The Tectonic and Sedimentary History of Svalbard

Total Page:16

File Type:pdf, Size:1020Kb

The Tectonic and Sedimentary History of Svalbard AG 209 The Tectonic and Sedimentary History of Svalbard Excursion Report August 2006 Søren H. Rasmussen Front picture: Pyramiden Mountain The Tectonic and Sedimentary History of Svalbard 2 Index 1. Introduction..................................................................................................................................4 2. Festningen ....................................................................................................................................5 3. Botnheia .....................................................................................................................................11 4. Janusfjellet .................................................................................................................................12 5. Helvetiafjellet Formation ...........................................................................................................14 6. Basilikafjellet .............................................................................................................................15 7. Storvola ......................................................................................................................................18 8. Pyramiden Mountain..................................................................................................................19 9. Billefjorden Basin ......................................................................................................................20 10. Lövehovden Mountainside.....................................................................................................22 11. Midterhuken Mountainside....................................................................................................23 12. Mediumfjellet Mountainside..................................................................................................24 13. Grumantbyen Thrust ..............................................................................................................25 14. References..............................................................................................................................26 The Tectonic and Sedimentary History of Svalbard 3 1. Introduction This report is based on a field excursion from August the 11th to 20th 2006. The field excursion was a part of the two courses The Quaternary History of Svalbard (AG 210) and The Tectonic and Sedimentary History of Svalbard (AG 209). This report contains all visit locations that was related to the course The Tectonic and Sedimentary History of Svalbard. Guides was: Arvid Nøttvedt and Alvar Braathen. Figure 1 shows a bedrock map of Svalbard on this the visited locations mark. Figure 1: Stratigraphic map of Svalbard (Norwegian Polar Institute). The Tectonic and Sedimentary History of Svalbard 4 2. Festningen Visit on August the 11th and 12th. The profile along the coast from Isfjorden Radio in west to Grønfjorden in east, have one of the most completely bedrock section on Svalbard. In the western end Precambrian metamorphic rock and in east Tertiary sedimentary rock is exposed. This locality lays on the western side of the Central Tertiary Basin, therefore the layer dipping towards east, around 60 % in west and 100 % in east. Figure 3 show a stratiographic log with formations, groups and important member. All of these will by descript below. Billefjorden Group Orustdals Formation, Lower Carboniferous, is layer of sandstone, conglomerate and some coal. It is deposit alluvial as a fan, floodplain or braided stream. Under the Billefjorden Group is the Basement, between there is an unconformity. Deposit from Devon is missing. Gipsdalen Group Wordiekammen Formation, Lower Permian, is limestone. Limestone is shells or