Heck.Chp:Corel VENTURA
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Color Models
Color Models Jian Huang CS456 Main Color Spaces • CIE XYZ, xyY • RGB, CMYK • HSV (Munsell, HSL, IHS) • Lab, UVW, YUV, YCrCb, Luv, Differences in Color Spaces • What is the use? For display, editing, computation, compression, …? • Several key (very often conflicting) features may be sought after: – Additive (RGB) or subtractive (CMYK) – Separation of luminance and chromaticity – Equal distance between colors are equally perceivable CIE Standard • CIE: International Commission on Illumination (Comission Internationale de l’Eclairage). • Human perception based standard (1931), established with color matching experiment • Standard observer: a composite of a group of 15 to 20 people CIE Experiment CIE Experiment Result • Three pure light source: R = 700 nm, G = 546 nm, B = 436 nm. CIE Color Space • 3 hypothetical light sources, X, Y, and Z, which yield positive matching curves • Y: roughly corresponds to luminous efficiency characteristic of human eye CIE Color Space CIE xyY Space • Irregular 3D volume shape is difficult to understand • Chromaticity diagram (the same color of the varying intensity, Y, should all end up at the same point) Color Gamut • The range of color representation of a display device RGB (monitors) • The de facto standard The RGB Cube • RGB color space is perceptually non-linear • RGB space is a subset of the colors human can perceive • Con: what is ‘bloody red’ in RGB? CMY(K): printing • Cyan, Magenta, Yellow (Black) – CMY(K) • A subtractive color model dye color absorbs reflects cyan red blue and green magenta green blue and red yellow blue red and green black all none RGB and CMY • Converting between RGB and CMY RGB and CMY HSV • This color model is based on polar coordinates, not Cartesian coordinates. -
Download User Guide
SpyderX User’s Guide 1 Table of Contents INTRODUCTION 4 WHAT’S IN THE BOX 5 SYSTEM REQUIREMENTS 5 SPYDERX COMPARISON CHART 6 SERIALIZATION AND ACTIVATION 7 SOFTWARE LAYOUT 11 SPYDERX PRO 12 WELCOME SCREEN 12 SELECT DISPLAY 13 DISPLAY TYPE 14 MAKE AND MODEL 15 IDENTIFY CONTROLS 16 DISPLAY TECHNOLOGY 17 CALIBRATION SETTINGS 18 MEASURING ROOM LIGHT 19 CALIBRATION 20 SAVE PROFILE 23 RECAL 24 1-CLICK CALIBRATION 24 CHECKCAL 25 SPYDERPROOF 26 PROFILE OVERVIEW 27 SHORTCUTS 28 DISPLAY ANALYSIS 29 PROFILE MANAGEMENT TOOL 30 SPYDERX ELITE 31 WORKFLOW 31 WELCOME SCREEN 32 SELECT DISPLAY 33 DISPLAY TYPE 34 MAKE AND MODEL 35 IDENTIFY CONTROLS 36 DISPLAY TECHNOLOGY 37 SELECT WORKFLOW 38 STEP-BY-STEP ASSISTANT 39 STUDIOMATCH 41 EXPERT CONSOLE 45 MEASURING ROOM LIGHT 46 CALIBRATION 47 SAVE PROFILE 50 2 RECAL 51 1-CLICK CALIBRATION 51 CHECKCAL 52 SPYDERPROOF 53 SPYDERTUNE 54 PROFILE OVERVIEW 56 SHORTCUTS 57 DISPLAY ANALYSIS 58 SOFTPROOFING/DEVICE SIMULATION 59 PROFILE MANAGEMENT TOOL 60 GLOSSARY OF TERMS 61 FAQ’S 63 INSTRUMENT SPECIFICATIONS 66 Main Company Office: Manufacturing Facility: Datacolor, Inc. Datacolor Suzhou 5 Princess Road 288 Shengpu Road Lawrenceville, NJ 08648 Suzhou, Jiangsu P.R. China 215021 3 Introduction Thank you for purchasing your new SpyderX monitor calibrator. This document will offer a step-by-step guide for using your SpyderX calibrator to get the most accurate color from your laptop and/or desktop display(s). 4 What’s in the Box • SpyderX Sensor • Serial Number • Welcome Card with Welcome page details • Link to download the -
Colornet--Estimating Colorfulness in Natural Images
COLORNET - ESTIMATING COLORFULNESS IN NATURAL IMAGES Emin Zerman∗, Aakanksha Rana∗, Aljosa Smolic V-SENSE, School of Computer Science, Trinity College Dublin, Dublin, Ireland ABSTRACT learning-based objective metric ‘ColorNet’ for the estimation of colorfulness in natural images. Based on a convolutional neural Measuring the colorfulness of a natural or virtual scene is critical network (CNN), our proposed ColorNet is a two-stage color rating for many applications in image processing field ranging from captur- model, where at stage I, a feature network extracts the characteristics ing to display. In this paper, we propose the first deep learning-based features from the natural images and at stage II, a rating network colorfulness estimation metric. For this purpose, we develop a color estimates the colorfulness rating. To design our feature network, rating model which simultaneously learns