Using History to Teach Computer Science and Related Disciplines

Total Page:16

File Type:pdf, Size:1020Kb

Using History to Teach Computer Science and Related Disciplines Computing Research Association Using History T o T eachComputer Science and Related Disciplines Using History To Teach Computer Science and Related Disciplines Edited by Atsushi Akera 1100 17th Street, NW, Suite 507 Rensselaer Polytechnic Institute Washington, DC 20036-4632 E-mail: [email protected] William Aspray Tel: 202-234-2111 Indiana University—Bloomington Fax: 202-667-1066 URL: http://www.cra.org The workshops and this report were made possible by the generous support of the Computer and Information Science and Engineering Directorate of the National Science Foundation (Award DUE- 0111938, Principal Investigator William Aspray). Requests for copies can be made by e-mailing [email protected]. Copyright 2004 by the Computing Research Association. Permission is granted to reproduce the con- tents, provided that such reproduction is not for profit and credit is given to the source. Table of Contents I. Introduction ………………………………………………………………………………. 1 1. Using History to Teach Computer Science and Related Disciplines ............................ 1 William Aspray and Atsushi Akera 2. The History of Computing: An Introduction for the Computer Scientist ……………….. 5 Thomas Haigh II. Curricular Issues and Strategies …………………………………………………… 27 3. The Challenge of Introducing History into a Computer Science Curriculum ………... 27 Paul E. Ceruzzi 4. History in the Computer Science Curriculum …………………………………………… 33 J.A.N. Lee 5. Using History in a Social Informatics Curriculum ....................................................... 39 William Aspray 6. Introducing Humanistic Content to Information Technology Students ……………….. 61 Atsushi Akera and Kim Fortun 7. The Synergy between Mathematical History and Education …………………………. 85 Thomas Drucker 8. Computing for the Humanities and Social Sciences …………………………………... 89 Nathan L. Ensmenger III. Specific Courses and Syllabi ………………………………………....................... 95 Course Descriptions & Syllabi 9. History in the First Course in Computer Science ……………………………………..... 95 J.A.N. Lee 10. History of Computing for Computer Science and Information Systems Students .… 109 Thomas J. Bergin and Jack Hyman 11. Enhancing Learning Using the History of Computing: Opportunities to Use History in an Introductory Computers and Information Course ……………………… 139 Thomas J. Bergin 12. An Introductory Informatics Course …………………………………………………….. 147 Mehmet M. Dalkilic 13. Engineering and Computer Science in Action: A Course on “The Structure of Engineering Revolutions” ……………………………………………………………….. 157 Eden Miller Medina and David A. Mindell Additional Course Syllabi 14. STS.035: From Analog to Agents: Introduction to the History of Computing ……… 167 (course syllabus) David A. Mindell 15. Informatics 303: Organizational Informatics …………………………………………... 175 William Aspray 16. Informatics 400/590: Internet and Society …………………………………………….. 179 William Aspray 17. Informatics 400/590: Privacy, Security, and Information Warfare ………………….. 185 William Aspray 18. HSSC120: Computer Learning for the Arts and Sciences …………………………... 193 Nathan L. Ensmenger 19. ITEC-1210: IT Revolution—Myth or Reality? …………………………………………. 197 Kim Fortun 20. ITEC-1220: The Politics and Economics of IT ………………………………………… 217 Atsushi Akera IV. Historical Case Studies for Computing and Information Systems Education …………………………………………………………….. 225 21. What Was the Question? The Origins of the Theory of Computation ……………… 225 Michael S. Mahoney 22. History in the Study of Computer Architecture ……………………………………….. 233 John Impagliazzo 23. Bringing Women into the Curriculum ………………………………………………….. 239 Jennifer S. Light 24. Human Computers and their Electronic Counterparts ………………………………. 245 David Alan Grier 25. Integrating Ethics into a Computing Curriculum: A Case Study of the Therac-25…. 255 Chuck Huff and Richard Brown V. Resources for Instructors ………………………………………………………… 279 26. Key Resources in the History of Computing …………………………………………. 279 Thomas Haigh 27. Resources for a Course on the History of Computing ……………………………… 295 Thomas J. Bergin and Jack Hyman Appendix 1. List of Additional Workshop Participants ………………………………………………309 ,,QWURGXFWLRQ 1. Using History to Teach Computer Science and Related Disciplines William Aspray Indiana University at Bloomington Atsushi Akera Rensselaer Polytechnic Institute This volume on using history to improve computing education came out of conversations that the first author had in 2000 with Andrew Bernat, the current executive director of the Computing Research Association who was then a program officer at the National Science Foundation, on leave from the University of Texas at El Paso. Andy and I had wide-ranging talks about various means for improving computer science education. He encouraged me to submit a proposal to NSF on using history to improve undergraduate computing education and talked with me on several occasions as I was preparing the proposal. Since Andy and I previously had written a report together, he was not permitted, under conflict-of-interest rules, to be the program officer for this proposal. The proposal was turned over to Harriet Taylor, who helped me through the proposal process. NSF awarded grant number DUE-0111938 to support this activity. The grant was used to hold two workshops: the first at Amherst College August 6-7, 2001, and the second at the University of Minnesota April 26-28, 2002.1 Each was attended by about