fragments from marine organisms. There for the depositing environment is at sea, with oxygen riche condition. Gipshuke Formation, Lower Permian, this is limestone and evaporate. Evaporite is precipitated from evaporate of saltwater. This mean that the sea has been shallow and still for some time, so concentration of salt could be high enough to precipitate. These Evaporites has change calcite with dolomite and are there for Dolostones. There are now fossils in this formation, with could be coursed by the high salt concentration, that animals and plants do not like. Tempelfjorden Group Kapp Starostin Formation, Upper Permian, limestone and shale. These layers contain fossils, and they are intact. This is evidence of climate shift. Figure 2 shows the border between Lower and Upper Permian. Figure 2: Border between Lower and Upper Permian. At the bottom of the picture is Gipshuke Formation and on top is Kapp Strarostin Fromation. The water is continuous shallow, with only little movement, otherwise the fossils would have broken. Water depth around 10 m. Fossils is in the first unit only Brachiopod, in the next unit the diversity of fossils becomes lager, example corals, see figure 4. This means that the water was becoming deeper, a transgression. Kapp Strarostin is special from other of the sedimentary rock. The Tectonic and Sedimentary History of Svalbard 5 Coal Basilika Fm. Cgl Firkant Fm. Tertiary Lower Cretaceous Mudst + sst Carolinefjellet Fm. Deltaic Mudst + sst Helvetiafjellet Fm. Fluvial sst Mudst + sst Rurvikfjellet Fm. Lower Cretaceous Upper Jurassic Mudst + sst Agardfjellet Fm. Lower Jurassic Cgl Brentskardhaugen Bed Upper Triassic Mudst + silt De Geerdalen Fm. + sst (Tschermarkfjellet Fm.) Sst Bravaisberget Fm. Middle Triassic Shale (Botnheia Fm.) Sst Tvillingodden Fm. Shale Sst Vardebukta Fm. Triassic Shale Upper Permian Limest Shale Kapp Starostin Fm. cementated Limest + evap Gipshuken Fm. Lower Permian Limest Wordiekammen Fm. Lower Sst + Carboniferous coal/shale Billefjorden Group + cgl Basement Figure 3: Strationgraphic log of Festningen Profil. The Tectonic and Sedimentary History of Svalbard 6 The rock is cementatede by silicate; the silicate comes from silicate riche sponge. The silicate makes the rock very strong, therefore Kapp Strarostin often is on top of mountains see figure 5. Figure 4: Brachiopod, Lower Kapp Strarostin sandstone, picture 2 cm high. Corals, Middle Kapp Strarostin limestone, picture around 4 cm high. Kapp Strarostin Vardebukta Formation Figure 5: Top of Kapp Strarostin, Upper Permian. Kapp Strarostin is harder therefore it makes the top. Vardekukta Formation is not as hard, there for this has been eroded more. 90 % of all living spices death at the end of Permian. This could be courts by a huge volcanic eruption from Siberia, that raise the CO2 level in the air and the water temperature in the sea. Or it could be meteor strikes in Antarctica. Sassendalen Group Vardebukta Formation, Lower Triassic. This sediment are softer, there is now cementation. Therefore deformations go into this formation, instead of example Kapp Strarostin. Sediments from Greenland were at this time transported to Svalbard, which still is under the sea. The basin gets filled with sediment, this result in a coarsening-upward of the sediments from mud/silt to sand. After a transgression it starts again. Tree times this goes on, this and the next two formations. In this formation there is to sills, one is seen on figure 6. Sills is intrusive igneous rock horizontal with the beds. Unlike dikes there goes through the layers. This Basaltic intrusive comes from volcanic activities at the end of Jurassic, when the Atlantic Ocean starts to open. The Tectonic and Sedimentary History of Svalbard 7 Shale Basalt Shale Figure 6: Sill, intrusive of igneous rock along the layers. Tvillingodden Formation, Lower Triassic, black shale. The black colour is from