University of California, Berkeley Lawrence Berkeley National Lab
Report Annual 2019 University of California, Berkeley Lawrence Berkeley National Lab C Cover Image A Graphene Superconductor That Plays More Than One Tune Professor Feng Wang’s group and collaborators have developed a graphene device that’s thinner than a human hair but has a depth of special traits. It easily switches from a superconducting material that conducts electricity without losing any energy, to an insulator that resists the flow of electric current, and back again to a superconductor – all with a simple flip of a switch. The material is composed of three 2D layers of graphene (gray) on 2D layers of boron nitride (red and blue) to form a repeating pattern called a moiré superlattice. Superconductivity is indicated by the light-green circles, which represent the positive charge (the hole) sitting on each unit cell of the moiré superlattice. Article Citation: Chen G, Sharpe AL, Gallagher P, Rosen IT, Fox EJ, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Jung J, Shi Z, Goldhaber-Gordon D, Zhang Y, Wang F. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature. 2019 Jul 17. DOI: 10.1038/s41586-019-1393-y. 1 Table of Contents 3 Mission 4 Director’s Perspective 6 Programs 7 Kavil ENSI Faculty 11 Student Engagement 12 Spotlight on Fellows 26 Thesis Prize 27 Faculty Awards 28 Winton Program for Physics and Sustainability / Kavli ENSI Exchange Program 32 Institute for Basic Science / Kavil ENSI Exchange Program 33 Research Highlights 72 Publications 2 Mission Nature is brimming with examples of efficiency, from the way plants capture energy in sunlight to the molecular machines that make muscles contract.
[Show full text]