FORENSIC SCIENCE PAPER No.8: Questioned Document MODULE No

Total Page:16

File Type:pdf, Size:1020Kb

FORENSIC SCIENCE PAPER No.8: Questioned Document MODULE No SUBJECT FORENSIC SCIENCE Paper No. and Title PAPER No. 8: Questioned Document Module No. and Title MODULE No. 29: Scanned Documents and Facsimile Machine Module Tag FSC_P8_M29 FORENSIC SCIENCE PAPER No.8: Questioned Document MODULE No. 29: Scanned Documents & Facsimile Machines TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Computer- Generated Documents and the Forensic Examiner 4. Examination Procedure 5. Description and Histories of the Technologies 6. Identification Features of the Printing Processes 7. Summary FORENSIC SCIENCE PAPER No.8: Questioned Document MODULE No. 29: Scanned Documents & Facsimile Machines 1. Learning Outcomes After studying this module, you shall be able to- Know about various Technology of Printers Learn about the history of various Technology Identify the printer technology with the help of identifying features 2. Introduction One of the most extraordinary skills that we as human beings possess is written communication. Unlike a conversation, our written words allow us to transmit ideas not only over distance, but also over time. It would seem that the urge to make a record of our lives is as old as man himself. Even before there was writing, ochre and charcoal drawings in caves show our ancestors recording important daily events, such as a particularly successful bison hunt — creating, perhaps, the earliest form of textbook or, then again, maybe just bragging rights. Our progression from pictographs to graphical user interface has taken place over a remarkably short time. At no time in man’s history, however, have the documents we make and print gone through more dramatic technological changes than in the past 30 years. The ephemeral world of thought has been transformed into something tangible using the equally ephemeral electric charges held in a silicon memory register. Our ancestors would have understood why we want to tell a story, but they could never have imagined how. To quote the famous science fiction writer Arthur C. Clarke, “Any sufficiently advanced technology is indistinguishable from magic.” The history of recording our thoughts in printed form is also the story of mankind’s changing technology. At almost every major technological advance there has been a corresponding change in the way we record and store our ideas. Certainly some of the earliest attempts at industrial chemistry and technological innovation came from the efforts to make better inks and dyes. The adaptation of moveable, recast able, hot metal type in the late 16th century helped to spread literacy across Europe. During the 17th and 18th centuries metallurgists gradually learned how to increase the strength of iron and steel. The typeface designers quickly took advantage of the harder metals by creating new type fonts with finer detailing and smaller sizes. Because of the greater readability of these newly created alphabets, more letters could be strung together on a page, thus saving paper and ink costs for the printers and publishers. As printing costs were reduced, the distribution of the printed word on pamphlets, flyers, and, of course, books began to spread among the population. The information technology of the day continued to move in lockstep with general technological innovation. FORENSIC SCIENCE PAPER No.8: Questioned Document MODULE No. 29: Scanned Documents & Facsimile Machines 3. Computer- Generated Documents and the Forensic Examiner In the late 1960s it was considered mandatory in the field of questioned document examination to read Ordway Hilton’s, Dr. Phillip Bouffard’s, and Dr. David Crown’s treatises on the examination of typewritten documents. At that time the business community was just upgrading their typewriters from manual and electric single-font machines to the new IBM Selectric typewriters with interchangeable type elements. For the first time, the identification of a typewritten text required the identification of a typing system, rather than just the typewriter. Since defects could occur on the type element or in the typewriter itself, it became necessary to contend with the fact that an element could be moved from machine to machine or a machine could use multiple elements. It was, therefore, the combination of typewriter and interchangeable element that was identified as a system. In the space of just 40 years we have gone from the Selectric — arguably the most technologically advanced typewriter of its day — to the computer age. A document creation system that had just two parts in 1961 (typewriter and element) can now have multiple components — some based in software and some in hardware. The modern Forensic Document Examiner must be aware of such things as the operating system, the word processing program, the version of the word processing program, the digital font and version of the font file, the printer driver and its release date as well as the connection to the printer (standalone or networked). All can have an impact on the appearance of the printed text, as can the many variables associated with the printer itself. Make no mistake about it — this is a complex area that requires some knowledge of typography, digital fonts, computer systems, and software. All of these topics could (and have) filled their own textbooks. This chapter provides a boiled-down version of what is believed to be the most important information for those engaged in the forensic examination of computer-generated documents. 