A Classic Thesis Style

Total Page:16

File Type:pdf, Size:1020Kb

A Classic Thesis Style Ab Initio Study of Inelastic Collision Processes for Astronomical Applications Lei Song Preliminary version – January 29, 2016 The work described in this thesis was performed as part of the Dutch Astro- chemistry Network, a research program of the Netherlands Foundation for Scientific Research (NWO) and its subdivisions Chemistry (CW) and Exact Sciences (EW). Printed by Ipskamp Drukkers B.V., Enschede ISBN: Preliminary version – January 29, 2016 Ab Initio Study of Inelastic Collision Processes for Astronomical Applications PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Radboud Universiteit Nijmegen op gezag van de rector magnificus, volgens besluit van het college van decanen in het openbaar te verdedigen op donderdag 3 maart 2016 om 12.30 uur precies door Lei Song geboren op 5 januari 1986 te Qingdao, China Preliminary version – January 29, 2016 promotoren: Prof. dr. ir. Gerrit C. Groenenboom Prof. dr. ir. Ad van der Avoird manuscriptcommissie: Prof. dr. David H. Parker Prof. dr. Ewine F. van Dishoeck Universiteit Leiden Prof. dr. Marc C. van Hemert Universiteit Leiden Preliminary version – January 29, 2016 CONTENTS 1introduction 1 1.1 Astrochemistry background 1 1.2 Theoretical methods 4 1.2.1 Solving the electronic Schrödinger equation 6 1.2.2 Solving the nuclear Schrödinger equation 7 1.3 CO collisions with its partners H, He and H2 11 2h-co potential energy surface 15 2.1 Introduction 16 2.2 Ab initio calculations 17 2.3 Fit procedure 19 2.4 Results and discussion 22 2.4.1 Potential surface 23 2.4.2 Vibrational frequencies and rotational constants of HCO 27 2.5 Conclusions 31 3h-co rate coefficients for pure rotational transi- tions 33 3.1 Introduction 34 3.2 Computational approach 37 3.3 Results and discussion 38 3.4 Astrophysical applications 42 3.5 Conclusion 46 4h-co scattering calculation for ro-vibrational tran- sitions 47 4.1 Introduction 48 4.2 Calculations 50 4.2.1 Theoretical methods 50 4.2.2 Computational details 52 4.3 Results and discussion 54 4.3.1 Convergence test 54 4.3.2 Tests of the CS and IOS approximations 54 4.3.3 Cross sections 58 4.3.4 Vibrational quenching rate coefficients 62 4.4 Conclusions 63 5h-co rate coefficients for ro-vibrational transitions 65 5.1 Introduction 66 5.2 Theory 68 5.2.1 Equations for rate coefficients 68 5.2.2 Extrapolation method 69 5.3 Results 70 5.3.1 Rate coefficients from quantum scattering calculations 70 5.3.2 Extrapolated rate coefficients 73 5.4 Astrophysical models 76 v Preliminary version – January 29, 2016 5.4.1 ProDiMo slab and disk models 76 5.4.2 Slab model results 77 5.4.3 Disk model results 79 5.5 Conclusions 80 6ar-co scattering for pure rotational transitions 81 6.1 Introduction 82 6.2 Experimental Methods 83 6.3 Theoretical Methods 84 6.4 Results and Discussion 85 6.4.1 Overview 85 6.4.2 Mathematical foundation 89 6.4.3 Sensitivity 92 6.5 Conclusion 94 7he-co scattering for pure rotational transitions 95 7.1 Introduction 96 7.2 Experimental Method 98 7.3 Theoretical method 103 7.4 Results and discussion 104 7.4.1 Theoretical results 104 7.4.2 Vector Correlations 106 7.4.3 Experimental results 108 7.4.4 Discussion 114 7.5 Conclusion 118 8h2 -co scattering calculations 121 8.1 Introduction 122 8.2 Computational details 122 8.3 Theoretical results 123 8.4 Conclusion 126 bibliography 127 summary 145 samenvatting 149 XÅ 153 list of publications 155 curriculum vitae 157 acknowledgements 159 Preliminary version – January 29, 2016 ACRONYMS 2D two-dimensional 3D three-dimensional AGN active galactic nucleus BF body-fixed BO Born-Oppenheimer CASSCF complete active space self-consistent field CBS complete basis set CC close-coupling CCSD(T) single and double excitation coupled cluster method with pertur- bative triples CI configuration interaction CS coupled state DCS differential cross section DFT density functional theory DVR discrete variable representation FIR far-infrared icMRCI internally contracted multireference configuration interaction ICS integral cross section IOS infinite order sudden IR infrared ISM interstellar medium LAMDA Leiden Atomic and Molecular Database LTE local thermodynamic equilibrium LWS Long Wavelength Spectrometer HF Hartree Fock MP Møller-Plesset vii Preliminary version – January 29, 2016 MRCI multi-reference configuration interaction NIR near-infrared PDDCS polarization-dependent differential cross section PDR photon-dominated region PES potential energy surface PPD protoplanetary disk REMPI resonance enhanced multiphoton ionization RHF restricted Hartree-Fock RKHS reproducing kernel Hilbert space RKR Rydberg-Klein-Rees RMSE root-mean-square error SAPT symmetry-adapted perturbation theory SCF self-consistent field SF space-fixed sinc-DVR sinc-function discrete variable representation SST Spitzer Space Telescope UV ultraviolet VMI velocity map imaging VUV vacuum ultraviolet WKS Werner-Keller-Schinke ZEST zero-energy scaling technique Preliminary version – January 29, 2016 INTRODUCTION 1 This thesis mainly focuses on ab initio calculations for inelastic collision processes of carbon monoxide, CO, colliding with hydrogen and helium atoms, H and He, and with hydrogen molecules, H2. This introductory chapter presents the astrochemistry background, the theoretical methods applied, and the current status of the research on these scattering processes. 