© American Astronomical Society • Provided by the NASA Astrophysics Data System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Delite Eyepiece Between 100X and 200X for a Given Tele- Line for Tele Vue Optics
EQUIPMENT REVIEW to help prevent an errant eyepiece from blue, and twin-lobed, somewhat reminis- falling to the ground. cent of the Little Dumbbell Nebula (M76), When I test eyepieces, it’s important to although the emphasis was on the lobes Select these eyepieces to enhance your observing me to use them in a variety of telescopes so rather than the center. without ruining your credit. by Tom Trusock I can understand what aberrations the tele- Finally, I took the time to check the scope adds to the design. Through the contrast with the Fetus Nebula (NGC We test years, I’ve seen amateurs blame specific 7008). With a bright star just off the edge of aberrations on eyepiece design that were this planetary nebula, its large size and low the fault of the telescope. Always remem- surface brightness can make it difficult to ber, we deal with an optical system. pick out the distinctive shape, but it was in Because of this, I’m careful to review eye- clear view through the DeLites. pieces in various telescopes I am already familiar with. For this review, I used an Comparing sizes Tele Vue’s DeLite 18-inch f/4.5 Newtonian reflector These are excellent eyepieces. But which (equipped with the Tele Vue Paracorr), a one did I prefer? I found that my favorite 3.6-inch f/7 apochromatic refractor, and a eyepiece depended greatly on the telescope 6-inch f/15 Maksutov reflector. I used it in. Overall, each DeLite performed My testing showed all three scopes per- similarly, so I matched magnification to formed similarly, so the comments in gen- sky conditions. -
Planetary Nebulae
Planetary Nebulae A planetary nebula is a kind of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from old red giant stars late in their lives. The term "planetary nebula" is a misnomer that originated in the 1780s with astronomer William Herschel because when viewed through his telescope, these objects appeared to him to resemble the rounded shapes of planets. Herschel's name for these objects was popularly adopted and has not been changed. They are a relatively short-lived phenomenon, lasting a few tens of thousands of years, compared to a typical stellar lifetime of several billion years. The mechanism for formation of most planetary nebulae is thought to be the following: at the end of the star's life, during the red giant phase, the outer layers of the star are expelled by strong stellar winds. Eventually, after most of the red giant's atmosphere is dissipated, the exposed hot, luminous core emits ultraviolet radiation to ionize the ejected outer layers of the star. Absorbed ultraviolet light energizes the shell of nebulous gas around the central star, appearing as a bright colored planetary nebula at several discrete visible wavelengths. Planetary nebulae may play a crucial role in the chemical evolution of the Milky Way, returning material to the interstellar medium from stars where elements, the products of nucleosynthesis (such as carbon, nitrogen, oxygen and neon), have been created. Planetary nebulae are also observed in more distant galaxies, yielding useful information about their chemical abundances. In recent years, Hubble Space Telescope images have revealed many planetary nebulae to have extremely complex and varied morphologies. -
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
Distributed Star Formation in the M17 Giant Molecular Cloud