dead organisms. The total organic contain (TOC) is 6-8 %, with is high. Most of the organisms were algae. The condition at this time was anoxic, otherwise the carbon would have oxidised and not deposit. Anoxic condition only contains where the water is still, like an inlet. The rock is a source rock for oil, is has high carbon contain and has been heated, so there is kerogen in it. This rock contain kerogen type tree, because it is marine carbon. Bravaisberget Formation, Middle Triassic. Like Tvillingodden Formation. In this formation there is beginning to be biotutbation, disturbance of sediment by animals and plants. This is signs of oxygen at sea floor. Kapp Toscana Group De Geerdalen Formation, Upper Triassic, shale and some places red colour. The red colour comes from cementation with Siderite (Iron Carbonate). There is symmetric ripples, see figure 7. Symmetric ripples is from waves, when they move forward and backward. Ripples from stream, where the water flows in one direction are asymmetric. The ripples are a sign of shallow water, where the waves reach the seafloor, example near the shore. Figure 7: Symmetric ripples in De Geerdalen Formation. The Tectonic and Sedimentary History of Svalbard 8 Brentskardhaugen Bed, border between Triassic and Jurassic, this layer is around 10 cm thick. It is orange conglomerate with brown nods. The nods are fish bones there has rolled in mud and thereby getting bigger. The condition must have been low supply of sediments, otherwise the bones have been buried, and sill water so the nodes do not break or carry away. There is doubt about the bed belongs to Triassic or Jurassic. Between this to period there is an unconformity. Adventdalen Group Agardfjellet Formation, Upper Jurassic, layer of black shale and mudstone. Some mudstone layer contain vertical hole from animals, see figure 8. The energy level in the sea is higher in
Recommended publications
  • Handbok07.Pdf
    - . - - - . -. � ..;/, AGE MILL.YEAR$ ;YE basalt �- OUATERNARY votcanoes CENOZOIC \....t TERTIARY ·· basalt/// 65 CRETACEOUS -� 145 MESOZOIC JURASSIC " 210 � TRIAS SIC 245 " PERMIAN 290 CARBONIFEROUS /I/ Å 360 \....t DEVONIAN � PALEOZOIC � 410 SILURIAN 440 /I/ ranite � ORDOVICIAN T 510 z CAM BRIAN � w :::;: 570 w UPPER (J) PROTEROZOIC � c( " 1000 Ill /// PRECAMBRIAN MIDDLE AND LOWER PROTEROZOIC I /// 2500 ARCHEAN /(/folding \....tfaulting x metamorphism '- subduction POLARHÅNDBOK NO. 7 AUDUN HJELLE GEOLOGY.OF SVALBARD OSLO 1993 Photographs contributed by the following: Dallmann, Winfried: Figs. 12, 21, 24, 25, 31, 33, 35, 48 Heintz, Natascha: Figs. 15, 59 Hisdal, Vidar: Figs. 40, 42, 47, 49 Hjelle, Audun: Figs. 3, 10, 11, 18 , 23, 28, 29, 30, 32, 36, 43, 45, 46, 50, 51, 52, 53, 54, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 75 Larsen, Geir B.: Fig. 70 Lytskjold, Bjørn: Fig. 38 Nøttvedt, Arvid: Fig. 34 Paleontologisk Museum, Oslo: Figs. 5, 9 Salvigsen, Otto: Figs. 13, 59 Skogen, Erik: Fig. 39 Store Norske Spitsbergen Kulkompani (SNSK): Fig. 26 © Norsk Polarinstitutt, Middelthuns gate 29, 0301 Oslo English translation: Richard Binns Editor of text and illustrations: Annemor Brekke Graphic design: Vidar Grimshei Omslagsfoto: Erik Skogen Graphic production: Grimshei Grafiske, Lørenskog ISBN 82-7666-057-6 Printed September 1993 CONTENTS PREFACE ............................................6 The Kongsfjorden area ....... ..........97 Smeerenburgfjorden - Magdalene- INTRODUCTION ..... .. .... ....... ........ ....6 fjorden - Liefdefjorden................ 109 Woodfjorden - Bockfjorden........ 116 THE GEOLOGICAL EXPLORATION OF SVALBARD .... ........... ....... .......... ..9 NORTHEASTERN SPITSBERGEN AND NORDAUSTLANDET ........... 123 SVALBARD, PART OF THE Ny Friesland and Olav V Land .. .123 NORTHERN POLAR REGION ...... ... 11 Nordaustlandet and the neigh- bouring islands........................... 126 WHA T TOOK PLACE IN SVALBARD - WHEN? ....