4. Examination Procedure An examination will often be conducted to help answer the questions that are at issue in the case. Some of these questions are likely to include: 1. Is the document an original or copy? 2. Can the printing technology be identified? Dated? 3. Has more than one technology been used to prepare the document (letterhead printed on a lithographic press — the variable data printed with dry toner)? FORENSIC SCIENCE PAPER No.8: Questioned Document MODULE No. 29: Scanned Documents & Facsimile Machines 4. In a multi-page document, is there evidence that one or more pages are prepared differently than the others? 5. Is there any evidence that text has been altered or added to the document? 6. Are there any obvious (gross) defects in the printing that might lead to the machine being individualized? In general, the well-established principle that documents should be thoroughly scrutinized on both sides, corner to corner, is just as valid for modern, computer-generated documents as it has been since the dawn of forensic document examination. 5. Description and Histories of the Technologies 1. High-Speed Mainframe Line Printers: Drum and Chain Print heads This class of printer was first developed in the early 1950s for use with the huge mainframe computers that were just beginning to come online. There were two main types of line printers: drum printers and chain printers. The IBM model 716 that sold from May 1952 through July 1969 was the most widely distributed of the drum printers. In this class of printer, the print mechanism consisted of 120 type wheels (disks) arranged together as a cylinder (drum) behind the ribbon. These wheels spun into the strike position and printed an entire line at a time. At full speed these printers could produce about 150 lines per minute. The model 716 print wheels had 26 (all capital) letters, the numerals 0 to 9, and nine special characters, such as the dollar symbol, period, and slash. The most widely used line printer, however, was the IBM model 1403 introduced in October 1959 and discontinued in 1971.This printer utilized a rotating chain with characters affixed to one side. There were 240 characters affixed to the chain, usually arranged in 5 groups of the same 48 characters. The impact mechanism consisted of 132 hammers arranged much like the hammers over the strings in a piano. The hammers were used to strike the back of the paper against an inked ribbon and the spinning chain at exactly the right moment to impress the characters onto the page. An examination of the text should show the typical pattern made by a metal character striking a fabric ribbon. FORENSIC SCIENCE PAPER No.8: Questioned Document MODULE No. 29: Scanned Documents & Facsimile Machines The 1403 was typically fed 11×14-inch fanfold (green-bar) paper and could print up to 1400 132-column lines per minute. All of the chains that were used by the 1403 contained monospaced characters. At some point in time during the 1960s, however, special chains became available that utilized a Courier font in a full set of upper- and lowercase letters, numbers, and symbols. These special chains could be ordered with as many as 120 different typographic characters arranged on the chain in two groups. These special chains and the 1403 printer became a particularly popular way for companies to produce their own technical/policy manuals. As of 2004, the Lexmark Division of IBM was still selling nylon ribbons for 1403 printers. 2. Dot Matrix Printers Dot matrix printers are technically described as impact matrix printers. This distinguishes them from non-impact matrix printers such as inkjet, thermal print head, and even laser — all of which create text and images as a series of closely spaced dots. The earliest development work on wire printers appears to be that of Reynold B. Johnson at IBM in 1949. By the mid- 1950s both Burroughs and IBM had developed high-speed wire printers for use with mainframe computers. These machines turned out to be highly unreliable and were never a commercial success. In 1968 Seiko Electronics manufactured a small dot matrix print head. This unit was used to print out hard copies of timed athletic events recorded by Seiko’s electronic timers at the 1972 Olympic Games in Tokyo. This small printer was known as the EP-101. Ten years later, in 1978, EPSON (SON of Electronic Printer) used the EP-101 dot matrix technology to market the first (under $2000) consumer dot matrix printer — the EPSON TX-80.