The Evolving ISM in the Milky Way & Nearby Galaxies Distributed Star Formation in the M17 Giant Molecular Cloud Matthew S. Povich1, Ed Churchwell1, and Barbara A. Whitney2, ABSTRACT We have found 269 candidate young stellar objects (YSOs) within a 0.5- degree (14 pc at 1.6 kpc) radius of the M17 H II region by fitting model spectral energy distributions (SEDs) to point-source fluxes from the GLIMPSE Archive, combined with MIPSGAL 24 and 70 µm photometry and MSX point-source fluxes where available. Bright diffuse mid-IR background emission dramatically reduces the IRAC point source sensitivity in the M17 H II region, so all but a few of the detected YSOs lie outside the H II region. Of our sample, ∼160 YSOs in the earliest stages of formation are distributed throughout the extended outer regions of M17 giant molecular cloud. YSOs appear to be located beyond the previously measured extent of the molecular gas. Our YSO sample has a power- law IMF that is complete above ∼3 M. We estimate that at least 1250 stars are currently forming in the M17 molecular cloud. High-resolution imaging of M17 in X-rays with Chandra (Broos et al. 2007) has uncovered a population of 8,000–10,000 young stars within or near NGC 6618, the central ionizing cluster; our sample represents a complementary population. The M17 giant molecular cloud continues to form stars at > 25% of the star formation rate that produced the massive NGC 6618 cluster. Subject headings: stars: formation — infrared: ISM — H II regions 1. Introduction M17 is a well-studied nearby (1.4–1.9 kpc; Povich et al. -
Multi-Frequency Study of Supernova Remnants in the Large Magellanic Cloud Confirmation of the Supernova Remnant Status of DEM L205
A&A 546, A109 (2012) Astronomy DOI: 10.1051/0004-6361/201219708 & c ESO 2012 Astrophysics Multi-frequency study of supernova remnants in the Large Magellanic Cloud Confirmation of the supernova remnant status of DEM L205 P. Maggi1, F. Haberl1,L.M.Bozzetto2, M. D. Filipovic´2,S.D.Points3, Y.-H. Chu4, M. Sasaki5,W.Pietsch1, R. A. Gruendl4,J.Dickel6,R.C.Smith3, R. Sturm1,E.J.Crawford2, and A. Y. De Horta2 1 Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, Giessenbachstr., 85741 Garching, Germany e-mail: [email protected] 2 University of Western Sydney, Locked Bag 1797, Penrith South DC, NSW 1797, Australia 3 Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Cassilla 603 La Serena, Chile 4 Astronomy Department, University of Illinois, 1002 West Green Street, Urbana, IL 61801, USA 5 Institut für Astronomie und Astrophysik Tübingen, Universität Tübingen, Sand 1, 72076 Tübingen, Germany 6 Physics and Astronomy Department, University of New Mexico, MSC 07-4220, Albuquerque, NM 87131, USA Received 29 May 2012 / Accepted 23 July 2012 ABSTRACT Context. The Large Magellanic Cloud (LMC) is an ideal target for the study of an unbiased and complete sample of supernova remnants (SNRs). We started an X-ray survey of the LMC with XMM-Newton, which, in combination with observations at other wavelengths, will allow us to discover and study remnants that are either even fainter or more evolved (or both) than previously known. Aims. We present new X-ray and radio data of the LMC SNR candidate DEM L205, obtained by XMM-Newton and ATCA, along with archival optical and infrared observations. -
Herschel Observations of the Galactic HII Region RCW 79
Astronomy & Astrophysics manuscript no. RCW79_langu_corr c ESO 2018 September 9, 2018 Herschel? observations of the Galactic H ii region RCW 79 Hong-Li Liu1;2;3, Miguel Figueira1, Annie Zavagno1, Tracey Hill4, Nicola Schneider5;6;7, Alexander Men'shchikov8, Delphine Russeil1, Fr´ed´eriqueMotte9;10, J´er´emy Tig´e1, Lise Deharveng1, L. D. Anderson11;12, Jin-Zeng Li2, Yuefang Wu13, Jing-Hua Yuan2, and Maohai Huang2 1 Aix Marseille Univ, CNRS, LAM, Laboratoire d'Astrophysique de Marseille, Marseille, France e-mail: [email protected] 2 National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, 100012, Beijing, China 3 University of Chinese Academy of Sciences, 100049, Beijing, China 4 Joint ALMA Observatory, 3107 Alonso de