Thermal Desalination Using MEMS and Salinity-Gradient Solar Pond Technology

Total Page:16

File Type:pdf, Size:1020Kb

Thermal Desalination Using MEMS and Salinity-Gradient Solar Pond Technology Thermal Desalination using MEMS and Salinity-Gradient Solar Pond Technology University of Texas at El Paso El Paso, Texas Cooperative Agreement No. 98-FC-81-0047 Desalination Research and Development Program Report No. 80 August 2002 U.S. Department of the Interior Bureau of Reclamation Technical Service Center Water Treatment Engineering and Research Group Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suit 1204, Arlington VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Report (0704-0188), Washington DC 20503. 1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED August 2002 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Thermal Desalination using MEMS and Salinity-Gradient Solar Pond Technology Agreement No. 98-FC-81-0047 6. AUTHOR(S) Huanmin Lu, John C. Walton, and Herbert Hein 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER University of Texas at El Paso El Paso, Texas 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING Bureau of Reclamation AGENCY REPORT NUMBER Desalination Research and Denver Federal Center Development Program Report No. 80 PO Box 25007 Denver CO 80225-0007 11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Available from the National Technical Information Service, Operations Division, 5285 Port Royal Road, Springfield, Virginia 22161 13. ABSTRACT (Maximum 200 words) MEMS (multi-effect, multi-stage) flash desalination (distillation) driven by thermal energy derived from a salinity-gradient solar pond is investigated in this study for the purpose of improving the thermodynamic efficiency and economics of this technology. Three major tasks are performed: (1) a MEMS unit is tested under various operating conditions at the El Paso Solar Pond site; (2) the operation and maintenance procedures of the salinity-gradient solar pond coupled with the MEMS operation is studied; and (3) previous test data on a 24-stage, falling-film flash distillation unit (known as the Spinflash) is analyzed and compared with the performance of the MEMS unit. The data and information obtained from this investigation is applicable to a variety of thermal desalination processes using other solar options and/or waste heat. 14. SUBJECT TERMS-- 15. NUMBER OF PAGES thermal desalination, distillation, solar pond, brine concentration, MEMS, waste heat 45 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT OF REPORT OF THIS PAGE OF ABSTRACT UL UL UL UL NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18 298-102 Thermal Desalination using MEMS and Salinity-Gradient Solar Pond Technology Huanmin Lu, John C. Walton, and Herbert Hein University of Texas at El Paso El Paso, Texas Cooperative Agreement No. 98-FC-81-0047 Desalination Research and Development Program Report No. 80 August 2002 U.S. Department of the Interior Bureau of Reclamation Technical Service Center Water Treatment Engineering and Research Group iii Mission Statements U.S. Department of the Interior The mission of the Department of the Interior is to protect and provide access to our Nation’s natural and cultural heritage and honor our trust responsibilities to tribes. Bureau of Reclamation The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public. Federal Disclaimer The information contained in this report regarding commercial products of firms may not be used for advertising or promotional purposes and is not to be construed as an endorsement of any product or firm by the Bureau of Reclamation. The information contained in this report was developed for the Bureau of Reclamation: no warranty as to the accuracy, usefulness, or completeness is expressed or implied. iv TABLE OF CONTENTS 1.0 Executive Summary................................................................................................................. 1 2.0 Background and Introduction to the Project............................................................................ 1 3.0 Conclusions and Recommendations ........................................................................................ 4 3.1 Conclusions..................................................................................................................... 4 3.2 Recommendations........................................................................................................... 5 4.0 Description of Test Facilities................................................................................................... 5 4.1 Salinity Gradient Solar Pond .......................................................................................... 5 4.2 MEMS Unit..................................................................................................................... 9 4.2.1 Equipment Description........................................................................................... 9 4.2.2 Process Description............................................................................................... 17 5.0 Work Performed..................................................................................................................... 18 5.1 Set Up and Refurbishment of the MEMS System ........................................................ 18 5.2 Performance Testing..................................................................................................... 18 5.3 Data Collection............................................................................................................. 19 5.4 Data Analysis................................................................................................................ 20 5.5 Comparison with Previous Tests with Spinflash Unit.................................................. 21 5.6 Solar Pond Operation and Maintenance ....................................................................... 21 6.0 Results and Analysis.............................................................................................................. 22 6.1 Operating Characteristics.............................................................................................. 