Download PDF Full-Text

Total Page:16

File Type:pdf, Size:1020Kb

Download PDF Full-Text Journal of Water SustainabilityE.K. Quagraine, Volume / Journal 8, Issue of 1, MarchWater 2018,Sustainability 1-24 1 (2018) 1-24 1 © University of Technology Sydney & Xi’an University of Architecture and Technology Two Decades Constructed Wetland Experience in Treating Municipal Effluent for Power Plant Cooling at the Shand Power Station, SaskPower Part V: The Effect of Seasonal Changes in Temperature, Rainfall and Influent Concentration on Phosphate Removal Emmanuel K. Quagraine Saskatchewan Power Corporation, Shand Power Station, Estevan, Saskatchewan, S4A 2K9, Canada ABSTRACT The paper is part of publication series on 2-decade constructed wetland (CW) operation at SaskPower’s Shand Power 3- Station. It highlights influence of some climatological factors and PO4 -P load on its removal efficiency. Influent 3- PO4 -P was influenced by temperature and rainfall in concentration-dependent manner. The respective effects were 3- o estimated as ~3.3% PO4 -P reduction of the (at 0 C) background concentrations per degree rise and 0.7% NO3-N 3- reduction of (at zero rainfall) background concentrations per mm depth of rainfall. Rainfall effect in reducing PO4 - P is attributed to dilution and was typically noticed after one-month lag period. Its immediate impact was usually 3- adverse leading to ~2.3% increase of the WWTP output PO4 -P (at zero rainfall) and attributed to releases from 3- sediment perturbation. Seasonal variation of influent PO4 -P load subsequently affected effectiveness in its removal 3- by the CW. Regression analysis was used to estimate influent PO4 -P, temperature and rainfall effects on monthly 3- removal efficiency of PO4 -P. Temperature was the most consistent and statistically significant influencing factor (at 3- least, at 80% confidence level) across the years, causing release of PO4 -P. Its magnitude of effect was shown in 3- either of two main ways: primarily as 3.4 ± 0.9% or otherwise as 10.9 ± 0.3% PO4 -P release (over the inlet concen- tration) per degree rise in temperature. Rainfall effect was erratic both in direction (positive or negative) and in magnitude (extent) of influence. The influent concentration effect was consistent in direction (net removal) but variable in magnitude suggesting co-dependence on other variables. On the whole, except the first spring season 3- where effluent PO4 -P of only 0.09 mg/L was displayed with ~99% removal, the CW was incapable of producing 3- effluent PO4 -P of the ≤0.33 mg/L required to prevent Ca3(PO4)2 scale formation during condenser cooling process. Keywords: Wetlands; wastewater; temperature; rainfall; phosphate; cooling; scaling; regression 1. INTRODUCTION (MWW) (Cooper, 2012; USEPA, 2004; Veil, 2007; Vidic et al., 2009). However, the reuse of Steam electric power plants require vast treated MWW (usually to secondary standard) amount of water for cooling and hence is for industrial cooling raises three main currently one of the major beneficial sectors operational concerns: scaling, corrosion and taking advantage to reuse the abundant bio-fouling (Barcelo and Petrovic, 2011; resource of treated municipal wastewater Puckorious, 2015; Rebhun and Engel, 1988; *Corresponding to: [email protected] DOI: 10.11912/jws.2018.8.1.1-24 2 E.K. Quagraine / Journal of Water Sustainability 1 (2018) 1-24 Selby et al., 1996; Veil, 2007; Vidic et al., influent concentration on performance of the 2009). CW, but the focus was specifically on total - The relatively higher nutrients (nitrogen (N) ammonia-nitrogen (TAN) and nitrate (NO3 )- and phosphorous (P)) and organic matter con- nitrogen (N). In this present paper, we continue tents in MWW sources as compared to fresh the discussion on seasonal influence on the CW water sources such as surface and groundwater performance, but this time with phosphate 3- is one of the major