Cordova, Vitacura, Santiago, Chile 5 Univ. Bordeaux, LAB, CNRS, UMR 5804, 33270, Floirac, France 6 CNRS, LAB, UMR 5804, 33270, Floirac, France 7 I. Physik. Institut, University of Cologne, 50937 Cologne, Germany 8 Laboratoire AIM ParisSaclay, CEA/DSMCNRSUniversit´eParis Diderot, IRFU, Service d'Astrophysique, Centre d'Etudes de Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette, France 9 Institut de Plantologie et d'Astrophysique de Grenoble (IPAG), Univ. Grenoble Alpes/CNRS-INSU, BP 53, 38041 Grenoble Cedex 9, France 10 Laboratoire AIM Paris-Saclay, CEA/IRFU - CNRS/INSU - Universit´eParis Diderot, Service d'Astrophysique, B^at. 709, CEA-Saclay, 91191, Gif-sur-Yvette Cedex, France 11 Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506, USA ; Also Adjunct Astronomer at the National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944, USA 12 Adjunct Astronomer at the Green Bank Observatory 13 Department of Astronomy, Peking University, 100871 Beijing, China Preprint online version: September 9, 2018 ABSTRACT Context. -
A Case Study of the Galactic H Ii Region M17 and Environs: Implications for the Galactic Star Formation Rate
A Case Study of the Galactic H ii Region M17 and Environs: Implications for the Galactic Star Formation Rate by Matthew Samuel Povich A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Astronomy) at the University of Wisconsin – Madison 2009 ii Abstract Determinations of star formation rates (SFRs) in the Milky Way and other galaxies are fundamentally based on diffuse emission tracers of ionized gas, such as optical/near-infrared recombination lines, far- infrared continuum, and thermal radio continuum, that are sensitive only to massive OB stars. OB stars dominate the ionization of H II regions, yet they make up <1% of young stellar populations. SFRs therefore depend upon large extrapolations over the stellar initial mass function (IMF). The primary goal of this Thesis is to obtain a detailed census of the young stellar population associated with a bright Galactic H II region and to compare the resulting star formation history with global SFR tracers. The main SFR tracer considered is infrared continuum, since it can be used to derive SFRs in both the Galactic and extragalactic cases. I focus this study on M17, one of the nearest giant H II regions to the Sun (d =2.1kpc),fortwo reasons: (1) M17 is bright enough to serve as an analog of observable extragalactic star formation regions, and (2) M17 is associated with a giant molecular cloud complex, ∼100 pc in extent. The M17 complex is a significant star-forming structure on the Galactic scale, with a complicated star formation history. This study is multiwavelength in nature, but it is based upon broadband mid-infrared images from the Spitzer/GLIMPSE survey and complementary infrared Galactic plane surveys. -
S-PROCESS ABUNDANCES in PLANETARY NEBULAE Brian Sharpee,1 Yong Zhang,2, 3, 4 Robert Williams,2 Eric Pellegrini,5 Kenneth Cavagnolo,5 Jack A
The Astrophysical Journal, 659:1265Y1290, 2007 April 20 A # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. s-PROCESS ABUNDANCES IN PLANETARY NEBULAE Brian Sharpee,1 Yong Zhang,2, 3, 4 Robert Williams,2 Eric Pellegrini,5 Kenneth Cavagnolo,5 Jack A. Baldwin,5 Mark Phillips,6 and Xiao-Wei Liu 3 Received 2005 May 6; accepted 2006 December 4 ABSTRACT The s-process should occur in all but the lower mass progenitor stars of planetary nebulae, and this should be re- flected in the chemical composition of the gas that is expelled to create the current planetary nebula shell. Weak for- bidden emission lines are expected from several s-process elements in these shells and have been searched for and in some cases detected in previous investigations. Here we extend these studies by combining very high signal-to-noise ratio echelle spectra of a sample of PNe with a