22 6.2 Distillate Production Rate............................................................................................. 24 6.3 Energy Consumption Rate and Performance Ratio ...................................................... 29 6.4 Quality of Distillate Product......................................................................................... 34 6.5 Scaling and Corrosion................................................................................................... 35 6.6 Cooling with Pond Surface Water ................................................................................ 36 6.7 Comparison with Spinflash Unit................................................................................... 36 6.7.1 Spinflash Unit and Process Description................................................................ 36 6.7.2 Comparison with the MEMS Unit ........................................................................ 37 6.8 Economic Analysis....................................................................................................... 38 7.0 References.............................................................................................................................. 40 Appendix A — Summary of Test Data Appendix B — Daily Test Results i FIGURES Figure 1. Schematic of Zero Discharge Desalination System. ...................................................... 2 Figure 2. Picture of the El Paso Solar Pond................................................................................... 6 Figure 3. Specific Gravity Profile of the Solar Pond..................................................................... 7 Figure 4. Temperature Profile of the Solar Pond........................................................................... 7 Figure 5. Temperature Development of the El Paso Solar Pond. .................................................. 8 Figure 6. Picture of the MEMS Unit............................................................................................ 10 Figure 7. Schematic of the MEMS Unit and Piping System ....................................................... 11 Figure 8. General Configuration of a Flash Chamber ................................................................. 13 Figure 9. First Stage Condenser Configuration ........................................................................... 14 Figure 10. Second Stage Condenser Configuration..................................................................... 14 Figure 11. Third and Fourth Stage Condenser Configuration ....................................................
Recommended publications
  • Advanced Heat Pump Systems Using Urban Waste Heat “Sewage Heat”
    Mitsubishi Heavy Industries Technical Review Vol. 52 No. 4 (December 2015) 80 Advanced Heat Pump Systems Using Urban Waste Heat “Sewage Heat” YOSHIE TOGANO*1 KENJI UEDA*2 YASUSHI HASEGAWA*3 JUN MIYAMOTO*1 TORU YAMAGUCHI*4 SEIJI SHIBUTANI*5 The application of heat pumps for hot water supply and heating systems is expected. Through this, the energy consumption of hot water supply and heating, which account for a substantial proportion of the total energy consumption in a building, will be reduced. The level of reduction can be dramatically increased by use of "sewage heat," which is part of waste heat in an urban area. So far, however, it has been difficult to determine whether sufficient technical or basic data available to widely use sewage heat exists. Therefore, demonstrations on the evaluation method for the potential of sewage heat in an urban area and the actual- equipment scale of verification using untreated sewage were conducted to understand the characteristics of sewage heat, and major technologies for use of sewage heat were developed. The technologies were applied to the system using sewage heat, and the system achieved a 29% reduction in the annual energy consumption and a 69% reduction in the running cost in the hot water system in lodging facilities compared to the conventional system using a boiler. The depreciation timespan of the difference in the initial cost between the conventional system and the heat pump system is about four years, and this system has an economically large advantage. In this report, the results obtained through the development and the demonstrations are systematically organized and the technical information needed for introduction of use of sewage heat is provided.
    [Show full text]
  • World Bank Document
    WATER GLOBAL PRACTICE QUALITY UNKNOWN BACKGROUND PAPER Public Disclosure Authorized Determinants of Public Disclosure Authorized Essayas Ayana Declining Water Quality Public Disclosure Authorized Public Disclosure Authorized About the Water Global Practice Launched in 2014, the World Bank Group’s Water Global Practice brings together financing, knowledge, and implementation in one platform. By combining the Bank’s global knowledge with country investments, this model generates more firepower for transformational solutions to help countries grow sustainably. Please visit us at www.worldbank.org/water or follow us on Twitter at @WorldBankWater. About GWSP This publication received the support of the Global Water Security & Sanitation Partnership (GWSP). GWSP is a multidonor trust fund administered by the World Bank’s Water Global Practice and supported by Australia’s Department of Foreign Affairs and Trade, the Bill & Melinda Gates Foundation, the Netherlands’ Ministry of Foreign Affairs, Norway’s Ministry of Foreign Affairs, the Rockefeller Foundation, the Swedish International Development Cooperation Agency, Switzerland’s State Secretariat for Economic Affairs, the Swiss Agency for Development and Cooperation, U.K. Department for International Development, and the U.S. Agency for International Development. Please visit us at www.worldbank.org/gwsp or follow us on Twitter #gwsp. Determinants of Declining Water Quality Essayas Ayana © 2019 International Bank for Reconstruction and Development / The World Bank 1818 H Street NW, Washington, DC 20433 Telephone: 202-473-1000; Internet: www.worldbank.org This work is a product of the staff of The World Bank with external contributions. The findings, interpretations, and conclusions expressed in this work do not necessarily reflect the views of The World Bank, its Board of Executive Directors, or the governments they represent.