reasons for these conse- (PO4 )-P as the specific nutrient focus. The 3- quence in industrial cooling applications. Con- paper also discusses seasonal PO4 -P varia- structed wetlands (CWs) have demonstrated tions in the effluent quality and the potential potential to further reduce these constituents in impact on reuse applications in thermoelectric treated MWW of various standards (Greenway, power plant condenser cooling. As earlier 2005; Kadlec and Wallace, 2009; Quagraine, discussed (Quagraine and Duncan, 2017), a 2017; Vymazal, 2010), and there is current good understanding of seasonal variations of interest to take advantage of various other nutrient levels in the CW effluent used for benefits inherent in CW technologies (includ- power plant cooling application is so critical in ing cooling, water harvesting, electricity making necessary adjustments in power plants’ harvesting, etc.) to further process municipal operation to minimize the potential risks wastewater (MWW) for power plant cooling associated with seasonal effluent quality. Why 3- (Apfelbaum et al., 2013; Bengston, 2010; Duke should we be concerned with PO4 ? First, as Energy, 2012; Quagraine, 2017). outlined in the third of the series (Quagraine et 3- al., 2017b), PO4 predominates the P fractions SaskPower’s Shand Power Station (SHPS) in Saskatchewan, Canada seems to be a pioneer in the MWW going into the SaskPower CW; in employing a CW on a commercial scale to constituting an annual average of 90% TP with 3- polish secondary treated MWW effluent for standard deviation of only 6.6%. PO4 occurs condenser cooling since 1994. Experience in relatively high but variable levels in treated gained over 2-decades is expected to help in MWW effluents (e.g. 0.6-51.0 mg/L in bridging knowledge gaps towards current and secondary treated MWW (SMWW) effluents future efforts in using CW technology as key from different USA locations (Vidic et al., component to address challenges around the 2009)) and is a critical constituent in dictating water-energy nexus. The present manuscript is scale formation and bio-fouling tendencies in the fifth in series of publications in sharing industrial cooling applications; whilst in con- such experience. The first reviewed the trast inhibiting corrosion due to the protective rationale to consider CW as polishing unit for layer of scales it forms on the metal surfaces. 3- power plant cooling and outlined several PO 4 content is indeed of concern in cooling benefits inherent in such reuse application water systems; it can form the tenacious nature (Quagraine, 2017). The second (Quagraine et of calcium phosphate (Ca3(PO4)2), and its al., 2017a) and third (Quagraine et al., 2017b) presence has the potential to nucleate or “seed” focused on the annual performances of the other mineral scales. For this reason, even SaskPower CW in removing various when polyphosphates (condensed phosphates) are added for corrosion protection in make-up contaminants for condenser cooling purpose. 3- Recognizing differences in annual and seasonal pipe-lines, total PO4 concentration in a cool- treatment performance data, the fourth paper ing tower (CT) make-up water from potable (Quagraine and Duncan, 2017) was dedicated water systems is advised to be kept below 0.5 to the effect of seasonal changes in parameters mg/L (Tierney, 2002); as also recommended by (Schimmoller, 2012) in reclaimed water for such as rainfall, temperature, plant growth and E.K. Quagraine / Journal of Water Sustainability 1 (2018) 1-24 3 CT-make up. Others however offer less strict limiting for cyanobacteria and algae growth, recommendations. For example, McNicholas not just in the environment but also in cooling 3- 3- (2002) recommends a maximum total PO4 of systems. Higher PO4 levels may result in 1 mg/L in CT make-up water. Odell (2015) excessive algae growth on CT fill material suggests (Ca3(PO4)2) scale formation to occur surfaces