critical analysis of the identification of the emission lines of Z > 30 ions. Emission lines of Br, Kr, Xe, Rb, Ba, and Pb are detected with a reasonable degree of certainty in at least some of the objects studied here, and we also tentatively identify lines from Te and I, each in one object. The strengths of these lines indicate enhancement of s-process elements in the central star progenitors, and we determine the abundances of Br, Kr, and Xe, elements for which atomic data relevant for abundance determination have recently become available. As representative elements of the ‘‘light’’ and ‘‘heavy’’s-process peaks, Kr and Xe exhibit similar enhancements over solar values, suggesting that PN progenitors experience substantial neutron exposure. -
New Type of Black Hole Detected in Massive Collision That Sent Gravitational Waves with a 'Bang'
New type of black hole detected in massive collision that sent gravitational waves with a 'bang' By Ashley Strickland, CNN Updated 1200 GMT (2000 HKT) September 2, 2020 <img alt="Galaxy NGC 4485 collided with its larger galactic neighbor NGC 4490 millions of years ago, leading to the creation of new stars seen in the right side of the image." class="media__image" src="//cdn.cnn.com/cnnnext/dam/assets/190516104725-ngc-4485-nasa-super-169.jpg"> Photos: Wonders of the universe Galaxy NGC 4485 collided with its larger galactic neighbor NGC 4490 millions of years ago, leading to the creation of new stars seen in the right side of the image. Hide Caption 98 of 195 <img alt="Astronomers developed a mosaic of the distant universe, called the Hubble Legacy Field, that documents 16 years of observations from the Hubble Space Telescope. The image contains 200,000 galaxies that stretch back through 13.3 billion years of time to just 500 million years after the Big Bang. " class="media__image" src="//cdn.cnn.com/cnnnext/dam/assets/190502151952-0502-wonders-of-the-universe-super-169.jpg"> Photos: Wonders of the universe Astronomers developed a mosaic of the distant universe, called the Hubble Legacy Field, that documents 16 years of observations from the Hubble Space Telescope. The image contains 200,000 galaxies that stretch back through 13.3 billion years of time to just 500 million years after the Big Bang. Hide Caption 99 of 195 <img alt="A ground-based telescope&amp;#39;s view of the Large Magellanic Cloud, a neighboring galaxy of our Milky Way. -
IPHAS Extinction Distances to Planetary Nebulae with Those Obtained by Other Authors Using Different Methods
Astronomy & Astrophysics manuscript no. distance14 c ESO 2018 November 4, 2018 IPHAS extinction distances to Planetary Nebulae C. Giammanco1,12, S. E. Sale2, R. L. M. Corradi1,12, M. J. Barlow3, K. Viironen1,13,14, L. Sabin4, M. Santander-Garc´ıa5,1,12, D. J. Frew6, R. Greimel7, B. Miszalski10, S. Phillipps8, A. A. Zijlstra9, A. Mampaso1,12,J. E. Drew2,10, Q. A. Parker6,11 and R. Napiwotzki10. 1 Instituto de Astrof´ısica de Canarias (IAC), C/ V´ıa L´actea s/n, 38200 La Laguna, Spain e-mail: [email protected] 2 Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, U.K. 3 Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK 4 Instituto de Astronom´ıa, Universidad Nacional Aut´onoma de M´exico, Apdo. Postal 877, 22800 Ensenada, B.C., M´exico 5 Isaac Newton Group of Telescopes, Ap. de Correos 321, 38700 Sta. Cruz de la Palma, Spain 6 Department of Physics, Macquarie University, NSW 2109, Australia 7 Institut f¨ur Physik, Karl-Franzens Universit¨at Graz, Universit¨atsplatz 5, 8010 Graz, Austria 8 Astrophysics Group, Department of Physics, Bristol University, Tyndall Avenue, Bristol, BS8 1TL, U.K. 9 Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, M13 9PL, Manchester, U.K. 10 Centre for Astrophysics Research, STRI, University of Hertfordshire, College Lane Campus, Hatfield, AL10 9AB, U.K. 11 Anglo-Australian Observatory, PO Box 296, Epping, NSW 1710, Australia 12 Departamento de Astrof´ısica, Universidad de La Laguna, E-38205 La Laguna, Tenerife, Spain 13 Centro Astron´omico Hispano Alem´an, Calar Alto, C/Jes´us Durb´an Rem´on 2-2, E-04004 Almeria, Spain 14 Centro de Estudios de F´ısica del Cosmos de Arag´on (CEFCA), C/General Pizarro 1-1, E-44001 Teruel, Spain Received September 15, 1996; accepted March 16, 1997 ABSTRACT Aims. -