    [Show full text]
  • Guadalupian, Middle Permian) Mass Extinction in NW Pangea (Borup Fiord, Arctic Canada): a Global Crisis Driven by Volcanism and Anoxia
    The Capitanian (Guadalupian, Middle Permian) mass extinction in NW Pangea (Borup Fiord, Arctic Canada): A global crisis driven by volcanism and anoxia David P.G. Bond1†, Paul B. Wignall2, and Stephen E. Grasby3,4 1Department of Geography, Geology and Environment, University of Hull, Hull, HU6 7RX, UK 2School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK 3Geological Survey of Canada, 3303 33rd Street N.W., Calgary, Alberta, T2L 2A7, Canada 4Department of Geoscience, University of Calgary, 2500 University Drive N.W., Calgary Alberta, T2N 1N4, Canada ABSTRACT ing gun of eruptions in the distant Emeishan 2009; Wignall et al., 2009a, 2009b; Bond et al., large igneous province, which drove high- 2010a, 2010b), making this a mid-Capitanian Until recently, the biotic crisis that oc- latitude anoxia via global warming. Although crisis of short duration, fulfilling the second cri- curred within the Capitanian Stage (Middle the global Capitanian extinction might have terion. Several other marine groups were badly Permian, ca. 262 Ma) was known only from had different regional mechanisms, like the affected in equatorial eastern Tethys Ocean, in- equatorial (Tethyan) latitudes, and its global more famous extinction at the end of the cluding corals, bryozoans, and giant alatocon- extent was poorly resolved. The discovery of Permian, each had its roots in large igneous chid bivalves (e.g., Wang and Sugiyama, 2000; a Boreal Capitanian crisis in Spitsbergen, province volcanism. Weidlich, 2002; Bond et al., 2010a; Chen et al., with losses of similar magnitude to those in 2018). In contrast, pelagic elements of the fauna low latitudes, indicated that the event was INTRODUCTION (ammonoids and conodonts) suffered a later, geographically widespread, but further non- ecologically distinct, extinction crisis in the ear- Tethyan records are needed to confirm this as The Capitanian (Guadalupian Series, Middle liest Lopingian (Huang et al., 2019).
    [Show full text]
  • Stratigraphic and Geochemical Expression of Barremian–Aptian Global Climate Change in Arctic Svalbard
    Stratigraphic and geochemical expression of Barremian–Aptian global climate change in Arctic Svalbard Vickers, Madeleine; Price, Gregory D.; Jerrett, Rhodri; Watkinson, Matthew Published in: Geosphere DOI: 10.1130/GES01344.1 Publication date: 2016 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Vickers, M., Price, G. D., Jerrett, R., & Watkinson, M. (2016). Stratigraphic and geochemical expression of Barremian–Aptian global climate change in Arctic Svalbard. Geosphere, 12(5), 1594-1605. https://doi.org/10.1130/GES01344.1 Download date: 26. sep.. 2021 Research Paper GEOSPHERE Stratigraphic and geochemical expression of Barremian–Aptian global climate change in Arctic Svalbard GEOSPHERE; v. 12, no. 5 Madeleine L. Vickers1, Gregory D. Price1, Rhodri M. Jerrett2, and Matthew Watkinson1 1School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, Plymouth, Devon PL4 8AA, UK doi:10.1130/GES01344.1 2School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Williamson Building, Oxford Road, Manchester M13 9PL, UK 5 figures; 2 supplemental files ABSTRACT island have been difficult, and precise, high-resolution dating of this succes- CORRESPONDENCE: madeleine .vickers@ plymouth sion has not been possible. This has meant that fully interpreting the conflict- .aca.uk Significant changes in global climate and carbon cycling occurred during the ing paleo climatic evidence from this Early Cretaceous succession has not been Early Cretaceous. This study examines the expression of such climatic events in possible in a global context; therefore, this paleo–high-latitude site has been of CITATION: Vickers, M.L., Price, G.D., Jerrett, R.M., and Watkinson, M., 2016, Stratigraphic and geo- high-latitude Svalbard together with the stratigraphic utility of carbon-isotope limited use for understanding Early Cretaceous global climate change.