1.1 astrochemistry background The Universe is a combination of time, space, matter, and energy. [1] Dark matter is estimated to compose 85% of the total matter in the observable Universe, while only a small fraction of the Universe is made of molecules. [2] Still, some scientists refer in particular to the “Molecular Universe” [3, 4, 5] to emphasize the importance of molecules in the formation and evolution of planets, stars and galaxies. By now, nearly 180 different molecular species (not counting isotopologues) have been detected, from simple diatomic molecules such as H2, CO, O2, and CS to complex polyatomic molecules like hydrocarbon chains, and the C60 and C70 fullerenes. Figure 1.1 shows that a diversity of molecules is present in the life-cycle of the interstellar medium. The cycle of molecular material in the interstellar medium starts from the diffuse interstellar medium, to dense molecular clouds where stars and planets form, and finally back to the interstellar medium with the ex- plosion of stars. After that, a new cycle starts. In this process, heavier Figure 1.1: The life cycle of the interstellar medium. Adapted from Ref. [4] Preliminary version – January 29, 2016 2introduction Figure 1.2: An overview of the molecular lines and the range of physical conditions where they can probe effectively. Figure from Ref. [4] elements are created and become more and more abundant. At the same time, more complex molecular material will be present in the next cycle. To understand the origin and evolution of molecules in space and their role in the Universe, astronomical and chemical knowledge should be combined. Astrochemistry is at the interface of astronomy, chemistry, and molecular physics. [6] This discipline was born in the early 1970s, and its essential sub- ject matter was defined by Dalgarno [7] as “the formation, destruction, and excitation of molecules in astronomical environments and their influence on the structure, dynamics, and evolution of astronomical objects”. The formation, destruction and excitation of molecules are strongly related to the collisional, radiative and chemical processes occurring in astronomical environments. A tremendous amount of microscopic molecular processes results in the macroscopic evolution of stars, planets and galaxies. Not only molecular processes are important, but also the molecules themselves play a signifi- cant role in astrochemistry research. This stems from the fact that molecules are outstanding tracers of the physical conditions in their resident regions. The molecular electronic, vibrational and rotational spectra can reveal the abundance and excitation of molecules, which are determined by the ra- diation from surrounding stars [8] and by collisions. Molecular collisions are sensitive to the physical conditions such as the gas kinetic temperature and the density. Therefore, molecules can be used as “thermometers” and “barometers” of emitting gas by means of spectral surveys. [4] Figure. 1.2 presents an overview of often-used molecular lines and the range where these lines can be used as effective “thermometers” and “barometers”. As shown in Fig. 1.2, CO is an excellent molecular tracer, which is effective for a large range of kinetic temperatures and molecular hydrogen density. Ro- tational lines of CO probe the lower density and lower temperature range, Preliminary version – January 29, 2016 1.1astrochemistrybackground 3 Figure 1.3: A typical CO astronomical spectrum of the vibration-rotation lines at 4.7µm obtained with VLT-CRIRES. Infrared image with the Spitzer Space Telescope of the central part of Ophiuchus. The SR 21 is one of the young stars. (Image credit: NASA/JPL-Caltech/ESO VLT-CRIRES; K.M. Pontoppidan) while CO ro-vibrational lines are used in the dense, hot gas near a star or in a planet-forming disk. [4, 9]. Molecular hydrogen, as the most abundant molecule in the Universe, is another important tracer for studying the phys- ical properties of molecular clouds. It works in the low density and high temperature range, because of facile low-J rotational transitions in the low- density region and its large energy spacing of rotational and vibrational energy levels. In addition, other tracer species such as OH, CS, H2O, and NH3 are present in the regions indicated in Fig 1.2. The electromagnetic spectra of these molecular tracers provide clues in the investigation of our Universe. Astrochemists utilize astronomical ob- servations, laboratory experiments, theoretical computations, and models. Spectroscopy is a key method of investigation for observational astronomy. Progress in telescopes equipped with highly sensitive detectors advances the observations. The observed spectral range becomes larger and the reso- lution of astronomical spectra becomes higher.