and other components within cooling in power plant cooling systems with reclaimed systems resulting in flow restrictions, high 3- make-up water of P ≥0.6 mg/L (i.e. PO4 chlorine demand, and high potential in equivalent of 1.84 mg/L). Such differences are biofouling heat transfer surfaces (Post et al., however rational, considering the different 2014; Veil, 2007). TP maximum limit of 1 3- cycles of concentrations (COCs) various CTs mg/L (PO4 equivalent of 3.1 mg/L) in operate. (Ca3(PO4)2) is reported to likely form reclaimed water for environmental reuse 3- when PO4 concentration in CTs exceeds 10 applications has been stipulated by North mg/L (Harfst, 2015). In an earlier EPRI Carolina, a state in USA (USEPA, 2012); thus, 3- guideline (1982), a PO4 limit of 5 mg/L was a stricter guideline is anticipated for industrial recommended for power plant CTs. However, cooling purposes considering the COCs some latter reports suggest a much higher limit expected in CTs and the favourable conditions 3- of 50 mg/L PO4 for refinery CTs (Eble and for biological growth in such systems. Feathers, 1993; EPRI, 2012; EPRI and CEC, Various types and sizes of CWs have 3- 3- 2003). Even so, PO4 concentration not demonstrated capability to remove PO4 (or exceeding 8 mg/L in recirculating CW of a CT total P, TP) from treated MWW effluents of in a Refinery Plant is of more recent different grades (i.e. primary, secondary-both recommendation (IOCL, 2016). With expected conventional and lagoon/stabilizing ponds, and make-up calcium (Ca) of <40 mg/L as CaCO3 tertiary) (Quagraine, 2017). In the third of the and an operating CT Ca maximum of 1000 series, the annual performance of the 3- mg/L as CaCO3 (i.e. COC up to 25) for this SaskPower CW in removing PO4 -P was refinery plant, the CT make-up water is discussed (Quagraine et al., 2017b). However, 3- expected to contain PO4 ≤0.32 mg/L. From nutrient removal by CWs commonly follows this brief review of the literature, it is fair to seasonal patterns, which may not necessarily expect CT make-up water from various sources reflect annual patterns.
Recommended publications
  • Advanced Heat Pump Systems Using Urban Waste Heat “Sewage Heat”
    Mitsubishi Heavy Industries Technical Review Vol. 52 No. 4 (December 2015) 80 Advanced Heat Pump Systems Using Urban Waste Heat “Sewage Heat” YOSHIE TOGANO*1 KENJI UEDA*2 YASUSHI HASEGAWA*3 JUN MIYAMOTO*1 TORU YAMAGUCHI*4 SEIJI SHIBUTANI*5 The application of heat pumps for hot water supply and heating systems is expected. Through this, the energy consumption of hot water supply and heating, which account for a substantial proportion of the total energy consumption in a building, will be reduced. The level of reduction can be dramatically increased by use of "sewage heat," which is part of waste heat in an urban area. So far, however, it has been difficult to determine whether sufficient technical or basic data available to widely use sewage heat exists. Therefore, demonstrations on the evaluation method for the potential of sewage heat in an urban area and the actual- equipment scale of verification using untreated sewage were conducted to understand the characteristics of sewage heat, and major technologies for use of sewage heat were developed. The technologies were applied to the system using sewage heat, and the system achieved a 29% reduction in the annual energy consumption and a 69% reduction in the running cost in the hot water system in lodging facilities compared to the conventional system using a boiler. The depreciation timespan of the difference in the initial cost between the conventional system and the heat pump system is about four years, and this system has an economically large advantage. In this report, the results obtained through the development and the demonstrations are systematically organized and the technical information needed for introduction of use of sewage heat is provided.