forty people, primarily undergraduate teachers of computer science. The original plan for disseminating the results was to make a few presentations at meetings such as the annual ACM SIGCSE conference or the annual Frontiers in Education conference. The organizing committee’s frugality meant that attendees of the first workshop suffered through 100-degree weather in dorm rooms with no air conditioning, and attendees of the second meeting had to trek almost a mile through snowstorms to the meeting space. However, this frugality also meant that we had funds left over to collect and edit papers, publish them, and post them on a website where they could receive much wider dissemination than any workshop talk would achieve. In meetings held in Chicago in April 2004 and in Needham, Mass. in May 2004, the contributors to this volume met to critique one another’s papers. The contributors include most of those who spoke at one or both of the workshops, plus a few additional historians and computer scientists who were invited to submit papers. Professor Atsushi Akera of Rensselaer Polytechnic Institute, who was one of the workshop speakers, kindly offered to take principal responsibility for editing the publication. Jean Smith of the CRA staff has undertaken her usual exemplary work as the copyeditor for the volume, under a very tight set of deadlines. 1 The programs for those workshops can be found online at: http://www.cra.org/Activities/workshops/history/august01.html and http://www.cra.org/Activities/workshops/history/april02.html The volume itself is organized into five parts. Part I includes this introductory paper, followed by one by Professor Thomas Haigh that provides a basic introduction to the history of computing, as relevant to computer scientists and professionals. Part II assembles a set of papers addressing broader issues of curriculum development and strategy. Paul Ceruzzi opens this section with a reflective essay on the challenges of introducing history into a computer science curriculum. This is followed by J.A.N. Lee’s broad- based discussion about doing just this, especially in the context of the ACM/IEEE Computer Society’s jointly produced report “Computing Curriculum 2001,” which specifically calls for broadening a computer science student’s education.2 William Aspray describes his work in developing a broad, social informatics curriculum at the new School of Informatics at Indiana University in Bloomington. Atsushi Akera and Kim Fortun offer a complementary account of their efforts to develop a coherent curriculum in the humanities and social sciences for information technology (IT) students at Rensselaer. As well, Thomas Drucker provides an account of the classic synergy between the history of mathematics and mathematics education. In a way, history has been integrated into mathematics far more effectively than into computer science education, so his paper provides a good role model for more intensive interaction between history and computing-related disciplines. Lastly, Nathan Ensmenger describes a special program established at the University of Pennsylvania to provide basic computer literacy to non-computing majors within the School of Arts and Sciences. The premise of this work was that students in fields such as history, anthropology, and comparative literature were even more likely to benefit from using historical sources to develop a different kind of awareness about computing and information technologies. The papers in this section provide a surprisingly coherent picture of how historical materials can be incorporated into a computing curriculum. Moreover, in describing the curricular needs of computer science departments, information technology programs, and schools of social informatics as well as general arts and sciences, the papers collectively provide an account of the different approaches that need to be taken in supporting the different curricular needs of these programs. Part III of this volume provides a specific set of course descriptions and course syllabi. Rather than speaking abstractly about how to use history, we felt that a set of fully developed course descriptions
Recommended publications
  • Thomas Ströhlein's Endgame Tables: a 50Th Anniversary
    Thomas Ströhlein's Endgame Tables: a 50th Anniversary Article Supplemental Material The Festschrift on the 40th Anniversary of the Munich Faculty of Informatics Haworth, G. (2020) Thomas Ströhlein's Endgame Tables: a 50th Anniversary. ICGA Journal, 42 (2-3). pp. 165-170. ISSN 1389-6911 doi: https://doi.org/10.3233/ICG-200151 Available at http://centaur.reading.ac.uk/90000/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . Published version at: https://content.iospress.com/articles/icga-journal/icg200151 To link to this article DOI: http://dx.doi.org/10.3233/ICG-200151 Publisher: The International Computer Games Association All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online 40 Jahre Informatik in Munchen:¨ 1967 – 2007 Festschrift Herausgegeben von Friedrich L. Bauer unter Mitwirkung von Helmut Angstl, Uwe Baumgarten, Rudolf Bayer, Hedwig Berghofer, Arndt Bode, Wilfried Brauer, Stephan Braun, Manfred Broy, Roland Bulirsch, Hans-Joachim Bungartz, Herbert Ehler, Jurgen¨ Eickel, Ursula Eschbach, Anton Gerold, Rupert Gnatz, Ulrich Guntzer,¨ Hellmuth Haag, Winfried Hahn (†), Heinz-Gerd Hegering, Ursula Hill-Samelson, Peter Hubwieser, Eike Jessen, Fred Kroger,¨ Hans Kuß, Klaus Lagally, Hans Langmaack, Heinrich Mayer, Ernst Mayr, Gerhard Muller,¨ Heinrich Noth,¨ Manfred Paul, Ulrich Peters, Hartmut Petzold, Walter Proebster, Bernd Radig, Angelika Reiser, Werner Rub,¨ Gerd Sapper, Gunther Schmidt, Fred B.