to extracts the pertinent we explore the designs of the popular high-level CNN based fea- characteristic color features and the mapping from feature space to ture models such as VGG [22], ResNet [23], and MobileNet [24] the ideal colorfulness scores for a variety of natural colored images. architectures which we finally alter and tune for our colorfulness Additionally, we propose to overcome the lack of adequate annotated metric problem at hand. We also propose a rating network which dataset problem by combining/aligning two publicly available color- is simultaneously learned to estimate the relationship between the fulness databases using the results of a new subjective test which characteristic features and ideal colorfulness scores. employs a common subset of both databases. Using the obtained In this paper, we additionally overcome the challenge of the subjectively annotated dataset with 180 colored images, we finally absence of a well-annotated dataset for training and validating Col- demonstrate the efficacy of our proposed model over the traditional orNet model in a supervised manner. -
Specification of Srgb
How to interpret the sRGB color space (specified in IEC 61966-2-1) for ICC profiles A. Key sRGB color space specifications (see IEC 61966-2-1 https://webstore.iec.ch/publication/6168 for more information). 1. Chromaticity co-ordinates of primaries: R: x = 0.64, y = 0.33, z = 0.03; G: x = 0.30, y = 0.60, z = 0.10; B: x = 0.15, y = 0.06, z = 0.79. Note: These are defined in ITU-R BT.709 (the television standard for HDTV capture). 2. Reference display‘Gamma’: Approximately 2.2 (see precise specification of color component transfer function below). 3. Reference display white point chromaticity: x = 0.3127, y = 0.3290, z = 0.3583 (equivalent to the chromaticity of CIE Illuminant D65). 4. Reference display white point luminance: 80 cd/m2 (includes veiling glare). Note: The reference display white point tristimulus values are: Xabs = 76.04, Yabs = 80, Zabs = 87.12. 5. Reference veiling glare luminance: 0.2 cd/m2 (this is the reference viewer-observed black point luminance). Note: The reference viewer-observed black point tristimulus values are assumed to be: Xabs = 0.1901, Yabs = 0.2, Zabs = 0.2178. These values are not specified in IEC 61966-2-1, and are an additional interpretation provided in this document. 6. Tristimulus value normalization: The CIE 1931 XYZ values are scaled from 0.0 to 1.0. Note: The following scaling equations can be used. These equations are not provided in IEC 61966-2-1, and are an additional interpretation provided in this document. 76.04 X abs 0.1901 XN = = 0.0125313 (Xabs – 0.1901) 80 76.04 0.1901 Yabs 0.2 YN = = 0.0125313 (Yabs – 0.2) 80 0.2 87.12 Zabs 0.2178 ZN = = 0.0125313 (Zabs – 0.2178) 80 87.12 0.2178 7. -
Analysis of White Point and Phosphor Set Differences of CRT Displays
Peter G. Engeldrum Imcotek, Inc. P.O. Box 66 Bloomfield, CT 06002 John L. lngraham Billerica, MA 01821 Analysis of White Point and Phosphor Set Differences of CRT Displays There are a variety of CRT phosphor sets used to display the CRT screen; so called WYSIWYG (what you see is color information. In addition, the white point, achieved what you get) color. To attain this result we require an when the red, green, and blue phosphors are excited by unambiguous description of color on the CRT. The CIE beam currents corresponding to the maximum digital count system of calorimetry provides for this description in terms for each primary, is not standardized. Displaying a file of CIE tristimulus values X, Y, Z. containing RGB digital values on unlike monitors, with dif- For calorimetry to be useful, there are additional quan- ferent phosphors andlor white points, would produce dif- tities that need to be specified. First we need to know the ferent colors. Computer stimulations were conducted to “white point”; that is the tristimulus values of the white on compute the colors for CRTs with di#erent phosphor sets the screen when the luminance output of the three phosphors and constant white points and for d@erent white points with are at their maximum values. The other requirement is the constantphosphor sets. Test results demonstrated that CIE- tristimulus values of the primaries; the red, green, and blue LAB color differences were larger when the phosphor sets phosphors. When the above quantities are known, the CIE were different. Smaller color dt#erences resulted from dtf- tristimulus values X, Y, Z can readily be determined from ferences in white point, assuming a constant phosphor set. -