    [Show full text]
  • Mechanical Systems Water Efficiency Management Guide
    Water Efficiency Management Guide Mechanical Systems EPA 832-F-17-016c November 2017 Mechanical Systems The U.S. Environmental Protection Agency (EPA) WaterSense® program encourages property managers and owners to regularly input their buildings’ water use data in ENERGY STAR® Portfolio Manager®, an online tool for tracking energy and water consumption. Tracking water use is an important first step in managing and reducing property water use. WaterSense has worked with ENERGY STAR to develop the EPA Water Score for multifamily housing. This 0-100 score, based on an entire property’s water use relative to the average national water use of similar properties, will allow owners and managers to assess their properties’ water performance and complements the ENERGY STAR score for multifamily housing energy use. This series of Water Efficiency Management Guides was developed to help multifamily housing property owners and managers improve their water management, reduce property water use, and subsequently improve their EPA Water Score. However, many of the best practices in this guide can be used by facility managers for non-residential properties. More information about the Water Score and additional Water Efficiency Management Guides are available at www.epa.gov/watersense/commercial-buildings. Mechanical Systems Table of Contents Background.................................................................................................................................. 1 Single-Pass Cooling ..........................................................................................................................
    [Show full text]
  • HB In-Situ Project Intrepid Potash - New Mexico, LLC Eddy County, New Mexico
    HB In-Situ Project Intrepid Potash - New Mexico, LLC Eddy County, New Mexico Description of the Proposed Action The proposed action consists of an in-situ, solution mining operation in Eddy County, New Mexico. The project is designed to recover and process potassium chloride ore from pillars and limited adjacent areas of the back, floor and ribs from former underground workings which are no longer economically recoverable via conventional mining techniques. The area proposed for potash extraction occurs within existing Intrepid leases. Limited surface disturbance would occur in the form of surface pipelines, well pads, utility conveyances, solar evaporation ponds, and a new processing mill. Surface disturbance would primarily occur on Intrepid owned land but also on BLM, State of New Mexico, and other deeded surface. The proposed operation has a projected duration of approximately 28 years and would provide significant contributions to the local economy. Components of the Proposed Action • Extraction and conditioning of groundwater from four Rustler Formation wells to form an injectate solution. • Injection of the injectate solution via six injection wells and a surface piping system into the lower portion of four separate former underground mine workings areas. • Extraction of the resulting pregnant brine from the underground mine workings via five extraction wells. • Pumping the brine via a surface piping system to solar evaporation ponds where the potassium and sodium salts (KCl and NaCl, respectively) are precipitated. Proposed Action 10-20-09 Page 1 of 12 HB In-Situ Project • Harvest of precipitated potash and salt at the solar evaporation ponds and transport to a new flotation mill (New HB Mill).
    [Show full text]
  • Commercial Thermal Technologies for Desalination of Water from Renewable Energies: a State of the Art Review
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 January 2021 doi:10.20944/preprints202101.0033.v1 Review Commercial Thermal Technologies for Desalination of Water from Renewable Energies: A State of the Art Review Jhon Feria-Díaz 1, 2, *, María López-Méndez 1, Juan Rodríguez-Miranda 3, Luis Sandoval-Herazo 1 and Felipe Correa-Mahecha 4 1 Instituto Tecnológico Superior de Misantla, Km 1.8 Carretera Lomas del Cojolite, 93821 Misantla, México; [email protected]; [email protected]; [email protected] 2 Universidad de Sucre, Cra. 28 #5-267, Sincelejo, Colombia; [email protected] 3 Universidad Distrital Francisco José de Caldas, Cra. 7 #40b-53, Bogotá, Colombia; [email protected] 4 Fundación Universidad de América, Avda Circunvalar No. 20-53, Bogotá, Colombia; [email protected] * Correspondence: [email protected] Abstract: Thermal desalination is yet a reliable technology in the treatment of brackish water and seawater; however, its demanding high energy requirements have lagged it compared to other non- thermal technologies such as reverse osmosis. This review provides an outline of the development and trends of the three most commercially used thermal or phase change technologies worldwide: Multi Effect Distillation (MED), Multi Stage Flash (MSF), and Vapor Compression Distillation (VCD). First, state of water stress suffered by regions with little fresh water availability and existing desalination technologies that could become an alternative solution are shown. The most recent studies published for each commercial thermal technology are presented, focusing on optimizing the desalination process, improving efficiencies, and reducing energy demands. Then, an overview of the use of renewable energy and its potential for integration into both commercial and non- commercial desalination systems is shown.
