Int. J. Biol. Sci. 2010, 6 51 International Journal of Biological Sciences 2010; 6(1):51-67 © Ivyspring International Publisher. All rights reserved Review A manually curated network of the PML nuclear body interactome reveals an important role for PML-NBs in SUMOylation dynamics Ellen Van Damme1, Kris Laukens2, Thanh Hai Dang2, Xaveer Van Ostade1 1. Laboratory of Protein Chemistry, Proteomics and Signal Transduction, Department of Biomedical Sciences, University of Antwerp (Campus Drie Eiken), Universiteitsplein 1 – Building T, 2610 Wilrijk, Belgium. 2. Intelligent Systems Laboratory (ISLab) Department of Mathematics and Computer Science, University of Antwerp (Campus Middelheim), Middelheimlaan 1 – Building G, 2020 Antwerp, Belgium Correspondence to: Prof. Dr. Xaveer Van Ostade,
[email protected], tel: 0032 (0)3 365 23 19 Received: 2009.10.20; Accepted: 2010.01.09; Published: 2010.01.12 Abstract Promyelocytic Leukaemia Protein nuclear bodies (PML-NBs) are dynamic nuclear protein aggregates. To gain insight in PML-NB function, reductionist and high throughput techniques have been employed to identify PML-NB proteins. Here we present a manually curated network of the PML-NB interactome based on extensive literature review including data- base information. By compiling ‘the PML-ome’, we highlighted the presence of interactors in the Small Ubiquitin Like Modifier (SUMO) conjugation pathway. Additionally, we show an enrichment of SUMOylatable proteins in the PML-NBs through an in-house prediction algo- rithm. Therefore, based on the PML network, we hypothesize that PML-NBs may function as a nuclear SUMOylation hotspot. Key words: PML-NB, SUMOylation, Cytoscape, protein-protein interaction, network Introduction Nuclear domain 10 (also called Kremer bodies cross-brace conformation.