    [Show full text]
  • World Bank Document
    WATER GLOBAL PRACTICE QUALITY UNKNOWN BACKGROUND PAPER Public Disclosure Authorized Determinants of Public Disclosure Authorized Essayas Ayana Declining Water Quality Public Disclosure Authorized Public Disclosure Authorized About the Water Global Practice Launched in 2014, the World Bank Group’s Water Global Practice brings together financing, knowledge, and implementation in one platform. By combining the Bank’s global knowledge with country investments, this model generates more firepower for transformational solutions to help countries grow sustainably. Please visit us at www.worldbank.org/water or follow us on Twitter at @WorldBankWater. About GWSP This publication received the support of the Global Water Security & Sanitation Partnership (GWSP). GWSP is a multidonor trust fund administered by the World Bank’s Water Global Practice and supported by Australia’s Department of Foreign Affairs and Trade, the Bill & Melinda Gates Foundation, the Netherlands’ Ministry of Foreign Affairs, Norway’s Ministry of Foreign Affairs, the Rockefeller Foundation, the Swedish International Development Cooperation Agency, Switzerland’s State Secretariat for Economic Affairs, the Swiss Agency for Development and Cooperation, U.K. Department for International Development, and the U.S. Agency for International Development. Please visit us at www.worldbank.org/gwsp or follow us on Twitter #gwsp. Determinants of Declining Water Quality Essayas Ayana © 2019 International Bank for Reconstruction and Development / The World Bank 1818 H Street NW, Washington, DC 20433 Telephone: 202-473-1000; Internet: www.worldbank.org This work is a product of the staff of The World Bank with external contributions. The findings, interpretations, and conclusions expressed in this work do not necessarily reflect the views of The World Bank, its Board of Executive Directors, or the governments they represent.
    [Show full text]
  • Mechanical Systems Water Efficiency Management Guide
    Water Efficiency Management Guide Mechanical Systems EPA 832-F-17-016c November 2017 Mechanical Systems The U.S. Environmental Protection Agency (EPA) WaterSense® program encourages property managers and owners to regularly input their buildings’ water use data in ENERGY STAR® Portfolio Manager®, an online tool for tracking energy and water consumption. Tracking water use is an important first step in managing and reducing property water use. WaterSense has worked with ENERGY STAR to develop the EPA Water Score for multifamily housing. This 0-100 score, based on an entire property’s water use relative to the average national water use of similar properties, will allow owners and managers to assess their properties’ water performance and complements the ENERGY STAR score for multifamily housing energy use. This series of Water Efficiency Management Guides was developed to help multifamily housing property owners and managers improve their water management, reduce property water use, and subsequently improve their EPA Water Score. However, many of the best practices in this guide can be used by facility managers for non-residential properties. More information about the Water Score and additional Water Efficiency Management Guides are available at www.epa.gov/watersense/commercial-buildings. Mechanical Systems Table of Contents Background.................................................................................................................................. 1 Single-Pass Cooling ..........................................................................................................................
    [Show full text]
  • Thermal Desalination Using MEMS and Salinity-Gradient Solar Pond Technology
    Thermal Desalination using MEMS and Salinity-Gradient Solar Pond Technology University of Texas at El Paso El Paso, Texas Cooperative Agreement No. 98-FC-81-0047 Desalination Research and Development Program Report No. 80 August 2002 U.S. Department of the Interior Bureau of Reclamation Technical Service Center Water Treatment Engineering and Research Group Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suit 1204, Arlington VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Report (0704-0188), Washington DC 20503. 1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED August 2002 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Thermal Desalination using MEMS and Salinity-Gradient Solar Pond Technology Agreement No. 98-FC-81-0047 6. AUTHOR(S) Huanmin Lu, John C. Walton, and Herbert Hein 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER University of Texas at El Paso El Paso, Texas 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING Bureau of Reclamation AGENCY REPORT NUMBER Desalination Research and Denver Federal Center Development Program Report No.