    [Show full text]
  • Bioshelters Is Divided Into Two Dis­ Tinct Parts, the One Scientific and the Other More Or Less Domestic
    This section on bioshelters is divided into two dis­ tinct parts, the one scientific and the other more or less domestic. The first, "Logging the Course of the Ark," reflects the range of our investigatory re­ search in the Cape Cod Ark, which, at the age of five, has earned a venerable standing among solar greenhouses. Horticulture, pest control, modeling, toxic materials, and designing future bioshelters are discussed in the light of our current knowledge. The second part, if less scholarly, is more broadly experiential. It is written by an assortment of people who having been exposed to the Ark have incor­ porated a bioshelter in some form or another into their lives. Any readers contemplating doing so themselves will be interested in the variety of ap­ proaches and costs represented. N.J. T. THE JOURNAL OF THE NEW ALCHEMISTS NO.7 LOGGING the COURSE of the ARK ecological, structural, and data-processing subcom­ Indoor Gardening ponents. This contained ecosystem with its inter­ Colleen Armstrong related and interdependent components of plants, earth, insects, fi sh, and people is a bioshelter, which we called the Cape Cod Ark. One of the goals underlying the design of the Ark Sterile soils and the use of toxic chemicals for was to point the way toward a solar-based, year­ intensive management are common elements of round, employment-creating agriculture for orthodox greenhouse food culture. We opted for northern climates. Our goal was to devise a food­ deep, biologically diverse so il s that we "seeded" raising ecosystem that would require one-fifth to from fields, meadow, and forest environments in one-tenth the capital of an orthodox farm but use alluvial, limestone, and glacial areas in southern far less space.
    [Show full text]
  • Chapter 9 Solar Desalination 1. Introduction
    CHAPTER 9 SOLAR DESALINATION John H. Lienhard,1,¤ Mohamed A. Antar,2 Amy Bilton,1 Julian Blanco,3 & Guillermo Zaragoza4 1 Center for Clean Water and Clean Energy, Room 3-162, Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA 2 Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia 3 Plataforma Solar de Almeria, Carretera de Senes s/n, 04200 Tabernas (Almeria), Spain 4 Visiting Professor of Electrical Engineering, King Saud University, Riyadh, Saudi Arabia ¤Address all correspondence to John H. Lienhard E-mail: [email protected] In many settings where freshwater resources or water supply infrastructure are inadequate, fossil energy costs may be high whereas solar energy is abundant. Further, in the industri- alized world, government policies increasingly emphasize the replacement of fossil energy by renewable, low-carbon energy, and so water scarce regions are considering solar-driven desalination systems as a supplement to existing freshwater supplies. Even in regions where petroleum resources are copious, solar-driven desalination is attractive as a means of con- serving fossil fuel resources and limiting the carbon footprint of desalination. Finally, in set- tings that are remote and ‘off-the-grid,” a solar driven desalination system may be more eco- nomical than alternatives such as trucked-in water or desalination driven by diesel-generated electricity. This article reviews various technologies that couple thermal or electrical solar energy to thermal or membrane based desalination systems. Basic principles of desalination are reviewed. Solar stills and humidification-dehumidification desalination systems are dis- cussed.
