analytical Mechanics Associates, Inc. NASA Langley Research Center Dr. Peter C. Lai The Aerospace Corporation SERIES EDITOR Robert H. Jacobs Univelt, Incorporated Front Cover Illustration: This is one segment of an infrared portrait of dust and stars radiating in the inner Milky Way. More than 800,000 frames from NASA’s Spitzer Space Telescope were stitched together to create the full image, capturing more than 50 percent of our entire galaxy. This is a three-color composite that shows infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both captured by Spitzer’s infrared array camera. Red is 24-micron light detected by Spitzer’s multiband imaging photometer. This combines observations from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) and MIPSGAL projects. Image Credit: NASA/JPL-Caltech/University of Wisconsin. 3 SPACEFLIGHT MECHANICS 2011 Volume 140 ADVANCES IN THE ASTRONAUTICAL SCIENCES Edited by Moriba K. Jah Yanping Guo Angela L. Bowes Peter C. Lai Proceedings of the 21st AAS/AIAA Space Flight Mechanics Meeting held February 13-17, 2011, New Orleans, Louisiana. Published for the American Astronautical Society by Univelt, Incorporated, P.O. Box 28130, San Diego, California 92198 Web Site: http://www.univelt.com 4 Copyright 2011 by AMERICAN ASTRONAUTICAL SOCIETY AAS Publications Office P.O.
    [Show full text]
  • Opens New Window
    Moriba Kemessia Jah, Ph.D. January 2018 THE UNIVERSITY OF TEXAS AT AUSTIN Cockrell School of Engineering Resume FULL NAME: Moriba Kemessia Jah TITLE: Associate Professor DEPARTMENT: Aerospace Engineering and Engineering Mechanics EDUCATION: Embry-Riddle Aeronautical University Aerospace Engineering B.S. 1999 University of Colorado (Boulder) Aerospace Engineering Sci M.S. 2001 University of Colorado (Boulder) Aerospace Engineering Sci Ph.D. 2005 PROFESSIONAL REGISTRATION: Not Registered CURRENT AND PREVIOUS ACADEMIC POSITIONS: Rector-Funded Visiting Fellow, University of New South Wales (Canberra, Australia) May-June 2014 SERC-Funded Visiting Fellow, Royal Melbourne Institute of Technology University (Melbourne, Australia), May 2016 and May 2017 Adjunct Professor, Royal Melbourne Institute of Technology University, School of Science, SPACE Research Centre, 2016 - Preesent Associate Research Professor (Continuing-Status/Tenure-Equivalent), The University of Arizona, College of Engineering, January 2016 – April 2017 Geosciences Department (Courtesy), March 2016 – April 2017 Electrical and Computer Engineering Department (Courtesy), April 2016 – April 2017 Aerospace and Mechanical Engineering Department (Courtesy), September 2016 – April 2017 Associate Professor, The University of Texas at Austin, Department of Aerospace Engineering and Engineering Mechanics, April 2017 – present Statistics and Data Science Department (Courtesy), October 2017 – present OTHER PROFESSIONAL EXPERIENCE: U.S. Air Force Security Police, October 1988 – October 1992
    [Show full text]
  • STM and Enabling Sustainable Commercial Development of Space
    Launch Pad Seminars: Episode I Space Situational Awareness and Space Security May 20, 2020 Virtual Seminar Space Situational Awareness and Space Security Panelists: • Presenter: Victoria Samson, Washington Office Director, Secure World Foundation • Respondent: Moriba Jah, University of Texas at Austin • Moderator: Daniel Porras, UNIDIR Daniel Porras: Ladies and gentlemen, welcome to the very first kick-off episode of the UNIDIR Launch Pad Web Seminars series. We're really excited to be coming to you all today, in your living rooms or in your kitchens as you can see where I am, or wherever it is that you are. In this crisis that we're having right now, [inaudible 0:21] it's really important that we continue to be able to carry on these discussions. We are of course moving onto a new format. In that sense, I would like to just drop a couple of quick ground rules for how we're going to be conducting this event today. This should be quite exciting. Before we kick it off though, I would like to start out by asking you to take a poll. Just a quick question. You've all been answering this question here already. That's really great. Thank you for letting us know where you're tuning in from. I wanted to ask somebody or I wanted to ask the audience just before the outset, if I could ask our producers to head on over to the poll question. We're here today to talk about Space Situational Awareness and Space Security. As many of you know, one of the big issues that we have to tackle with the prevention of an arms race in outer space is often what can we see, what can we measure, and what can we verify in outer space given our current technology? If any of you would like to go over to the multimedia viewer, you can please have a look at the [inaudible 1:28] right now.
    [Show full text]