    [Show full text]
  • Alternate History – Alternate Memory: Counterfactual Literature in the Context of German Normalization
    ALTERNATE HISTORY – ALTERNATE MEMORY: COUNTERFACTUAL LITERATURE IN THE CONTEXT OF GERMAN NORMALIZATION by GUIDO SCHENKEL M.A., Freie Universität Berlin, 2006 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (German Studies) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) April 2012 © Guido Schenkel, 2012 ABSTRACT This dissertation examines a variety of Alternate Histories of the Third Reich from the perspective of memory theory. The term ‘Alternate History’ describes a genre of literature that presents fictional accounts of historical developments which deviate from the known course of hi story. These allohistorical narratives are inherently presentist, meaning that their central question of “What If?” can harness the repertoire of collective memory in order to act as both a reflection of and a commentary on contemporary social and political conditions. Moreover, Alternate Histories can act as a form of counter-memory insofar as the counterfactual mode can be used to highlight marginalized historical events. This study investigates a specific manifestation of this process. Contrasted with American and British examples, the primary focus is the analysis of the discursive functions of German-language counterfactual literature in the context of German normalization. The category of normalization connects a variety of commemorative trends in postwar Germany aimed at overcoming the legacy of National Socialism and re-formulating a positive German national identity. The central hypothesis is that Alternate Histories can perform a unique task in this particular discursive setting. In the context of German normalization, counterfactual stories of the history of the Third Reich are capable of functioning as alternate memories, meaning that they effectively replace the memory of real events with fantasies that are better suited to serve as exculpatory narratives for the German collective.
    [Show full text]
  • The Operating System Handbook Or, Fake Your Way Through Minis and Mainframes
    The Operating System Handbook or, Fake Your Way Through Minis and Mainframes by Bob DuCharme MVS Table of Contents Chapter 22 MVS: An Introduction.................................................................................... 22.1 Batch Jobs..................................................................................................................1 22.2 Interacting with MVS................................................................................................3 22.2.1 TSO.........................................................................................................................3 22.2.2 ISPF........................................................................................................................3 22.2.3 CICS........................................................................................................................4 22.2.4 Other MVS Components.........................................................................................4 22.3 History........................................................................................................................5 Chapter 23 Getting Started with MVS............................................................................... 23.1 Starting Up.................................................................................................................6 23.1.1 VTAM.....................................................................................................................6 23.1.2 Logging On.............................................................................................................6
    [Show full text]
  • The Advent of Recursion & Logic in Computer Science
    The Advent of Recursion & Logic in Computer Science MSc Thesis (Afstudeerscriptie) written by Karel Van Oudheusden –alias Edgar G. Daylight (born October 21st, 1977 in Antwerpen, Belgium) under the supervision of Dr Gerard Alberts, and submitted to the Board of Examiners in partial fulfillment of the requirements for the degree of MSc in Logic at the Universiteit van Amsterdam. Date of the public defense: Members of the Thesis Committee: November 17, 2009 Dr Gerard Alberts Prof Dr Krzysztof Apt Prof Dr Dick de Jongh Prof Dr Benedikt Löwe Dr Elizabeth de Mol Dr Leen Torenvliet 1 “We are reaching the stage of development where each new gener- ation of participants is unaware both of their overall technological ancestry and the history of the development of their speciality, and have no past to build upon.” J.A.N. Lee in 1996 [73, p.54] “To many of our colleagues, history is only the study of an irrele- vant past, with no redeeming modern value –a subject without useful scholarship.” J.A.N. Lee [73, p.55] “[E]ven when we can't know the answers, it is important to see the questions. They too form part of our understanding. If you cannot answer them now, you can alert future historians to them.” M.S. Mahoney [76, p.832] “Only do what only you can do.” E.W. Dijkstra [103, p.9] 2 Abstract The history of computer science can be viewed from a number of disciplinary perspectives, ranging from electrical engineering to linguistics. As stressed by the historian Michael Mahoney, different `communities of computing' had their own views towards what could be accomplished with a programmable comput- ing machine.