Recommended publications
  • 6.1. INTRODUCTION Printers Are Output Devices Used to Prepare
    P a g e | 1 MAINTENANCE OF COMPUTER SYSTEM LEARNING OBJECTIVES: Concept of printers. Study of printing mechanism. Study of dot matrix,inkjet and laserprinters. Concept of printer controller. To know about interface and signals. CHAPTER-6(PRINTERS) 6.1. INTRODUCTION Printers are Output devices used to prepare permanent Output devices on paper.Printers can be divided into two main categories : Impact Printers : In this hammers or pins strike against a ribbon and paper to print the text. This mechanism is known as electro-mechanical mechanism 6.2 PRINTING MECHANISM: There are two types of printers. 6.3 Impact printers An impact printer makes contact with the paper. It usually forms the print image by pressing an inked ribbon against the paper using a hammer or pins. Following are some examples of impact printers. 6.3.1Dot-Matrix Printers The dot-matrix printer uses print heads containing from 9 to 24 pins. These pins produce patterns of dots on the paper to form the individual characters. The 24 pin dot-matrix printer produces more dots that a 9 pin dot-matrix printer, which results in much better quality and clearer characters. The general rule is: the more pins, the clearer the letters on the paper. The pins strike the ribbon individually as the print mechanism moves across the entire print line in both directions, i-e, from left to right, then right to left, and so on. The user can produce a color output with a dot- matrix printer (the user will change the black ribbon with a ribbon that has color stripes).
    [Show full text]
  • The Effects of Ink and Media Parameters on Offset Solid Ink and Xerographic Halftoned Image View Quality
    IS&T's 1998 PICS Conference IS&T's 1998 PICS Conference Copyright 1998, IS&T The Effects of Ink and Media Parameters on Offset Solid Ink and Xerographic Halftoned Image View Quality Steve Korol Tektronix Color Printing and Imaging Division Wilsonville, Oregon Abstract meet these goals, the successful device must have the ability to print acceptable quality images on a wide variety of Xerographic and offset solid ink technologies are currently substrates reliably. Although both technologies under study dominant in the networked office color printer market. Here, generally render text acceptably, each possesses a set of speed, reliability, ease-of-use, cost-per-copy, and image limitations when grayscale images are considered. quality are all important factors to the office customer who In the case of offset solid ink technology, material is often on a tight budget. Both xerography and solid ink properties of the ink and the print processing steps within have been able to deliver acceptable text output on a wide the printer do indeed afford great media flexibility; however, variety of inexpensive papers; however, such is not always in current implementations of the technology, images may the case for halftoned images. Interestingly, when halftoned appear grainy to the customer, especially in areas of light image quality fails, it is often for widely different reasons optical density (in the range 0.1 to 0.3). The primary reason depending on the technology employed. for this perceived granularity is the minimum diameter and While offset solid ink exhibits excellent receiver media optical density of the smallest achievable mark.
    [Show full text]
  • Introduction to Printing Technologies
    Edited with the trial version of Foxit Advanced PDF Editor To remove this notice, visit: www.foxitsoftware.com/shopping Introduction to Printing Technologies Study Material for Students : Introduction to Printing Technologies CAREER OPPORTUNITIES IN MEDIA WORLD Mass communication and Journalism is institutionalized and source specific. Itfunctions through well-organized professionals and has an ever increasing interlace. Mass media has a global availability and it has converted the whole world in to a global village. A qualified journalism professional can take up a job of educating, entertaining, informing, persuading, interpreting, and guiding. Working in print media offers the opportunities to be a news reporter, news presenter, an editor, a feature writer, a photojournalist, etc. Electronic media offers great opportunities of being a news reporter, news editor, newsreader, programme host, interviewer, cameraman,Edited with theproducer, trial version of Foxit Advanced PDF Editor director, etc. To remove this notice, visit: www.foxitsoftware.com/shopping Other titles of Mass Communication and Journalism professionals are script writer, production assistant, technical director, floor manager, lighting director, scenic director, coordinator, creative director, advertiser, media planner, media consultant, public relation officer, counselor, front office executive, event manager and others. 2 : Introduction to Printing Technologies INTRODUCTION The book introduces the students to fundamentals of printing. Today printing technology is a part of our everyday life. It is all around us. T h e history and origin of printing technology are also discussed in the book. Students of mass communication will also learn about t h e different types of printing and typography in this book. The book will also make a comparison between Traditional Printing Vs Modern Typography.