    [Show full text]
  • A Sedimentological Study of the De Geerdalen Formation with Focus on the Isfjorden Member and Palaeosols
    A Sedimentological Study of the De Geerdalen Formation with Focus on the Isfjorden Member and Palaeosols Turid Haugen Geology Submission date: August 2016 Supervisor: Atle Mørk, IGB Co-supervisor: Snorre Olaussen, UNIS Norwegian University of Science and Technology Department of Geology and Mineral Resources Engineering Abstract In this study sedimentological depositional environments of the Upper Triassic De Geerdalen Formation in Svalbard have been investigated. Facies and facies associations of the whole formation are presented, however the main focus has been on delta top sediments and in particular palaeosols. Special attention has been paid to the Isfjorden Member, which constitutes the uppermost part of the De Geerdalen Formation. The purpose of the study has been to identify palaeosols, and relate them to the overall depositional environments. The palaeosols have been identified by three main characteristics: roots, soil horizons and soil structure. Based on field observations an attempt to classify the palaeosols has been made. There are notable differences between brown and yellow palaeosols found in the middle and upper parts of the De Geerdalen Formation and the red and green palaeosols restricted to the Isfjorden Member. The yellow and brown palaeosols are in general immature compared to the green and red palaeosols of the Isfjorden Member. Thin sections from the Isfjorden Member on Deltaneset show excellent examples of calcrete, with clear biogenetic indicators. Distinct and alternating green and red colours might be related to fluctuations in groundwater level and reduction and oxidation of the soil profile. The palaeosols are found on floodplains, interdistributary areas and on top of proximal shoreface deposits.
    [Show full text]
  • Geology of the Adventdalen Map Area
    NORSK POLARINSTITUTT SKRIFTER NR. 138 HARALD MAJOR AND JENd NAGY Geology of the Adventdalen map area With a geological map, Svalbard C9G 1: 100 000 by HARALD MAJOR NORSK POLARI NSTITUTT OSLO 1972 DET KONGELIGE DEPARTEMENT FOR INDUSTRI OG HANDVERK NORSK POLARINSTITUTT Rolfstangveien 12, Snarøya, 1330 Oslo Lufthavn, Norway SALG AV BØKER SALE OF BOOKS Bøkene selges gjennom bokhandlere, eller The books are sold through bookshops, or bestilles direkte fra: may be ordered directly from: UNIVERSITETSFORLAGET Postboks 307 16 Pall Malt P.O. Box 142 Blindern, Oslo 3 London SW 1 Boston, Mass. 02113 Norway England USA Publikasjonsliste, som også omfatter land­ List of publications, including mapsand charts, og sjøkart, kan sendes på anmodning. will be sent on request. NORSK POLARINSTITUTT SKRIFTER NR. 138 HARALD MAJOR AND JENO NAGY Geology of the Adventdalen map area With a geological map, Svalbard C9G 1: 100 000 by HA RA LD MAJO R NO RSK PO LA RINSTITUTT OS LO 1972 Manuscript received May 1972 Printed December 1972 Contents Page Page 21 Abstract 5 Tertiary System . .. 22 Sammendrag ..................... 5 Firkanten Formation . .. .... Basilika Formation .. .. .. .. .. 25 26 I. INTRODUCTION ...... ........ 7 Sarkofagen Formation ......... 27 Location ........ ... .... ........ .. 7 Gilsonryggen Formation ....... 29 Previous work .. .. .. .. .. .. 7 Battfjellet Formation .......... 29 The present report ................ 8 Aspelintoppen Formation ...... 30 Acknowledgements .. .............. 8 Quaternary System ................ IV. IGNEOUS ROCKS .............