    [Show full text]
  • Educating the Whole Person? the Case of Athens College, 1940-1990
    Educating the whole person? The case of Athens College, 1940-1990 Polyanthi Giannakopoulou-Tsigkou Institute of Education, University of London A thesis submitted for the Degree of EdD September 2012 Abstract This thesis is a historical study of the growth and development of Athens College, a primary/secondary educational institution in Greece, during the period 1940-1990. Athens College, a private, non-profit institution, was founded in 1925 as a boys' school aiming to offer education for the whole person. The research explores critically the ways in which historical, political, socio-economic and cultural factors affected the evolution of Athens College during the period 1940-1990 and its impact on students' further studies and careers. This case study seeks to unfold aspects of education in a Greek school, and reach a better understanding of education and factors that affect it and interact with it. A mixed methods approach is used: document analysis, interviews with Athens College alumni and former teachers, analysis of student records providing data related to students' achievements, their family socio-economic 'origins' and their post-Athens College 'destinations'. The study focuses in particular on the learners at the School, and the kinds of learning that took place within this institution over half a century. Athens College, although under the control of a centralised educational system, has resisted the weaknesses of Greek schooling. Seeking to establish educational ideals associated with education of the whole person, excellence, meritocracy and equality of opportunity and embracing progressive curricula and pedagogies, it has been successful in taking its students towards university studies and careers.
    [Show full text]
  • Objective Assessment of Cerebellar Ataxia: a Comprehensive and Refned Approach Bipasha Kashyap1 ✉ , Dung Phan1, Pubudu N
    www.nature.com/scientificreports OPEN Objective Assessment of Cerebellar Ataxia: A Comprehensive and Refned Approach Bipasha Kashyap1 ✉ , Dung Phan1, Pubudu N. Pathirana1, Malcolm Horne2, Laura Power3 & David Szmulewicz2,3,4 Parametric analysis of Cerebellar Ataxia (CA) could be of immense value compared to its subjective clinical assessments. This study focuses on a comprehensive scheme for objective assessment of CA through the instrumented versions of 9 commonly used neurological tests in 5 domains- speech, upper limb, lower limb, gait and balance. Twenty-three individuals diagnosed with CA to varying degrees and eleven age-matched healthy controls were recruited. Wearable inertial sensors and Kinect camera were utilised for data acquisition. Binary and multilabel discrimination power and intra-domain relationships of the features extracted from the sensor measures and the clinical scores were compared using Graph Theory, Centrality Measures, Random Forest binary and multilabel classifcation approaches. An optimal subset of 13 most important Principal Component (PC) features were selected for CA- control classifcation. This classifcation model resulted in an impressive performance accuracy of 97% (F1 score = 95.2%) with Holmesian dimensions distributed as 47.7% Stability, 6.3% Timing, 38.75% Accuracy and 7.24% Rhythmicity. Another optimal subset of 11 PC features demonstrated an F1 score of 84.2% in mapping the total 27 PC across 5 domains during CA multilabel discrimination. In both cases, the balance (Romberg) test contributed the most (31.1% and 42% respectively), followed by the peripheral tests whereas gait (Walking) test contributed the least. These fndings paved the way for a better understanding of the feasibility of an instrumented system to assist informed clinical decision- making.