IPHAS Extinction Distances to Planetary Nebulae
A&A 525, A58 (2011) Astronomy DOI: 10.1051/0004-6361/201014464 & c ESO 2010 Astrophysics IPHAS extinction distances to planetary nebulae C. Giammanco1,12,S.E.Sale2,R.L.M.Corradi1,12,M.J.Barlow3, K. Viironen1,13,14,L.Sabin4, M. Santander-García5,1,12,D.J.Frew6,R.Greimel7, B. Miszalski10, S. Phillipps8, A. A. Zijlstra9, A. Mampaso1,12,J.E.Drew2,10,Q.A.Parker6,11, and R. Napiwotzki10 1 Instituto de Astrofísica de Canarias (IAC), C/ vía Láctea s/n, 38200 La Laguna, Spain e-mail: [email protected] 2 Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK 3 Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK 4 Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 877, 22800 Ensenada, B.C., Mexico 5 Isaac Newton Group of Telescopes, Ap. de Correos 321, 38700 Sta. Cruz de la Palma, Spain 6 Department of Physics, Macquarie University, NSW 2109, Australia 7 Institut für Physik, Karl-Franzens Universität Graz, Universitätsplatz 5, 8010 Graz, Austria 8 Astrophysics Group, Department of Physics, Bristol University, Tyndall Avenue, Bristol BS8 1TL, UK 9 Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, M13 9PL Manchester, UK 10 Centre for Astrophysics Research, STRI, University of Hertfordshire, College Lane Campus, Hatfield AL10 9AB, UK 11 Anglo-Australian Observatory, PO Box 296, Epping, NSW 1710, Australia 12 Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain 13 Centro Astronómico Hispano Alemán, Calar Alto, C/Jesús Durbán Remón 2-2, 04004 Almeria, Spain 14 Centro de Estudios de Física del Cosmos de Aragón (CEFCA), C/General Pizarro 1-1, 44001 Teruel, Spain Received 19 March 2010 / Accepted 3 July 2010 ABSTRACT Aims. -
X-Ray Observations of the Bipolar Pne NGC 2346 and NGC 7026
Draft version August 10, 2018 A Preprint typeset using LTEX style emulateapj v. 6/22/04 XMM-NEWTON OBSERVATIONS OF THE BIPOLAR PLANETARY NEBULAE NGC2346 AND NGC7026 Robert A. Gruendl1, Mart´ın A. Guerrero2, You-Hua Chu1, and Rosa M. Williams1 Draft version August 10, 2018 ABSTRACT We have obtained X-ray observations of the bipolar planetary nebulae (PNe) NGC 2346 and NGC 7026 with XMM-Newton. These observations detected diffuse X-ray emission from NGC 7026 but not from NGC2346. The X-ray emission from NGC7026 appears to be confined within the bipolar lobes of the PN and has spectral properties suggesting a thermal plasma emitting at a temperature of +0.5 6 1.1−0.2 × 10 K. The X-ray spectrum of NGC 7026 is modeled using nebular and stellar abundances to assess whether a significant amount of nebular material has been mixed into the shocked-wind, but the results of this comparison are not conclusive owing to the small number of counts detected. Observations of bipolar PNe indicate that diffuse X-ray emission is much less likely detected in open- lobed nebulae than closed-lobed nebulae, possibly because open-lobed nebulae do not have strong fast winds or are unable to retain hot gas. Subject headings: planetary nebulae: general — planetary nebulae: individual (NGC 2346, NGC 7026) — X-rays: ISM — stars: winds 1. INTRODUCTION The plasma temperatures implied by their X-ray spectra 6 Planetary nebulae (PNe) consist of the stellar mass are a few times 10 K. In the case of NGC6543, the X-ray lost by their low- or intermediate-mass stellar progen- emission is well resolved, and a clear limb-brightening is itors during late evolutionary stages.