    [Show full text]
  • Analysis and Optimization of Open Circulating Cooling Water System
    water Article Analysis and Optimization of Open Circulating Cooling Water System Ziqiang Lv 1,2,3, Jiuju Cai 2, Wenqiang Sun 1,2,* and Lianyong Wang 1,2 1 Department of Thermal Engineering, School of Metallurgy, Northeastern University, Shenyang 110819, Liaoning, China; [email protected] (Z.L.); [email protected] (L.W.) 2 State Key Laboratory of Eco-Industry, Northeastern University, Shenyang 110819, Liaoning, China; [email protected] 3 School of Civil Engineering, University of Science and Technology Liaoning, Anshan 114051, Liaoning, China * Correspondence: [email protected] Received: 22 September 2018; Accepted: 26 October 2018; Published: 7 November 2018 Abstract: Open circulating cooling water system is widely used in process industry. For a system with a fixed structure, the water consumption and blowdown usually change with the varying parameters such as quality and temperature. With the purpose of water saving, it is very important to optimize the operation strategy of water systems. Considering the factors including evaporation, leakage, blowdown and heat transfer, the mass and energy conservation equations of water system are established. On this basis, the quality and temperature models of makeup and blowdown water are, respectively, developed. The water consumption and discharge profiles and the optimal operating strategy of the open recirculating cooling water system under different conditions are obtained. The concept of cycles of temperature is proposed to evaluate the temperature relationship of various parts of the open circulating cooling water system. A mathematical relationship is established to analyze the influence of the water temperature on the makeup water rate of the system under the condition of insufficient cooling capacity of the cooling tower.
    [Show full text]
  • Reclaiming Resources: Reducing Water Consumption Through Reuse
    Reclaiming Resources: Reducing Water Consumption through Reuse Although water reuse can be energy-intensive, its use is increasing across numerous industries By: Al Goodman Al Goodman is a principal with 42 years of experience serving clients in water reuse projects at the Louisville, Ky., office of CDM Smith (Boston). Communities and industries around the world are turning to water reuse. The drivers are varied: the need to augment strained water supplies, reduce nutrients in treated effluent, maintain ecological balance, use the most energy-efficient water sources, and reduce cost of purchased and treated water. The major driver is water scarcity in arid and semi-arid regions, though some regions of the world that are not considered to be water-scarce are implementing water reuse. Ecological drivers are becoming more important in evaluating reuse as part of a response to rigorous and costly requirements to reduce or remove nutrients (mainly nitrogen and phosphorus) from discharges to surface waters. Though water reuse can be energy-intensive, depending on the level of treatment required, only a full life-cycle analysis can reveal whether overall resource costs are greater than or less than alternative water supplies. Municipalities are implementing various types of urban water reuse and turning to industry and agriculture as potential customers of reclaimed water. Categories of water reuse applications are presented in the table. This article focuses on considerations relevant for municipal and industrial reuse. For more information on the full range of categories of reuse, refer to the U.S. Environmental Protection Agency’s Guidelines for Water Reuse (2012; http://nepis.epa.gov/Adobe/ PDF/P100FS7K.pdf).