Recommended publications
  • Delite Eyepiece Between 100X and 200X for a Given Tele- Line for Tele Vue Optics
    EQUIPMENT REVIEW to help prevent an errant eyepiece from blue, and twin-lobed, somewhat reminis- falling to the ground. cent of the Little Dumbbell Nebula (M76), When I test eyepieces, it’s important to although the emphasis was on the lobes Select these eyepieces to enhance your observing me to use them in a variety of telescopes so rather than the center. without ruining your credit. by Tom Trusock I can understand what aberrations the tele- Finally, I took the time to check the scope adds to the design. Through the contrast with the Fetus Nebula (NGC We test years, I’ve seen amateurs blame specific 7008). With a bright star just off the edge of aberrations on eyepiece design that were this planetary nebula, its large size and low the fault of the telescope. Always remem- surface brightness can make it difficult to ber, we deal with an optical system. pick out the distinctive shape, but it was in Because of this, I’m careful to review eye- clear view through the DeLites. pieces in various telescopes I am already familiar with. For this review, I used an Comparing sizes Tele Vue’s DeLite 18-inch f/4.5 Newtonian reflector These are excellent eyepieces. But which (equipped with the Tele Vue Paracorr), a one did I prefer? I found that my favorite 3.6-inch f/7 apochromatic refractor, and a eyepiece depended greatly on the telescope 6-inch f/15 Maksutov reflector. I used it in. Overall, each DeLite performed My testing showed all three scopes per- similarly, so I matched magnification to formed similarly, so the comments in gen- sky conditions.
    [Show full text]
  • Planetary Nebulae
    Planetary Nebulae A planetary nebula is a kind of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from old red giant stars late in their lives. The term "planetary nebula" is a misnomer that originated in the 1780s with astronomer William Herschel because when viewed through his telescope, these objects appeared to him to resemble the rounded shapes of planets. Herschel's name for these objects was popularly adopted and has not been changed. They are a relatively short-lived phenomenon, lasting a few tens of thousands of years, compared to a typical stellar lifetime of several billion years. The mechanism for formation of most planetary nebulae is thought to be the following: at the end of the star's life, during the red giant phase, the outer layers of the star are expelled by strong stellar winds. Eventually, after most of the red giant's atmosphere is dissipated, the exposed hot, luminous core emits ultraviolet radiation to ionize the ejected outer layers of the star. Absorbed ultraviolet light energizes the shell of nebulous gas around the central star, appearing as a bright colored planetary nebula at several discrete visible wavelengths. Planetary nebulae may play a crucial role in the chemical evolution of the Milky Way, returning material to the interstellar medium from stars where elements, the products of nucleosynthesis (such as carbon, nitrogen, oxygen and neon), have been created. Planetary nebulae are also observed in more distant galaxies, yielding useful information about their chemical abundances. In recent years, Hubble Space Telescope images have revealed many planetary nebulae to have extremely complex and varied morphologies.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • S-PROCESS ABUNDANCES in PLANETARY NEBULAE Brian Sharpee,1 Yong Zhang,2, 3, 4 Robert Williams,2 Eric Pellegrini,5 Kenneth Cavagnolo,5 Jack A
    The Astrophysical Journal, 659:1265Y1290, 2007 April 20 A # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. s-PROCESS ABUNDANCES IN PLANETARY NEBULAE Brian Sharpee,1 Yong Zhang,2, 3, 4 Robert Williams,2 Eric Pellegrini,5 Kenneth Cavagnolo,5 Jack A. Baldwin,5 Mark Phillips,6 and Xiao-Wei Liu 3 Received 2005 May 6; accepted 2006 December 4 ABSTRACT The s-process should occur in all but the lower mass progenitor stars of planetary nebulae, and this should be re- flected in the chemical composition of the gas that is expelled to create the current planetary nebula shell. Weak for- bidden emission lines are expected from several s-process elements in these shells and have been searched for and in some cases detected in previous investigations. Here we extend these studies by combining very