    [Show full text]
  • Embodied Community and Embodied Pedagogy
    ZINES, n°2, 2021 MATERIAL MATTERS: EMBODIED COMMUNITY AND EMBODIED PEDAGOGY Kelly MCELROY & Korey JACKSON Oregon State University Libraries and Press [email protected] [email protected] Abstract: In this essay, we outline how materiality can be a tool of critical pedagogy, leading to pleasure, vulnerability, and embodied learning in the classroom. Over the past four years, we have taught an honors colloquium to undergraduate students focused on self-publishing as a means to create social change. As we explore various publishing media, genres, and activist movements with our students, we combine traditional academic activities like scholarly reading and written analysis with informal hands-on craft time. Our students make collages, learn to use the advanced features on a photocopier, and collaborate on hectograph printing among other crafts, all as they begin to put together their own final DIY publication. Students regularly report that the hands-on activities are crucial to their learning, giving them new appreciation for the underground publications they read, through embodied experiences that can’t be replicated with a reading or a quiz. It also builds our community of learners, as we share ideas, borrow glue sticks, and chit-chat as we put our zines together. We will outline how we built and teach this course, placing it within our critical pedagogy – informed by bell hooks, Kevin Kumashiro, and Paulo Freire, among others – and how teaching this course has helped us incorporate embodiment into our other teaching. Keywords: embodied pedagogy, teaching, publishing. 58 Material Matters: Embodied Community and Embodies Pedagogy ZINES, n°2, 2021 INTRODUCTION Alison Piepmeier has argued that, “Zines’ materiality creates College, this course is one of a suite of course offerings community because it creates pleasure, affection, allegiance, and that highlight exploratory discovery and deep dives vulnerability” (2008, 230).
    [Show full text]
  • Glossary of Flexographic Printing Terms
    GLOSSARY OF FLEXOGRAPHIC PRINTING TERMS AA: Authors Alterations, changes other than corrections, made by a client after the proofing process has begun. AA's are usually charged to a client as billable time. Abrasion: Process of wearing away the surface of a material by friction. Abrasion marks: Marks on a photographic print or film appearing as streaks or scratches, caused by the condition of the developer. Can be partially removed by swabbing with alcohol. Abrasion resistance: Ability to withstand the effects of repeated rubbing and scuffing. Also called scuff or rub resistance. Abrasion test: A test designed to determine the ability to withstand the effects of rubbing and scuffing. Abrasiveness: That property of a substance that causes it to wear or scratch other surfaces. Absorption: In paper, the property which causes it to take up liquids or vapors in contact with it. In optics, the partial suppression of light through a transparent or translucent material. Acceptance sampling or inspection: The evaluation of a definite lot of material or product that is already in existence to determine its acceptability within quality standards. Accelerate: In flexographic printing, as by the addition of a faster drying solvent or by increasing the temperature or volume of hot air applied to the printed surface. Electrical - To speed rewind shafts during flying splices, and in taking up web slackness. Accordion Fold: Bindery term, two or more parallel folds which open like an accordion. Acetone: A very active solvent used in packaging gravure inks; the fastest drying solvent in the ketone family. Activator: A chemistry used on exposed photographic paper or film emulsion to develop the image.
    [Show full text]
  • Judging Permanence for Reformatting Projects: Paper and Inks
    ConserveO Gram September 1995 Number 19/14 Judging Permanence For Reformatting Projects: Paper And Inks Many permanently valuable NPS documents fibered, high alpha-cellulose cotton and linen such as correspondence, drawings, maps, plans, rags. Early rag papers were strong, stable, and reports were not produced using permanent and durable with relatively few impurities. and durable recording media. When selecting In the mid-17th century, damaging alum paper items for preservation duplication, items sizing was added to control bacteria and marked on the list below with a " - " are at mold growth in paper. By 1680, shorter highest risk and should have special priority for fiber rag papers were being produced due to duplication. Document types marked with a the use of mechanical metal beaters to shred "+" are lower priorities for reformatting as they the rag fibers. By about 1775, damaging tend to be more stable and durable. See chlorine bleaches were added to rag papers Conserve O Gram 19/10, Reformatting for to control the paper color. Acidic alum Preservation and Access: Prioritizing Materials rosin sizing was introduced around 1840 to for Duplication, for a full discussion of how to speed the papermaking process thus leading select materials for duplication. NOTE: Avoid to even shorter-lived papers. Rag papers using materials and processes marked " - " when became less common after the introduction producing new documents. of wood pulp paper around 1850. Compared to rag paper, most wood pulp papers have Paper much poorer chemical chemical and mechanical strength, durability, and stability. All permanently valuable original paper - documents should be produced on lignin-free, Ground or mechanical wood pulp paper: high alpha-cellulose papers with a pH between After 1850, most paper produced was 7.5 and 8.0, specifically those papers meeting machine-made paper with a high proportion the American National Standards Institute of short-fibered and acidic wood pulp.