    [Show full text]
  • Barwon Water Biosolids Management Project Operations
    BARWON WATER BIOSOLIDS MANAGEMENT PROJECT OPERATIONS Paper Presented by: Tony Davies Author: Tony Davies, Operations Manager Barwon Water Biosolids Management Project, Water Infrastructure Group 77th Annual WIOA Victorian Water Industry Operations Conference and Exhibition Bendigo Exhibition Centre 2 to 4 September, 2014 77th WIOA Victorian Water Industry Operations Conference & Exhibition Page No. 70 Bendigo Exhibition Centre, 2 to 4 September, 2014 BARWON WATER BIOSOLIDS MANAGEMENT PROJECT OPERATIONS Tony Davies, Ops Manager Barwon Water Biosolids Mgmt Project, Water Infrastructure Group ABSTRACT The Barwon Water Biosolids Management Facility is the first of its kind in Australia, and the largest in the Southern Hemisphere and has now been operating for 18 months. The innovative, small footprint, fully enclosed thermal drying plant produces T1 Treatment Grade pelletised biosolids that are suitable for reuse as farm fertilizer and soil conditioner that can be safely handled and easily transported immediately after processing. T1 classification for biosolids is the microbiological criteria and measure used to inhibit bacterial regrowth and odour. T1 is the highest classification. The plant operates 24/7 and has capacity to treat 60,000 tonne of biosolids per annum. The plant receives biosolids at >13% from seven wastewater treatment plants in the Geelong region and produces pellets at >90% dry solids. The Facility is one of the projects in the water sector to be delivered as a Public Private Partnership. Water Infrastructure Group designed
    [Show full text]
  • Cooling Towers and Salt Water
    thermal science Cooling Towers and Salt Water What is Salt Water? Thermal Performance—Salt has three basic effects upon water which affect thermal performance. It lowers the vapor pressure, For cooling tower service, any circulating water with more than 750 reduces the specific heat, and increases the density of the parts per million chloride expressed as NaCl is generally considered solution. The first two tend to decrease thermal performance but as “salt water”. However, the effects of chlorides will be much less the latter effect tends to increase it. However, the compensating severe at 750 ppm than they will at higher concentrations. Salt effect of increased density is not sufficient to totally offset the water may be from the open ocean, brackish (estuarine) or from effects of reduced specific heat and vapor pressure, so some loss brine wells. Since an open recirculating system concentrates the of thermal performance results. The amount of loss is greater for dissolved solids in the makeup water, a cooling tower may be higher salt concentrations and for more difficult cooling duties. exposed to salt water service even though the makeup contains For a circulating water with 55,000 ppm salinity, the anticipated less than 750 ppm NaCl. loss of thermal performance of a typical mechanical draft cooling tower ranges from 2% to 4%, depending upon the difficulty of the If makeup for the cooling tower is from the open ocean, the cooling duty. The loss of thermal performance can be regained by hypothetical composition will be: adjusting several variables, such as: tower size, fan horsepower or 185 ppm ______________________________ Ca(HCO3)2 circulating rate.
    [Show full text]
  • Evaluating Liquid V. Air Cooling in the Maui High Performance Computing
    Liquid Cooling v. Air Cooling Evaluation in the Maui High Performance Computing Center Prepared for the U.S. Department of Energy Federal Energy Management Program By Lawrence Berkeley National Laboratory Rod Mahdavi, PE, LEED AP July 2014 Contacts Rod Mahdavi, P.E., LEED AP Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley, CA 94270 (510) 495-2259 [email protected] For more information on the Federal Energy Management Program, please contact: Will Lintner, P.E., CEM Federal Energy Management Program U.S. Department of Energy 1000 Independence Ave SW Washington, DC 20585 202-586-3120 [email protected] i Acknowledgements The author would like to acknowledge the effort of the Maui High Performance Computing Center’s David Morton and Joseph Dratz in facilitating this case study. ii Abbreviations and Acronyms oF Degrees Fahrenheit CRAH Computer Room Air Handler DoD Department of Defense DSRC DoD Supercomputing Research Center FEMP Federal Energy Management Program IT Information Technology kW Kilowatt MHPCC Maui High Performance Computing Center PDU Power Distribution Units PUE Power Usage Effectiveness SAT Supply Air Temperature UPS Uninterruptible Power Supply iii Contents Executive Summary .................................................................................................................................... v Introduction ................................................................................................................................................. 6 Direct Water Cooling Option .....................................................................................................................