    [Show full text]
  • Petrography and Sedimentology of the Slottsmøya Member at Janusfjellet, Central Spitsbergen 89
    NORWEGIAN JOURNAL OF GEOLOGY Petrography and sedimentology of the Slottsmøya Member at Janusfjellet, central Spitsbergen 89 Petrography and sedimentology of the Slottsmøya Member at Janusfjellet, central Spitsbergen Marine Collignon & Øyvind Hammer Collignon, M. & Hammer, Ø.: Petrography and sedimentology of the Slottsmøya Member at Janusfjellet, central Spitsbergen. Norwegian Journal of Geology, Vol. 92, pp. 89-101. Oslo 2002. ISSN 029-196X. The Slottsmøya Member (Agardhfjellet Formation) in Svalbard is composed mainly of marine grey shales deposited on a slightly dysoxic and shallow shelf (offshore transition), in Volgian (Late Jurassic) to Ryazanian and possibly earliest Valanginian (Early Cretaceous) time. We present detailed lithostratigraphic, mineralogical, chemical and magnetic susceptibility logs of the Slottsmøya Member at Janusfjellet, Central Spitsbergen , providing a high-resolution stratigraphic framework for the ongoing palaeontological and geological investigations in this area. A condensed section has been recognised in the upper part of the member, based on chemical, mineralogical and palaeontological evidence. Marine Collignon, Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, NO-0318 Oslo, Norway. Present address: ETH Zürich, Geologisches Institut, Sonneggstrasse 5, NO E21, 8092 Zurich, Switzerland. E-mail: [email protected]. Øyvind Hammer, Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, NO-0318 Oslo, Norway. E-mail: [email protected] Introduction most of the
    [Show full text]
  • Crinoids from Svalbard in the Aftermath of the End-Permian Mass Extinction
    Title: Crinoids from Svalbard in the aftermath of the end-Permian mass extinction Author: Mariusz Salamon, Przemysław Gorzelak, Nils-Martin Hanken, Henrik Erevik Riise, Bruno Ferre Citation style: Salamon Mariusz, Gorzelak Przemysław, Hanken Nils-Martin, Riise Henrik Erevik, Ferre Bruno. (2015). Crinoids from Svalbard in the aftermath of the end-Permian mass extinction. "Polish Polar Research" (Vol. 36, no. 3 (2015), s. 225-238), doi 10.1515/popore−2015−0015 vol. 36, no. 3, pp. 225–238, 2015 doi: 10.1515/popore−2015−0015 Crinoids from Svalbard in the aftermath of the end−Permian mass extinction Mariusz A. SALAMON 1, Przemysław GORZELAK2*, Nils−Martin HANKEN 3, Henrik Erevik RIISE 3,4 and Bruno FERRÉ 5 1 Wydział Nauk o Ziemi, Uniwersytet Śląski, ul. Będzińska 60, 41−200 Sosnowiec, Poland <[email protected]> 2 Instytut Paleobiologii, Polska Akademia Nauk, ul. Twarda 51/55, 00−818 Warszawa, Poland <[email protected]> * corresponding author 3 Department of Geology, UiT – The Arctic University of Norway, NO−9037 Tromsø, Norway <nils−[email protected]> 4 Present address: Halliburton, Sperry Drilling, P.O. Box 200, NO−4065 Stavanger, Norway <[email protected]> 5 Dame du Lac 213, 3 rue Henri Barbusse, F−76300 Sotteville−lès−Rouen, France <[email protected]> Abstract: The end−Permian mass extinction constituted a major event in the history of cri− noids. It led to the demise of the major Paleozoic crinoid groups including cladids, disparids, flexibles and camerates. It is widely accepted that a single lineage, derived from a late Paleo− zoic cladid ancestor (Ampelocrinidae), survived this mass extinction.
    [Show full text]
  • A Diverse Trackway-Dominated Marine Ichnoassemblage from the Lower
    Palaeogeography, Palaeoclimatology, Palaeoecology 519 (2019) 124–140 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo A diverse trackway-dominated marine ichnoassemblage from the Lower Triassic in the northern Paleotethys: Ichnology and implications for biotic T recovery ⁎ Xueqian Fenga, Zhong-Qiang Chena, , Michael J. Bentonb, Siqi Wua, David J. Bottjerc, Jeffrey R. Thompsonc a State Key Laboratory of Biogeology and Environmental Geology, School of Earth Science, China University of Geosciences (Wuhan), Wuhan 430074, China b School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK c Department of Earth Sciences, University of Southern California, Los Angeles, California 90089, USA ARTICLE INFO ABSTRACT Keywords: We document a diverse ichnoassemblage from marine interbeds of the Lower Triassic terrestrial succession in the Griesbachian Houzhougongmiao (HZGM) section of Shaanxi Province, northwestern China. Integrated biostratigraphic data Shallow tiers (bivalve, palynology and conchostracan) reveals that the ichnofossil-bearing marine beds are Griesbachian Ophiuroids (Induan, Early Triassic) in age. The marine interbeds are interpreted to be the result of the earliest Triassic Arthropods transgression of the Paleotethys Ocean northward onto the southern margin of the North China Craton. The Opportunistic organisms HZGM ichnoassemblage includes 17 ichnospecies in 16 ichnogenera and is dominated by shallow-tier Asteriacites North China and Biformites produced by ophiuroids, the scratch marks or trackways Dimorphichnus, Diplichnites, and Monomorphichnus produced by arthropods, and a rare occurrence of the fish swimming trace Undichna. Of these, the hook-shaped imprints Biformites, representing the moving arm impressions of ophiuroids, are reported for the first time from the Lower Triassic. These trace-makers are interpreted to have lived in a low energy, semi- restricted, shallow embayment environment.