high signal-to-noise ratio echelle spectra of a sample of PNe with a critical analysis of the identification of the emission lines of Z > 30 ions. Emission lines of Br, Kr, Xe, Rb, Ba, and Pb are detected with a reasonable degree of certainty in at least some of the objects studied here, and we also tentatively identify lines from Te and I, each in one object. The strengths of these lines indicate enhancement of s-process elements in the central star progenitors, and we determine the abundances of Br, Kr, and Xe, elements for which atomic data relevant for abundance determination have recently become available. As representative elements of the ‘‘light’’ and ‘‘heavy’’s-process peaks, Kr and Xe exhibit similar enhancements over solar values, suggesting that PN progenitors experience substantial neutron exposure.
    [Show full text]
  • New Type of Black Hole Detected in Massive Collision That Sent Gravitational Waves with a 'Bang'
    New type of black hole detected in massive collision that sent gravitational waves with a 'bang' By Ashley Strickland, CNN Updated 1200 GMT (2000 HKT) September 2, 2020 <img alt="Galaxy NGC 4485 collided with its larger galactic neighbor NGC 4490 millions of years ago, leading to the creation of new stars seen in the right side of the image." class="media__image" src="//cdn.cnn.com/cnnnext/dam/assets/190516104725-ngc-4485-nasa-super-169.jpg"> Photos: Wonders of the universe Galaxy NGC 4485 collided with its larger galactic neighbor NGC 4490 millions of years ago, leading to the creation of new stars seen in the right side of the image. Hide Caption 98 of 195 <img alt="Astronomers developed a mosaic of the distant universe, called the Hubble Legacy Field, that documents 16 years of observations from the Hubble Space Telescope. The image contains 200,000 galaxies that stretch back through 13.3 billion years of time to just 500 million years after the Big Bang. " class="media__image" src="//cdn.cnn.com/cnnnext/dam/assets/190502151952-0502-wonders-of-the-universe-super-169.jpg"> Photos: Wonders of the universe Astronomers developed a mosaic of the distant universe, called the Hubble Legacy Field, that documents 16 years of observations from the Hubble Space Telescope. The image contains 200,000 galaxies that stretch back through 13.3 billion years of time to just 500 million years after the Big Bang. Hide Caption 99 of 195 <img alt="A ground-based telescope's view of the Large Magellanic Cloud, a neighboring galaxy of our Milky Way.
    [Show full text]
  • IPHAS Extinction Distances to Planetary Nebulae with Those Obtained by Other Authors Using Different Methods
    Astronomy & Astrophysics manuscript no. distance14 c ESO 2018 November 4, 2018 IPHAS extinction distances to Planetary Nebulae C. Giammanco1,12, S. E. Sale2, R. L. M. Corradi1,12, M. J. Barlow3, K. Viironen1,13,14, L. Sabin4, M. Santander-Garc´ıa5,1,12, D. J. Frew6, R. Greimel7, B. Miszalski10, S. Phillipps8, A. A. Zijlstra9, A. Mampaso1,12,J. E. Drew2,10, Q. A. Parker6,11 and R. Napiwotzki10. 1 Instituto de Astrof´ısica de Canarias (IAC), C/ V´ıa L´actea s/n, 38200 La Laguna, Spain e-mail: [email protected] 2 Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, U.K. 3 Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK 4 Instituto de Astronom´ıa, Universidad Nacional Aut´onoma de M´exico, Apdo. Postal 877, 22800 Ensenada, B.C., M´exico 5 Isaac Newton Group of Telescopes, Ap. de Correos 321, 38700 Sta. Cruz de la Palma, Spain 6 Department of Physics, Macquarie University, NSW 2109, Australia 7 Institut f¨ur Physik, Karl-Franzens Universit¨at Graz, Universit¨atsplatz 5, 8010 Graz, Austria 8 Astrophysics Group, Department of Physics, Bristol University, Tyndall Avenue, Bristol, BS8 1TL, U.K. 9 Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, M13 9PL, Manchester, U.K. 10 Centre for Astrophysics Research, STRI, University of Hertfordshire, College Lane Campus, Hatfield, AL10 9AB, U.K. 11 Anglo-Australian Observatory, PO Box 296, Epping, NSW 1710, Australia 12 Departamento de Astrof´ısica, Universidad de La Laguna, E-38205 La Laguna, Tenerife, Spain 13 Centro Astron´omico Hispano Alem´an, Calar Alto, C/Jes´us Durb´an Rem´on 2-2, E-04004 Almeria, Spain 14 Centro de Estudios de F´ısica del Cosmos de Arag´on (CEFCA), C/General Pizarro 1-1, E-44001 Teruel, Spain Received September 15, 1996; accepted March 16, 1997 ABSTRACT Aims.