    [Show full text]
  • Industrial Water Treatment Systems
    SHARE THIS E-BOOK: An Introduction to INDUSTRIAL WATER TREATMENT SYSTEMS A PUBLICATION OF SAMCO TECHNOLOGIES SHARE THIS E-BOOK: TABLE OF CONTENTS What Is an Industrial Water Treatment System 1 and How Does It Work? Does Your Plant Need an Industrial Water 2 Treatment System? Common Industrial Water Treatment Issues 3 and How to Fix Them How to Choose the Best Industrial Water 4 Treatment System for Your Plant How Much Does an Industrial Water 5 Treatment System Cost? Conclusion SHARE THIS E-BOOK: Chapter One WHAT IS AN INDUSTRIAL WATER TREATMENT SYSTEM AND HOW DOES IT WORK? SHARE THIS E-BOOK: INDUSTRIAL WATER TREATMENT SYSTEMS What they are and how they work Industrial water treatment systems meet a variety of purification and separation needs. They can range from relatively compact and straightforward to complex, multiunit processes that serve a variety of applications. If you’re new to water treatment, you might be asking “What is an industrial water treatment system and how does it work?” Since industrial water treatment is a complex family of technologies and systems, this section will focus on giving a high-level overview of the technologies that are typically used and summarize how they work, helping you to better understand the best possible solutions for your facility. What is an industrial water treatment system? An industrial water treatment system treats water so it is more appropriate for a given use, whether for consumption, manufacturing, or even disposal. That said, each system will vary depending on the facility’s needs and many of the technologies that make up these systems can be similar.
    [Show full text]
  • Orange County Sanitation District Biosolids Master Plan Project No
    Draft ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER PLAN PROJECT NO. PS15-01 Program Environmental Impact Report State Clearinghouse Number 2017071026 Prepared for February 2018 Orange County Sanitation District Draft ORANGE COUNTY SANITATION DISTRICT BIOSOLIDS MASTER PLAN PROJECT NO. PS15-01 Program Environmental Impact Report State Clearinghouse Number 2017071026 Prepared for February 2018 Orange County Sanitation District 626 Wilshire Boulevard Suite 1100 Los Angeles, CA 90017 213.599.4300 www.esassoc.com Bend Oakland San Francisco Camarillo Orlando Santa Monica Delray Beach Pasadena Sarasota Destin Petaluma Seattle Irvine Portland Sunrise Los Angeles Sacramento Tampa Miami San Diego 150626 OUR COMMITMENT TO SUSTAINABILITY | ESA helps a variety of public and private sector clients plan and prepare for climate change and emerging regulations that limit GHG emissions. ESA is a registered assessor with the California Climate Action Registry, a Climate Leader, and founding reporter for the Climate Registry. ESA is also a corporate member of the U.S. Green Building Council and the Business Council on Climate Change (BC3). Internally, ESA has adopted a Sustainability Vision and Policy Statement and a plan to reduce waste and energy within our operations. This document was produced using recycled paper. TABLE OF CONTENTS OCSD Biosolids Master Plan Draft Environmental Impact Report Page Executive Summary ...........................................................................................................S-1 Chapter 1: Introduction
    [Show full text]
  • Chiller System Design and Control
    Applications Engineering Manual Chiller System Design and Control November 2011 SYS-APM001-EN Chiller System Design and Control Susanna Hanson, applications engineer Mick Schwedler, applications manager Beth Bakkum, information designer Preface This manual examines chilled-water-system components, configurations, options, and control strategies. The goal is to provide system designers with options they can use to satisfy the building owners’ desires, but this manual is not intended to be a complete chiller-system design manual. System designers may get the most use from this manual by familiarizing themselves with chilled-water-system basics and understanding the benefits of various options. Thereafter, when a specific job will benefit from these advantages, consult appropriate sections of the manual in detail. The Engineers Newsletters that are referenced in this manual are available at: www.trane.com/commercial/library/newsletters.asp Trane, in proposing these system design and application concepts, assumes no responsibility for the performance or desirability of any resulting system design. Design of the HVAC system is the prerogative and responsibility of the engineering professional. “Trane” and the Trane logo are registered trademarks, and TRACE, System Analyzer and TAP are trademarks of Trane, a business of Ingersoll-Rand. © 2009 Trane All rights reserved Chiller System Design and Control SYS-APM001-EN Contents Preface .................................................................................................. i Primary System
    [Show full text]