    [Show full text]
  • Stratigraphic and Geochemical Expression of Barremian–Aptian Global Climate Change in Arctic Svalbard
    Stratigraphic and geochemical expression of Barremian–Aptian global climate change in Arctic Svalbard Vickers, Madeleine; Price, Gregory D.; Jerrett, Rhodri; Watkinson, Matthew Published in: Geosphere DOI: 10.1130/GES01344.1 Publication date: 2016 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Vickers, M., Price, G. D., Jerrett, R., & Watkinson, M. (2016). Stratigraphic and geochemical expression of Barremian–Aptian global climate change in Arctic Svalbard. Geosphere, 12(5), 1594-1605. https://doi.org/10.1130/GES01344.1 Download date: 03. okt.. 2021 Research Paper GEOSPHERE Stratigraphic and geochemical expression of Barremian–Aptian global climate change in Arctic Svalbard GEOSPHERE; v. 12, no. 5 Madeleine L. Vickers1, Gregory D. Price1, Rhodri M. Jerrett2, and Matthew Watkinson1 1School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, Plymouth, Devon PL4 8AA, UK doi:10.1130/GES01344.1 2School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Williamson Building, Oxford Road, Manchester M13 9PL, UK 5 figures; 2 supplemental files ABSTRACT island have been difficult, and precise, high-resolution dating of this succes- CORRESPONDENCE: madeleine .vickers@ plymouth sion has not been possible. This has meant that fully interpreting the conflict- .aca.uk Significant changes in global climate and carbon cycling occurred during the ing paleo climatic evidence from this Early Cretaceous succession has not been Early Cretaceous. This study examines the expression of such climatic events in possible in a global context; therefore, this paleo–high-latitude site has been of CITATION: Vickers, M.L., Price, G.D., Jerrett, R.M., and Watkinson, M., 2016, Stratigraphic and geo- high-latitude Svalbard together with the stratigraphic utility of carbon-isotope limited use for understanding Early Cretaceous global climate change.
    [Show full text]
  • Paralic Sedimentation on an Epicontinental Ramp Shelf During a Full Cycle of Relative Sea-Level Fluctuation
    NORWEGIAN JOURNAL OF GEOLOGY Paralic sedimentation on an epicontinental ramp shelf 343 Paralic sedimentation on an epicontinental ramp shelf during a full cycle of relative sea-level fluctuation; the Helvetiafjellet Formation in Nordenskiöld Land, Spitsbergen Ivar Midtkandal, Johan Petter Nystuen and Jenö Nagy Ivar Midtkandal, Johan Petter Nystuen & Jenö Nagy. Norwegian Journal of Geology, vol. 87, pp. 343-359.Trondheim 2007. ISSN 029-196X. A depositional model for the development of the Helvetiafjellet Formation in Nordenskiöld Land, Spitsbergen is presented. The formation was deposited into a segment of the large epicontinental Boreal basin that rimmed northern Pangaea during the Early Cretaceous. A wide range of depositional subenvironments are recorded within the succession; including fluvial braidplain, shallow marine bay, delta, coastal plain and fluvial channel. The depositional model approaches a layer-cake style for this part of the basin, caused by the rapid rates of progradation and retrograda- tion made possible by the gentle depositional gradient. An initial period of fluvial deposition arose in response to an early rise in relative sea-level. Following a regional flooding, the progradational to aggradational architecture in the area reflects a balanced rate of increase in accommodation vs. rate of sedimentation (A/S) ratio. This resulted in a heterolithic stacking of sandstone and mudstone. Autogenic variables are thought to have domi- nated the lateral facies variations recorded in the upper and middle parts of the succession. Ivar Midtkandal ([email protected]), Johan Petter Nystuen ([email protected],) Jenö Nagy ([email protected]). Department of Geoscien- ces, University of Oslo, P.O Box 1047 Blindern, NO-0316 Oslo Norway Introduction vial, tidal and wave-induced currents.