    [Show full text]
  • IPHAS Extinction Distances to Planetary Nebulae
    A&A 525, A58 (2011) Astronomy DOI: 10.1051/0004-6361/201014464 & c ESO 2010 Astrophysics IPHAS extinction distances to planetary nebulae C. Giammanco1,12,S.E.Sale2,R.L.M.Corradi1,12,M.J.Barlow3, K. Viironen1,13,14,L.Sabin4, M. Santander-García5,1,12,D.J.Frew6,R.Greimel7, B. Miszalski10, S. Phillipps8, A. A. Zijlstra9, A. Mampaso1,12,J.E.Drew2,10,Q.A.Parker6,11, and R. Napiwotzki10 1 Instituto de Astrofísica de Canarias (IAC), C/ vía Láctea s/n, 38200 La Laguna, Spain e-mail: [email protected] 2 Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK 3 Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK 4 Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 877, 22800 Ensenada, B.C., Mexico 5 Isaac Newton Group of Telescopes, Ap. de Correos 321, 38700 Sta. Cruz de la Palma, Spain 6 Department of Physics, Macquarie University, NSW 2109, Australia 7 Institut für Physik, Karl-Franzens Universität Graz, Universitätsplatz 5, 8010 Graz, Austria 8 Astrophysics Group, Department of Physics, Bristol University, Tyndall Avenue, Bristol BS8 1TL, UK 9 Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, M13 9PL Manchester, UK 10 Centre for Astrophysics Research, STRI, University of Hertfordshire, College Lane Campus, Hatfield AL10 9AB, UK 11 Anglo-Australian Observatory, PO Box 296, Epping, NSW 1710, Australia 12 Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain 13 Centro Astronómico Hispano Alemán, Calar Alto, C/Jesús Durbán Remón 2-2, 04004 Almeria, Spain 14 Centro de Estudios de Física del Cosmos de Aragón (CEFCA), C/General Pizarro 1-1, 44001 Teruel, Spain Received 19 March 2010 / Accepted 3 July 2010 ABSTRACT Aims.
    [Show full text]
  • X-Ray Observations of the Bipolar Pne NGC 2346 and NGC 7026
    Draft version August 10, 2018 A Preprint typeset using LTEX style emulateapj v. 6/22/04 XMM-NEWTON OBSERVATIONS OF THE BIPOLAR PLANETARY NEBULAE NGC2346 AND NGC7026 Robert A. Gruendl1, Mart´ın A. Guerrero2, You-Hua Chu1, and Rosa M. Williams1 Draft version August 10, 2018 ABSTRACT We have obtained X-ray observations of the bipolar planetary nebulae (PNe) NGC 2346 and NGC 7026 with XMM-Newton. These observations detected diffuse X-ray emission from NGC 7026 but not from NGC2346. The X-ray emission from NGC7026 appears to be confined within the bipolar lobes of the PN and has spectral properties suggesting a thermal plasma emitting at a temperature of +0.5 6 1.1−0.2 × 10 K. The X-ray spectrum of NGC 7026 is modeled using nebular and stellar abundances to assess whether a significant amount of nebular material has been mixed into the shocked-wind, but the results of this comparison are not conclusive owing to the small number of counts detected. Observations of bipolar PNe indicate that diffuse X-ray emission is much less likely detected in open- lobed nebulae than closed-lobed nebulae, possibly because open-lobed nebulae do not have strong fast winds or are unable to retain hot gas. Subject headings: planetary nebulae: general — planetary nebulae: individual (NGC 2346, NGC 7026) — X-rays: ISM — stars: winds 1. INTRODUCTION The plasma temperatures implied by their X-ray spectra 6 Planetary nebulae (PNe) consist of the stellar mass are a few times 10 K. In the case of NGC6543, the X-ray lost by their low- or intermediate-mass stellar progen- emission is well resolved, and a clear limb-brightening is itors during late evolutionary stages.