Color Appearance Models Today's Topic
Color Appearance Models Arjun Satish Mitsunobu Sugimoto 1 Today's topic Color Appearance Models CIELAB The Nayatani et al. Model The Hunt Model The RLAB Model 2 1 Terminology recap Color Hue Brightness/Lightness Colorfulness/Chroma Saturation 3 Color Attribute of visual perception consisting of any combination of chromatic and achromatic content. Chromatic name Achromatic name others 4 2 Hue Attribute of a visual sensation according to which an area appears to be similar to one of the perceived colors Often refers red, green, blue, and yellow 5 Brightness Attribute of a visual sensation according to which an area appears to emit more or less light. Absolute level of the perception 6 3 Lightness The brightness of an area judged as a ratio to the brightness of a similarly illuminated area that appears to be white Relative amount of light reflected, or relative brightness normalized for changes in the illumination and view conditions 7 Colorfulness Attribute of a visual sensation according to which the perceived color of an area appears to be more or less chromatic 8 4 Chroma Colorfulness of an area judged as a ratio of the brightness of a similarly illuminated area that appears white Relationship between colorfulness and chroma is similar to relationship between brightness and lightness 9 Saturation Colorfulness of an area judged as a ratio to its brightness Chroma – ratio to white Saturation – ratio to its brightness 10 5 Definition of Color Appearance Model so much description of color such as: wavelength, cone response, tristimulus values, chromaticity coordinates, color spaces, … it is difficult to distinguish them correctly We need a model which makes them straightforward 11 Definition of Color Appearance Model CIE Technical Committee 1-34 (TC1-34) (Comission Internationale de l'Eclairage) They agreed on the following definition: A color appearance model is any model that includes predictors of at least the relative color-appearance attributes of lightness, chroma, and hue. -
ARC Laboratory Handbook. Vol. 5 Colour: Specification and Measurement
Andrea Urland CONSERVATION OF ARCHITECTURAL HERITAGE, OFARCHITECTURALHERITAGE, CONSERVATION Colour Specification andmeasurement HISTORIC STRUCTURESANDMATERIALS UNESCO ICCROM WHC VOLUME ARC 5 /99 LABORATCOROY HLANODBOUOKR The ICCROM ARC Laboratory Handbook is intended to assist professionals working in the field of conserva- tion of architectural heritage and historic structures. It has been prepared mainly for architects and engineers, but may also be relevant for conservator-restorers or archaeologists. It aims to: - offer an overview of each problem area combined with laboratory practicals and case studies; - describe some of the most widely used practices and illustrate the various approaches to the analysis of materials and their deterioration; - facilitate interdisciplinary teamwork among scientists and other professionals involved in the conservation process. The Handbook has evolved from lecture and laboratory handouts that have been developed for the ICCROM training programmes. It has been devised within the framework of the current courses, principally the International Refresher Course on Conservation of Architectural Heritage and Historic Structures (ARC). The general layout of each volume is as follows: introductory information, explanations of scientific termi- nology, the most common problems met, types of analysis, laboratory tests, case studies and bibliography. The concept behind the Handbook is modular and it has been purposely structured as a series of independent volumes to allow: - authors to periodically update the -
Color Temperature and at 5,600 Degrees Kelvin It Will Begin to Appear Blue