    [Show full text]
  • The Jurassic and Cretaceous Sequence in Spitsbergen
    The Jurassic and Cretaceous Sequence in Spitsbergen The Jurassic and Cretaceous sequence of Spitsbergen, Svalbard archipelago, is described and a revised lithostratigraphical scheme, of four formations, is proposed. The main episode of tectonic activity, together with dolerite intrusion, was in late Jurassic-early Cretaceous times and is represented by a non-sequence and local unconformity between the two lower formations. The fauna1 succession is also discussed. THEJurassic and Cretaceous rocks of Spitsbergen are exposed as an elliptical outcrop around the main Tertiary syncline (Text-fig. 1 ). Along the west coast the rocks have been folded and thrust in a deforma t'Ion belt of Tertiary age but in the north and east are gently dipping and little deformed, apart from local activity along fault belts. Jurassic fossils were first collected from Spitsbergen by Lovtn in 1837 from Grsnfjorden, and subsequent expeditions, led principally by Nordenskiold and Nathorst, established the presence of Jurassic and " Neocomian " strata along the south side of Isfjorden, in Bellsund, at Agardhbukta on the east coast, and on Kong Karls Land, the group of islands which lie some 150 km east of Vestspitsbergen. The results of these early expeditions were summarized by Nathorst (1910). Subsequent palaeontological work was based mainly on material from the Festningetl section (Hoel and Orvin, 1937; Sokolovand Bodylevsky, 1931 ; Frebold and Stoll, 1937) but much information on other localities and collections was given in a series of papers by Frebold (1929 a-c, 1930, 1931) who also discussed the palaeogeography and correlation of the Arctic Jurassic and Cretaceous rocks. Useful summaries of the Jurassic-Cretaceous sequence were given by Frebold in his two reviews of Spitsbergen geology (1935, 1951) and Arkell (1956) has, in particular, discussed the Jurassic faunas.
    [Show full text]
  • Processing and Interpretation of Multichannel Seismic Data from Van Mijenfjorden, Svalbard
    Processing and Interpretation of Multichannel Seismic Data from Van Mijenfjorden, Svalbard Eric Willgohs Knudsen Master of Science Thesis Department of Earth Science University of Bergen June 2015 Abstract This work was done based on 10 multichannel seismic lines from Van Mijenfjorden, collected during Svalex in 2013 and 2014-. The objective of the thesis is twofold: 1. In the first part processing is done where emphasis has been in removing multiples and noise from the data. 2. Interpretation of the data is done in the second part. Here identification of seismic structures as well as correlation with the Ishøgda well is done. A problem in the processing are high velocities in seabed and shallow water depth, which causes strong multiples. Multiple removals were performed by applying deconvolution and f- k filtering. Velocity filtering is performed on the CDP position of both shot and receiver collection. This allows the collections that are shot in opposite direction to be simulated. Collections shot in opposite directions will have different apparent velocity since they are shot either “up-dip” or “down-dip”. Furthermore, surface consistent deconvolution was used to attenuate remaining multiples after f-k filtering. This process computes a filter for shot, receiver position and offset In addition different modules are used for improving signal to noise ratio, amplitude recovery, amplitude smoothing and spherical spreading correction etc. The data is interpreted based on data from the Ishøgda well, which was drilled in 1965-66. The well is located 77◦50’22’’N, 15◦58’00’’E and reaches down to Lower Permian. The reflectors under Van Mijenfjorden depict a wide, asymmetric syncline,-(the central Spitsbergen Basin) which has deposits of Tertiary age.
    [Show full text]