    [Show full text]
  • © American Astronomical Society • Provided by the NASA Astrophysics Data System
    THEAsTROPHYSICALJOUR.NAL,408:L105-L107, 1993May10 © 1993. Tho American Astronomical Society. All rights reserved. Printed in U.S.A. 1993ApJ...408L.105G H2 MORPHOLOGY OF YOUNG PLANETARY NEBULAE JAMES R. GRAHAM, 1 ' 2 ' 3 T. M. HERBST,4 •5 K. MATTHEWs,2 G. NEUGEBAUER,2 B. T. SoIFER, 2 E. SERABYN, 6 AND S. BECKWITH4 • 5 Received 1993January5;accepted1993 February24 ABSTRACT The distributions of H2 1-0 S(l) emission in the young planetary nebulae BD +30°3639 and NGC 7027 show ~triking similarities: both have limb-brightened arcs of H2 emission with radii that are about twice those of ~h~ir H; II regions. The extended H 2 emission in both nebulae is attributed to a photodissociation region. Thi.s implies that the neutral envelopes of these young planetaries extend well beyond the edge of the H II region, m contrast to older nebulae where the ionized and molecular gas are more nearly coextensive. The contrast between young an~ old planetarie~ can only be explained if the molecular envelope is inhomoge­ neous. We endorse a scenano for the evolution of a planetary nebula in which a photodissociation front pro­ pa~ates ~hrou.gh the clumpy molecular envelope, leaving the ionized core embedded in an envelope of partially iomzed atomic gas and dense molecular knots. In an evolved planetary, the H II region has expanded to en~ulf som~ of the dense molecular knot.s, w~ich can be identified with bright [O 1] and H 2 1-0 S(l) conden­ sations, while the remnant of the photodissoCiated envelope may be detected as a faint optical halo.
    [Show full text]
  • Rings in the Haloes of Planetary Nebulae
    A&A 417, 637–646 (2004) Astronomy DOI: 10.1051/0004-6361:20034420 & c ESO 2004 Astrophysics Rings in the haloes of planetary nebulae R. L. M. Corradi1,P.S´anchez-Bl´azquez2 ,G.Mellema3,,C.Gianmanco4, and H. E. Schwarz5 1 Isaac Newton Group of Telescopes, Ap. de Correos 321, 38700 Sta. Cruz de la Palma, Spain 2 Departamento de Astrof´ısica, Universidad Complutense, 28040, Madrid, Spain e-mail: [email protected] 3 Sterrewacht Leiden, Postbus 9513, 2300 RA Leiden, The Netherlands e-mail: [email protected] 4 Instituto de Astrof´ısica de Canarias, 38200 La Laguna, Tenerife, Spain e-mail: [email protected] 5 Cerro Tololo Inter-American Observatory, NOAO-AURA, Casilla 603, La Serena, Chile e-mail: [email protected] Received 30 September 2003 / Accepted 17 December 2003 Abstract. We present a search for rings or arcs in the haloes of planetary nebulae (PNe). We discovered such structures in eight PNe, tripling the sample of PNe with known rings. This shows that, contrary to what was believed to date, the occurrence of mass loss fluctuations with timescales of 102–103 yrs at the end of the asymptotic giant branch phase (AGB) is common. We estimate a lower limit of the occurrence rate of rings in PN haloes to be ∼35%. Using these new detections and the cases previously known, we discuss the statistical properties of ring systems in PNe haloes. We estimate that the mass modulation producing the rings takes place during the last 10 000 or 20 000 yrs of AGB evolution.