4,800 degrees it will glow a greenish color Color Temperature and at 5,600 degrees Kelvin it will begin to appear blue. But light itself has no heat; Color temperature is usually used so for photography it is just a measure- to mean white balance, white point or a ment of the hue of a specific type of light means of describing the color of white source. light. This is a very difficult concept to ex- plain, because–”Isn’t white always white?” The human brain is incred- ibly adept at quickly correcting for changes in the color temperature of light; many different kinds of light all seem “white” to us. When moving from a bright daylight environment to a room lit by a candle all that will appear to change, to the naked eye, is the light level. Yet record these two situations shooting color film, digital photographs or with tape in an unbalanced camcorder and the outside images will have a blueish hue and the inside images will have a heavy orange cast. The brain quickly adjust to the changes, mak- ing what is perceived as white ap- pear white, whereas film, digital im- ages and camcorders are balanced for one particular color and anything that deviates from this will produce a color cast. A GUIDE TO COLOR TEMPERATURE The color of light is measured by the Kelvin scale . This is a sci- entific temperature scale used to measure the exact temperature of objects. If you heat a carbon rod to 3,200 degrees, it glows orange. -
Colornet - Estimating Colorfulness in Natural Images
COLORNET - ESTIMATING COLORFULNESS IN NATURAL IMAGES Emin Zerman∗, Aakanksha Rana∗, Aljosa Smolic V-SENSE, School of Computer Science, Trinity College Dublin, Dublin, Ireland ABSTRACT learning-based objective metric ‘ColorNet’ for the estimation of colorfulness in natural images. Based on a convolutional neural Measuring the colorfulness of a natural or virtual scene is critical network (CNN), our proposed ColorNet is a two-stage color rating for many applications in image processing field ranging from captur- model, where at stage I, a feature network extracts the characteristics ing to display. In this paper, we propose the first deep learning-based features from the natural images and at stage II, a rating network colorfulness estimation metric. For this purpose, we develop a color estimates the colorfulness rating. To design our feature network, rating model which simultaneously learns to extracts the pertinent we explore the designs of the popular high-level CNN based fea- characteristic color features and the mapping from feature space to ture models such as VGG [22], ResNet [23], and MobileNet [24] the ideal colorfulness scores for a variety of natural colored images. architectures which we finally alter and tune for our colorfulness Additionally, we propose to overcome the lack of adequate annotated metric problem at hand. We also propose a rating network which dataset problem by combining/aligning two publicly available color- is simultaneously learned to estimate the relationship between the fulness databases using the results of a new subjective test which characteristic features and ideal colorfulness scores. employs a common subset of both databases. Using the obtained In this paper, we additionally overcome the challenge of the subjectively annotated dataset with 180 colored images, we finally absence of a well-annotated dataset for training and validating Col- demonstrate the efficacy of our proposed model over the traditional orNet model in a supervised manner. -
Graphic Standard Guidelinesview
Maricopa County Graphic Standard Guidelines basic standards The updated Maricopa County seal is the basic building block of our new visual image. It is a symbol of many things our County represents. The goal is to establish an image that is credible, “ownable” and that with proper use will promote the County as a well-integrated organization. This graphic standards manual was prepared to ensure that we speak to all with a common “voice,” projecting a distinctive and relevant image of Maricopa County, while allowing the necessary flexibility for individual departmental messages. These guidelines provide an objective set of boundaries to ensure consistent quality in the application of the seal and safeguard against potential problems that could dilute efforts to build the Maricopa County identity. addendum: typefaces Garamond (replaces Minion Regular) abcdefghijklmnopqrstuvwxyz 0123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZ Garamond Italic (replaces Minion Italic) abcdefghijklmnopqrstuvwxyz 0123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZ Garamond Bold (replaces Minion Semibold and Bold) abcdefghijklmnopqrstuvwxyz 0123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZ Note: Do not artificially italicize Garamond Bold. Microsoft