    [Show full text]
  • Vinculum-II Scrolling Text Application Using LED Dot Matrix Display
    Application Note AN_200 Vinculum-II Scrolling Text Application Using LED dot matrix display Version 1.0 Issue Date: 2012-02-09 This application note provides an example of using the FTDI Vinculum-II (VNC2) to communicate with a USB Flash drive to display text and graphics held on the Flash drive, on a LED dot matrix display. Drivers and source code are also provided (downloadable from the FTDI website) Use of FTDI devices in life support and/or safety applications is entirely at the user’s risk, and the user agrees to defend, indemnify and hold harmless FTDI from any and all damages, claims, suits or expense resulting from such use. Future Technology Devices International Limited (FTDI) Unit 1, 2 Seaward Place, Glasgow G41 1HH, United Kingdom Tel.: +44 (0) 141 429 2777 Fax: + 44 (0) 141 429 2758 Web Site: http://ftdichip.com Copyright © 2012 Future Technology Devices International Limited Application Note AN_200 Vinculum-II Scrolling Text Application Using LED dot matrix display Version 1.0 Document Reference No.: FT_000571 Clearance No.: FTDI# 277 Table of Contents 1 Introduction .................................................................................................................................... 3 1.1 Overview ................................................................................................................................. 3 1.2 Hardware Requirements ......................................................................................................... 4 2 Operation .......................................................................................................................................
    [Show full text]
  • Relationship of Solid Ink Density and Dot Gain in Digital Printing
    International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-2, Issue-7, July 2014 Relationship of Solid Ink Density and Dot Gain in Digital Printing Vikas Jangra, Abhishek Saini, Anil Kundu gain while meeting density requirements. As discussed Abstract— Ours is the generation which is living in the age of above Dot gain is the measurement of the increase in tone science and technology. The latest scientific inventions have value from original file to the printed sheet. given rise to various technologies in every aspect of our life. Newer technologies have entered the field of printing also. II. MATERIALS AND METHODS Digital printing is one of these latest technologies which have further revolutionized entire modern printing industry in many Densitometer is used for measuring density of ink ways. It also facilitates working on large variety of surfaces, on the paper. Densitometer can be classified according to besides these factors digital printing have grown widely and type of materials they are designed to measure i.e. opaque made a special impact in print market. The presented analysis and transparent. Density of opaque materials is measured by system is used for study of print quality in Digital Printing. reflected light with a device called reflection type densitometer. Density of transparent materials is measured Index Terms— Digital Printing, Dot Gain, Solid ink density, by transmitted light with a device called transmission type Coated Paper and Uncoated Paper. densitometer. In order to measure the print quality i.e. solid ink density (SID) and dot gain (DG) on coated and uncoated I.
    [Show full text]
  • LPR and LP Technical Brief
    LPR and LP Technical Brief Overview Why Use LPR? LPR is one of several methods available for sending files to The lpr and lp commands provide an easy way to send files the Codonics NP-1600 printer. LPR utilizes the TCP/IP net- to the various Logical Devices that exist on the printer. It is working protocol and is most commonly used in UNIX, and the preferred way of sending files over a TCP/IP network to a lesser extent, in MS-DOS/Windows and other environ- since the printer has internal queuing and spooling for all of ments. Most LPR implementations have easy-to-use com- the internal print queues. Each of the internal printer Logical mands for sending files to the printer, but require set up by Devices may be set up on remote systems to allow for print- the System Administrator for correct operation. ing of Scaled, Unscaled, and Bracketing images. The lpr command and the UNIX System V lp command, are used to send image files to the printer. They are easier to use Multiple images can also be assembled on one page by using than FTP and require no user interaction so they may be the Caption, Variable Multiformatting, and Fixed Multifor- used from applications and shell commands. Not all System matting Devices. Getting the desired output can be accom- V LP implementations support the LPR transfer protocol plished very easily by following two general rules: which is used by the printer. Consult your documentation. If you wish to print a single image on a page, you should: The internal operating system on the printer acts as a remote LPD host, allowing various printer formatting functions to 1.