    [Show full text]
  • Analysis and Optimization of Open Circulating Cooling Water System
    water Article Analysis and Optimization of Open Circulating Cooling Water System Ziqiang Lv 1,2,3, Jiuju Cai 2, Wenqiang Sun 1,2,* and Lianyong Wang 1,2 1 Department of Thermal Engineering, School of Metallurgy, Northeastern University, Shenyang 110819, Liaoning, China; [email protected] (Z.L.); [email protected] (L.W.) 2 State Key Laboratory of Eco-Industry, Northeastern University, Shenyang 110819, Liaoning, China; [email protected] 3 School of Civil Engineering, University of Science and Technology Liaoning, Anshan 114051, Liaoning, China * Correspondence: [email protected] Received: 22 September 2018; Accepted: 26 October 2018; Published: 7 November 2018 Abstract: Open circulating cooling water system is widely used in process industry. For a system with a fixed structure, the water consumption and blowdown usually change with the varying parameters such as quality and temperature. With the purpose of water saving, it is very important to optimize the operation strategy of water systems. Considering the factors including evaporation, leakage, blowdown and heat transfer, the mass and energy conservation equations of water system are established. On this basis, the quality and temperature models of makeup and blowdown water are, respectively, developed. The water consumption and discharge profiles and the optimal operating strategy of the open recirculating cooling water system under different conditions are obtained. The concept of cycles of temperature is proposed to evaluate the temperature relationship of various parts of the open circulating cooling water system. A mathematical relationship is established to analyze the influence of the water temperature on the makeup water rate of the system under the condition of insufficient cooling capacity of the cooling tower.
    [Show full text]
  • Reclaiming Resources: Reducing Water Consumption Through Reuse
    Reclaiming Resources: Reducing Water Consumption through Reuse Although water reuse can be energy-intensive, its use is increasing across numerous industries By: Al Goodman Al Goodman is a principal with 42 years of experience serving clients in water reuse projects at the Louisville, Ky., office of CDM Smith (Boston). Communities and industries around the world are turning to water reuse. The drivers are varied: the need to augment strained water supplies, reduce nutrients in treated effluent, maintain ecological balance, use the most energy-efficient water sources, and reduce cost of purchased and treated water. The major driver is water scarcity in arid and semi-arid regions, though some regions of the world that are not considered to be water-scarce are implementing water reuse. Ecological drivers are becoming more important in evaluating reuse as part of a response to rigorous and costly requirements to reduce or remove nutrients (mainly nitrogen and phosphorus) from discharges to surface waters. Though water reuse can be energy-intensive, depending on the level of treatment required, only a full life-cycle analysis can reveal whether overall resource costs are greater than or less than alternative water supplies. Municipalities are implementing various types of urban water reuse and turning to industry and agriculture as potential customers of reclaimed water. Categories of water reuse applications are presented in the table. This article focuses on considerations relevant for municipal and industrial reuse. For more information on the full range of categories of reuse, refer to the U.S. Environmental Protection Agency’s Guidelines for Water Reuse (2012; http://nepis.epa.gov/Adobe/ PDF/P100FS7K.pdf).
    [Show full text]
  • Preliminary Conference Program International Conference on Energy
    Preliminary Conference Program International Conference on Energy, Water & Environmental Sciences 2018 American University of Ras Al Khaimah, Building G, Ras Al Khaimah, UAE November 13 – 15, 2018 Day 1- November 13, 2018: 9:30 - 10:00 Opening ceremony, 13 November 2018 National Anthem Versus from the Holy Quran Video-AURAK Welcome Speech - Prof. Hasan Hamdan Al Alkim, President of American University of Ras Al Khaimah Co-Organizer speech - Dr. Sabine Dorpmüller, AGYA Managing Director Overview of ICEWES 2018 - Prof. Ahmad Sakhrieh, Organizing Committee Chair, American University of Ras Al Khaimah, UAE 10:00 - 10:30 Coffee Break 10:45 - 11:30 Prof. Dr. Ing. Uta Pottgiesser Keynote Title: Smart and Sustainable Cities & Heritage: Healthy Corridors for Innovative and inclusive