    [Show full text]
  • SIAC Newsletter October 2013
    SOUTHEASTERN IOWA ASTRONOMY CLUB THE SIDEREAL TIMES OCTOBER 2013 A M EMBER SOCIETY OF THE ASTRONOMICAL LEAGUE CLUB OFFICERS : MINUTES SEPTEMBER 20, 2013 President Jim Hilkin called the meeting to is meeting night. Jim Hilkin gave an up- Executive Committee order with the following members in attend- date on the following maintenance President Jim Hilkin items: some additional dirt was added to Vice President Libby Snipes ance: Judy Smithson, Libby Snipes, Jim Treasurer Vicki Philabaum Wilt, Ray Reineke, Duane Gerling, Claus the east end of the berm to help block Secretary David Philabaum Benninghoven, Dave Philabaum, John Ton- headlights from cars coming from the Chief Observer David Philabaum ey, and Paul Sly. Vicki Philabaum conduct- beach and area E; the viburnum bushes Members-at-Large Claus Benninghoven ed a tour of the facility for a group from on the north side of the classroom were Duane Gerling Great River Christian School during the removed as they were getting too big for Blake Stumpf meeting. Libby moved to approve the the space; Jim has installed cabinet Board of Directors minutes as published, seconded by Jim Wilt, doors and created a storage area in the Chair Judy Hilkin motion passed. Jim Hilkin read the Treasur- Stone-Kelly dome; the new doors for Vice Chair Ray Reineke er's report from Vicki. Checks were written the Prugh-Carver Observatory are in, Secretary David Philabaum for the phone bill and to Ray for the new but there has been no word from SCC Members-at-Large David Martin about painting them so Barngrover's will Blake Stumpf motor for the Fecker telescope.
    [Show full text]
  • Zur Objektauswahl: Nummer Anklicken Sternbild- Übersicht NGC
    NGC-Objektauswahl Cygnus NGC 6764 NGC 6856 NGC 6910 NGC 6995 NGC 7031 NGC 7082 NGC 6798 NGC 6857 NGC 6913 NGC 7037 NGC 7086 NGC 6801 NGC 6866 NGC 6914 NGC 6996 NGC 7039 NGC 7092 NGC 6811 NGC 6871 NGC 6916 NGC 6997 NGC 7044 NGC 7093 NGC 6819 NGC 6874 NGC 6946 NGC 7000 NGC 7048 NGC 7116 NGC 6824 NGC 6881 NGC 6960 NGC 7008 NGC 7050 NGC 7127 NGC 6826 NGC 6883 NGC 6974 NGC 7013 NGC 7058 NGC 7128 NGC 6833 NGC 6884 NGC 6979 NGC 7024 NGC 7062 NGC 6834 NGC 6888 NGC 6991 NGC 7026 NGC 7063 NGC 6846 NGC 6894 NGC 6992 NGC 7027 NGC 7067 Sternbild- Übersicht Zur Objektauswahl: Nummer anklicken Sternbildübersicht Auswahl NGC 6764 Aufsuchkarte Auswahl NGC 6798 _6801_6824_Aufsuchkarte Auswahl NGC 6811 Aufsuchkarte Auswahl NGC 6819 Aufsuchkarte Auswahl NGC 6826 Aufsuchkarte Auswahl NGC 6833 Aufsuchkarte Auswahl NGC 6834 Aufsuchkarte Auswahl NGC 6846_6857 Aufsuchkarte Auswahl NGC 6856 Aufsuchkarte Auswahl NGC 6866_6884 Aufsuchkarte Auswahl NGC 6871_6883 Aufsuchkarte Auswahl NGC 6874_6881_6888_6913 Aufsuchkarte Auswahl NGC 6894 Aufsuchkarte Auswahl NGC 6910_6914 Aufsuchkarte Auswahl NGC 6916_6946 Aufsuchkarte Auswahl NGC 6960_6974_6979_6992_6995_7013 Aufsuchkarte Auswahl NGC6991_96_97_7000_26_39_48 Aufsuchkarte Auswahl NGC 7008_7031_7058_7086_7127_7128 Aufsuchkarte Auswahl NGC 7024_7027_7044 Aufsuchkarte Auswahl N 7037_7050_7063 Aufsuchkarte Auswahl NGC 7062_7067_7082_7092_7093 Aufsuchkarte Auswahl NGC 7116 Aufsuchkarte Auswahl NGC 6764_Übersichtskarte Aufsuch- Auswahl karte NGC 6798 Übersichtskarte Aufsuch- Auswahl karte NGC 6801 Übersichtskarte Aufsuch-
    [Show full text]