    [Show full text]
  • Big Blue in the Bottomless Pit: the Early Years of IBM Chile
    Big Blue in the Bottomless Pit: The Early Years of IBM Chile Eden Medina Indiana University In examining the history of IBM in Chile, this article asks how IBM came to dominate Chile’s computer market and, to address this question, emphasizes the importance of studying both IBM corporate strategy and Chilean national history. The article also examines how IBM reproduced its corporate culture in Latin America and used it to accommodate the region’s political and economic changes. Thomas J. Watson Jr. was skeptical when he The history of IBM has been documented first heard his father’s plan to create an from a number of perspectives. Former em- international subsidiary. ‘‘We had endless ployees, management experts, journalists, and opportunityandlittleriskintheUS,’’he historians of business, technology, and com- wrote, ‘‘while it was hard to imagine us getting puting have all made important contributions anywhere abroad. Latin America, for example to our understanding of IBM’s past.3 Some seemed like a bottomless pit.’’1 However, the works have explored company operations senior Watson had a different sense of the outside the US in detail.4 However, most of potential for profit within the world market these studies do not address company activi- and believed that one day IBM’s sales abroad ties in regions of the developing world, such as would surpass its growing domestic business. Latin America.5 Chile, a slender South Amer- In 1949, he created the IBM World Trade ican country bordered by the Pacific Ocean on Corporation to coordinate the company’s one side and the Andean cordillera on the activities outside the US and appointed his other, offers a rich site for studying IBM younger son, Arthur K.
    [Show full text]
  • The Myth of the Innovator Hero - Business - the Atlantic
    The Myth of the Innovator Hero - Business - The Atlantic http://www.theatlantic.com/business/print/2011/11/the-myth-of-the-inno... Print | Close By Vaclav Smil Every successful modern e-gadget is a combination of components made by many makers. The story of how the transistor became the building block of modern machines explains why. WIKIPEDIA: Steve Jobs, Thomas Edison, Benjamin Franklin We like to think that invention comes as a flash of insight, the equivalent of that sudden Archimedean displacement of bath water that occasioned one of the most famous Greek interjections, εὕρηκα. Then the inventor gets to rapidly translating a stunning discovery into a new product. Its mass appeal soon transforms the world, proving once again the power of a single, simple idea. But this story is a myth. The popular heroic narrative has almost nothing to do with the way modern invention (conceptual creation of a new product or process, sometimes accompanied by a prototypical design) and innovation (large-scale diffusion of commercially viable inventions) work. A closer examination reveals that many award-winning inventions are re-inventions. Most scientific or engineering discoveries would never become successful products without contributions from other scientists or engineers. Every major invention is the child of far-flung parents who may never meet. These contributions may be just as important as the original insight, but they will 1 of 4 11/20/2011 8:48 PM The Myth of the Innovator Hero - Business - The Atlantic http://www.theatlantic.com/business/print/2011/11/the-myth-of-the-inno... not attract public adulation.
    [Show full text]
  • The Advent of Recursion in Programming, 1950S-1960S
    The Advent of Recursion in Programming, 1950s-1960s Edgar G. Daylight?? Institute of Logic, Language, and Computation, University of Amsterdam, The Netherlands [email protected] Abstract. The term `recursive' has had different meanings during the past two centuries among various communities of scholars. Its historical epistemology has already been described by Soare (1996) with respect to the mathematicians, logicians, and recursive-function theorists. The computer practitioners, on the other hand, are discussed in this paper by focusing on the definition and implementation of the ALGOL60 program- ming language. Recursion entered ALGOL60 in two novel ways: (i) syn- tactically with what we now call BNF notation, and (ii) dynamically by means of the recursive procedure. As is shown, both (i) and (ii) were in- troduced by linguistically-inclined programmers who were not versed in logic and who, rather unconventionally, abstracted away from the down- to-earth practicalities of their computing machines. By the end of the 1960s, some computer practitioners had become aware of the theoreti- cal insignificance of the recursive procedure in terms of computability, though without relying on recursive-function theory. The presented re- sults help us to better understand the technological ancestry of modern- day computer science, in the hope that contemporary researchers can more easily build upon its past. Keywords: recursion, recursive procedure, computability, syntax, BNF, ALGOL, logic, recursive-function theory 1 Introduction In his paper, Computability and Recursion [41], Soare explained the origin of computability, the origin of recursion, and how both concepts were brought to- gether in the 1930s by G¨odel, Church, Kleene, Turing, and others.