Development 11:30 - 12:15 Dr. Ismahane Elouafi Keynote Title: Food-Energy-Water Nexus: Resources Efficiencies and Policy Dimensions 12:20 - 12:40 Performance Indices of a Changes in Dead Sea Energy Efficient Practical PV Power Plant Physical Properties Aquaponics Caused by Mixing of Two Seas Waters (Dead Sea and Red Sea)) Daifallah Dalabeih Abdelaziz Khlaifat, Ammar Alkhalidi Mufeed Batarseh, Khalid Nawayseh, Jamal Amira, Emad Talafeha 12:40 - 13:00 Support Vector Machine Artificial Recharge Efficiency for PV System Efficiency (AR) of Groundwater Enhancement Using Improvement Aquifers in Saudi Double Layer Anti- Arabia reflection Coating of Metamaterial and Silicon Nitride) Maissa Farhat, Maen Musaed AlAwad Shereen Mostafa, Takruri Mostafa Fedawy, Tarik Abd Al-Kader
    [Show full text]
  • Water Resource Management and Desalination Options for Small Communities in Arid and Semi-Arid Coastal Regions (Gaza)
    RYEA\18655007WinaNssue01 Water Resource Management and Desalination Options for Small Communities in Arid and Semi-Arid Coastal Regions (Gaza) November 1996 Institute of Hydrology COPYRIGHTANDREPRODUCTION 0 AEA Technology plc, ETSU, 1996 Enquiries about copyright and reproduction shouldbe addressed to: Dr K J Brown, General Manager, ETSU, B156 Harwell, Didcot, Oxfordshire, OX11 ORA,UK. RYEA\18655007\FinaNssue01 Water Resource Management and Desalination Options for Small Communities in Arid and Semi-Arid Coastal Regions (Gaza) A report produced for ODA November 1996 Title Water Resource Management andDesalination Options for SmallCommunities in Arid and Semi- Arid CoastalRe •om Gaza Customer ODA Customer reference ENA 9597966\333 \001 Confidentiality, This document has been preparedby AEA copyright and Technology plc in connection with a contract to reproduction su 1 oods and/or services. File reference Arecons\ ODA\ desalin\ final Reference number RYEA\ 18655007 ETSU Harwell Oxfordshire OX11 ORA Telephone 01235 433128 Facsimile01235 433213 AEATechnology is the trading name of AEATechnology plc AEATechnology is certified to IS09001 Report Manager Name MissG T Wilkins Checked by Name Dr W B Gillett Signature Ov Date , u. Approved by Name Dr D Martin Signature • • Date 111( q Water Management and DeaaMutton (('aza) ItYEA/18655007/finaVissue 1 04/11196 • PREFACE This report was commissioned by the ODA and was jointly funded by three departments within ODA (Engineering Division, Natural Resources and West Asia Departments). The team of consultants and specialists involved in producing this report comprised ETSU, The Institute of Hydrology, The British Geological Society, Richard Morris and Associates, Dubs Ltd and Light Works Ltd. The report aims to assess the viability of water management and desalination options for small communities in arid and semi-arid coastal regions and to identify any necessary developments required for the successful introduction of such options in these areas.
    [Show full text]
  • Barwon Water Biosolids Management Project Operations
    BARWON WATER BIOSOLIDS MANAGEMENT PROJECT OPERATIONS Paper Presented by: Tony Davies Author: Tony Davies, Operations Manager Barwon Water Biosolids Management Project, Water Infrastructure Group 77th Annual WIOA Victorian Water Industry Operations Conference and Exhibition Bendigo Exhibition Centre 2 to 4 September, 2014 77th WIOA Victorian Water Industry Operations Conference & Exhibition Page No. 70 Bendigo Exhibition Centre, 2 to 4 September, 2014 BARWON WATER BIOSOLIDS MANAGEMENT PROJECT OPERATIONS Tony Davies, Ops Manager Barwon Water Biosolids Mgmt Project, Water Infrastructure Group ABSTRACT The Barwon Water Biosolids Management Facility is the first of its kind in Australia, and the largest in the Southern Hemisphere and has now been operating for 18 months. The innovative, small footprint, fully enclosed thermal drying plant produces T1 Treatment Grade pelletised biosolids that are suitable for reuse as farm fertilizer and soil conditioner that can be safely handled and easily transported immediately after processing. T1 classification for biosolids is the microbiological criteria and measure used to inhibit bacterial regrowth and odour. T1 is the highest classification. The plant operates 24/7 and has capacity to treat 60,000 tonne of biosolids per annum. The plant receives biosolids at >13% from seven wastewater treatment plants in the Geelong region and produces pellets at >90% dry solids. The Facility is one of the projects in the water sector to be delivered as a Public Private Partnership. Water Infrastructure Group designed
    [Show full text]