Garamond has only three faces included in its set (roman, italic and bold). This face is licensed from the AGFA/Monotype corporation. An additional two weights (Monotype Alternate Italic and Bold Italic) are available from the AGFA/Monotype web site (www.fonts.com). Please check with your department before purchasing. Tahoma (replaces Avenir Book) abcdefghijklmnopqrstuvwxyz 0123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZ Tahoma Bold (replaces Avenir Medium and Heavy) abcdefghijklmnopqrstuvwxyz 0123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZ Note: Tahoma does not have italic faces in its family. Do not artificially italicize this face. a.1 typeface update:It has come to the attention of the Public Information Office that the typefaces specified for use on Maricopa County materials are not widely available throughout the County computer network, and are cost prohibitive to purchase. -
Chroma and Hue Variation in Color Images of Natural Scenes
Naturalness and Image Quality: Chroma and Hue Variation in Color Images of Natural Scenes Huib de Ridder and Frans J.J. Blommaert Institute for Perception Research, Eindhoven, The Netherlands; Elena A. Fedorovskaya, Department of Psychophysiology, Moscow State University, Mokhovaya street 8, 103009 Moscow, Russia Abstract these parameters (e.g. blur, periodic structure, noise) it proved possible to derive explicit expressions for their The relation between perceptual image quality and natural- relation with the corresponding image attributes.3,4 ness was investigated by varying the colorfulness and hue Scaling experiments using multiply impaired images of color images of natural scenes. These variations were have shown that image attributes can be represented by a set created by digitizing the images, subsequently determining of orthogonal vectors in a Euclidean space.3,5-8 Accord- their color point distributions in the CIELUV color space ingly, the attributes can be said to be the orthogonal dimen- and finally multiplying either the chroma value or the hue- sions of a multidimensional psychological space underlying angle of each pixel by a constant. During the chroma/hue- image quality. The sensorial image is represented in this angle transformation the lightness and hue-angle/chroma space by a point with the perceived strengths of the at- value of each pixel were kept constant. Ten subjects rated tributes as coordinates. Image quality has sometimes been quality and naturalness on numerical scales. The results identified as a direction in this space, with the angle to a show that both quality and naturalness deteriorate as soon as dimension indicating how relevant that attribute is for the hues start to deviate from the ones in the original image. -
Soft Proofing & Monitor Calibration
Digital Technology Group, Inc. DTG Digital Color Learning Guide www.DTGweb.com 800.681.0024 Soft Proofing Tampa, FL Soft Proofing Page: 1 The following instructions will help you understand the concept and practice of soft proofing as well as step you through how to soft proof through different applications. General Philosophy & Overview The most frequent tech support phone call we take here at DTG begins with the words...”my print doesn’t match my monitor”. While getting prints to exactly MATCH a monitor is impossible, there’s no reason that we can’t achieve a very close perceptual match. When viewing an image on a monitor you are looking at that image displayed through transmissive light. When viewing a printed image you are viewing it with reflected light.These yield two very different perceptions to our eyes and brains. That’s why “matching” a print to a monitor can be challenging. The solution is a pro- cess called soft proofing. Soft proofing is the process of using your calibrated and profiled monitor, combined with printer/media ICC profiles, to preview how an image (or document) is going to look on printed output. What is needed? A few things are needed for soft proofing besides your computer’s monitor or display... 1) A monitor calibrator. This is a piece of hardware, combined with software, that calibrates your monitor to a known standard. It also produces an ICC profile for your monitor which describes to applications (like Photoshop) how your monitor displays color. 2) ICC Profiles for your printer and media (paper, canvas, etc.) combinations.