    [Show full text]
  • The Fourth Paradigm
    ABOUT THE FOURTH PARADIGM This book presents the first broad look at the rapidly emerging field of data- THE FOUR intensive science, with the goal of influencing the worldwide scientific and com- puting research communities and inspiring the next generation of scientists. Increasingly, scientific breakthroughs will be powered by advanced computing capabilities that help researchers manipulate and explore massive datasets. The speed at which any given scientific discipline advances will depend on how well its researchers collaborate with one another, and with technologists, in areas of eScience such as databases, workflow management, visualization, and cloud- computing technologies. This collection of essays expands on the vision of pio- T neering computer scientist Jim Gray for a new, fourth paradigm of discovery based H PARADIGM on data-intensive science and offers insights into how it can be fully realized. “The impact of Jim Gray’s thinking is continuing to get people to think in a new way about how data and software are redefining what it means to do science.” —Bill GaTES “I often tell people working in eScience that they aren’t in this field because they are visionaries or super-intelligent—it’s because they care about science The and they are alive now. It is about technology changing the world, and science taking advantage of it, to do more and do better.” —RhyS FRANCIS, AUSTRALIAN eRESEARCH INFRASTRUCTURE COUNCIL F OURTH “One of the greatest challenges for 21st-century science is how we respond to this new era of data-intensive
    [Show full text]
  • Ali Aydar Anita Borg Alfred Aho Bjarne Stroustrup Bill Gates
    Ali Aydar Ali Aydar is a computer scientist and Internet entrepreneur. He is the chief executive officer at Sporcle. He is best known as an early employee and key technical contributor at the original Napster. Aydar bought Fanning his first book on programming in C++, the language he would use two years later to build the Napster file-sharing software. Anita Borg Anita Borg (January 17, 1949 – April 6, 2003) was an American computer scientist. She founded the Institute for Women and Technology (now the Anita Borg Institute for Women and Technology). While at Digital Equipment, she developed and patented a method for generating complete address traces for analyzing and designing high-speed memory systems. Alfred Aho Alfred Aho (born August 9, 1941) is a Canadian computer scientist best known for his work on programming languages, compilers, and related algorithms, and his textbooks on the art and science of computer programming. Aho received a B.A.Sc. in Engineering Physics from the University of Toronto. Bjarne Stroustrup Bjarne Stroustrup (born 30 December 1950) is a Danish computer scientist, most notable for the creation and development of the widely used C++ programming language. He is a Distinguished Research Professor and holds the College of Engineering Chair in Computer Science. Bill Gates 2 of 10 Bill Gates (born October 28, 1955) is an American business magnate, philanthropist, investor, computer programmer, and inventor. Gates is the former chief executive and chairman of Microsoft, the world’s largest personal-computer software company, which he co-founded with Paul Allen. Bruce Arden Bruce Arden (born in 1927 in Minneapolis, Minnesota) is an American computer scientist.
    [Show full text]
  • A Brief History of the Russian Spectrum Demoscene
    A BRIEF HISTORY OF THE RUSSIAN Allegedly, engineers from the Ukrainian city Lvov, were the first to succeed with this challenge and built a working machine SPECTRUM DEMOSCENE in August 1985. Their own designed schematics became very BY ELFH OF INWARD AND CYBERPUNKS UNITY valuable information, so they could trade it to the researchers in other cities for knowledge on other topics. Still, this remained Relations between Soviet Russia and computers were always nents – more than 200 to be precise. This fact complicated the unknown to the wider public and only a limited amount of peo- a bit obscure, especially when it comes to foreign models that possibility for average Radio readers to build the “Micro-80”, ple actually knew about the existence of a cheap home com- were not officially imported here. But, if one wants to trace the because a lot of elements were hard to find in normal stores, puter with colourful graphics, which any Radio amateur could roots of the Russian demoscene, especially on the Spectrum, and in most cases could only be found on the black market. easily build at home. For example, in 1986 “Radio” magazine you must dig deep into the 1980’s, when the first generation of was still publishing the schematics of the Radio-86RK compu- radio amateurs built their first machines themselves. ter, which consisted of 29 parts, but had only a black and white A LOT OF ELEMENTS WERE HARD text mode display. CONTRABAND COMPUTERS TO FIND IN NORMAL STORES, ONLY The main role in this development was played by a very popu- ON THE BLACK MARKET Despite this, it first became a very popular machine in Rus- lar magazine named “Radio”, which gathered a lot of talented sia.
    [Show full text]