    [Show full text]
  • The Story of Xerography Page 1 of 13
    The Story of Xerography Page 1 of 13 Our Heritage, Our Commitment "10-22-38 ASTORIA" This humble legend marks the time and place of an auspicious event. It is the text of the first xerographic image ever fashioned. It was created in a makeshift laboratory in Queens, NY. by a patent attorney named Chester Carlson, who believed that the world was ready for an easier and less costly way to make copies. Carlson was proved right only after a discouraging ten-year search for a company that would develop his invention into a useful product. It was the Haloid Company, a small photo-paper maker in Rochester, N.Y, which took on the challenge and the promise of xerography and thus became, in a breathtakingly short time, the giant multinational company now known to the world as Xerox Corporation. This report contains several stories about xerography: the man who invented it, the company that made it work, and the products it yielded for the benefit of mankind. These stories chronicle a classic American success story: How men of courage and vision grew a highly profitable business from little more than the seed of an idea. Certainly, Xerox has changed greatly in size and scope since the historic 914 copier was introduced in 1959. But we also believe that the basic personality of Xerox has never changed. We are convinced that the essential attributes that brought the young Xerox such spectacular rewards in office copying are the same attributes we need to assure continued success for the mature Xerox as it develops total office information capability.
    [Show full text]
  • Hewlett Packard: Continuing Dominance in the Printer Industry
    HEWLETT PACKARD: CONTINUING DOMINANCE IN THE PRINTER INDUSTRY BEM 106 Friday May 28, 2004 Anita Choi, Chris Flatt, Mike Lammers, Jason Quimby 1. EXECUTIVE SUMMARY By the 2006, Americans will be printing 1.8 trillion pages and spending $15 billion a year on ink and toner. Printers are one of the most important complements to the PC, needed by users both at home and in the office to transfer any electronic document onto paper. Since the first dot-matrix printer was introduced into the market in the early 1980s, printer technology has rapidly evolved to become machines that are increasingly efficient in producing sophisticated looking documents both in color and black-and- white. Hewlett Packard is a global leader in the industry of home and office printing. Even after merging with Compaq in 2002, HP’s Imaging and Printing group accounts for about 30% of the companies revenues and is markedly the most profitable division with earnings 1.4 times that of the company as a whole. Recently HP has faced new challenges with the entry of Dell and the surge in inkjet cartridge refill kits. This paper explores the challenges that HP faces in maintaining its dominance in the printer industry with respect to the competitive landscape and its current business strategy. 2. BACKGROUND ON HEWLETT PACKARD HP was founded in 1939 by Bill Hewlett and Dave Packard. The company has its roots in the electronics, microwave, and radio industries. World War II government contracts enabled the business to grow into a million dollar company by 1944. By the 1960s, HP had diversified into personal computing, starting with programmable calculators in 1972, and eventually entering the desktop market in 1980.
    [Show full text]
  • Dot Matrix Printers with a Product Range That Offers the Ultimate in High Speed, Low Cost, Reliable and Durable Printing Across All Stationery Types
    Epson Dot Matrix Range Epson Dot Matrix Range Reliable and affordable printers for multiple copies and forms Epson is the world’s largest manufacturer of dot matrix printers with a product range that offers the ultimate in high speed, low cost, reliable and durable printing across all stationery types. Ideal for drafting, high volume data processing, and multi-part stationery – for which there is simply no alternative – no other technology offers such broad capability from a single machine. NEW NEW NEW Epson LX 300+ II Epson LX 1170 II Epson LQ 300+ II • USB interface • USB interface • USB interface • larger input buffer • added flash ROM • larger input buffer • added flash ROM for firmware updates • added flash ROM for firmware updates for firmware updates Offering a wider choice than any other Epson 9-pin dot matrix printers Epson 24-pin dot matrix printers manufacturer – and spanning every Featuring durable, heavy and medium Offering all the features available across duty cycle, from light to heavy duty – duty printers for continuous data pro- the Epson 9-pin range, but with the the Epson dot matrix range enables cessing and high speed drafting tasks – addition of scalable fonts and letter you to strike exactly the right balance while offering competitively priced low quality, for superior print quality, Epson between capability, performance and cost printers – the Epson 9-pin dot 24-pin printers are ideal for front desk cost. And built to the standards which matrix range offers exceptional value. applications in the retail and service have made the Epson brand synony- industries, and for tasks such as invoice mous with reliability, Epson dot matrix Outstanding performance combined with and order printing.
    [Show full text]