2015 in Living Color

Total Page:16

File Type:pdf, Size:1020Kb

2015 in Living Color THE TEXAS STAR PARTY 2015 TELESCOPE OBSERVING CLUB BY JOHN WAGONER TEXAS ASTRONOMICAL SOCIETY OF DALLAS RULES AND REGULATIONS Welcome to the Texas Star Party's Telescope Observing Club. The purpose of this club is not to test your observing skills by throwing the toughest objects at you that are hard to see under any conditions, but to give you an opportunity to observe 25 showcase objects under the ideal conditions of these pristine West Texas skies, thus displaying them to their best advantage. The regular observing program is “In Living Color”. These are colorful objects consisting of single, double, & multiple stars and planetary nebula. Note any color you detect in your observing notes. You need to observe 25 objects of the 30 available to get your pin, but if you are using a smaller scope and have a little trouble with some of the objects, just mark it as “tried” and move on, and you will get credit for the object. If you detect a hint of color, please note this in your log. We are also bringing back “I Have No Idea Where I Am” from 2013. This is a list of 29 objects. Only 25 objects need be observed. That's it. Any size telescope can be used. All observations must be made at the Texas Star Party to qualify. All objects are within range of small (6”) to medium sized (10”) telescopes, and are available for observation between 9:00PM and 5:00AM any time during the TSP. Each person completing this list will receive an official Texas Star Party Telescope Observing Club lapel pin. These pins are not sold at the TSP and can only be acquired by completing the program, so wear them proudly. To receive your pin, turn in your observations to John Wagoner - TSP Observing Chairman any time during the Texas Star Party. I will be at the outside door leading into the TSP Meeting Hall each day between 1:00 PM and 2:30 PM. except Saturday (10:00-11:30 AM). If you finish the list the last night of TSP, or I am not available to give you your pin, just mail your observations to me at 1409 Sequoia Dr., Plano, Tx. 75023, and I will see that you get a pin. Good luck and good observing. Now, let's get out there and observe!!! P.S. If you would like to see some of your favorite objects on a future TSP program, or have any ideas for a new program, let me know during TSP or email me at [email protected] Credit for the creation of the 2015 Telescope Observing Program “In Living Color” goes to Clayton Jeter of the Houston Astronomical Society and Jerome Kent Wade of the Austin Astronomical Society. For those of you who missed previous TSP’s, pins for the following programs are still available: 2012 – 2012 - 2011 – Lions and Tigers and Bears, Oh My! 2010 – About Face, 2009 – Texas Star Party 5X5 2007 - Be A Sap (Shapley-Ames Person) 2006 – Eye in the Sky --- 2004 – Starlight, Starbright 2003 - The Great Celestial A.R.C. (Asterisms, Radio sources, & Clusters) You can download these observing programs from the TSP website: www.texasstarparty.org. “In Living Color” Object Type R.A. Dec Con Size Mag Date Time BowTie Nebula - NGC 40 PlNeb 00 14 +72 36 Cep 36” 11 Camelopardalis Double 05 07 +58 59 Cam 179” IC 2149 PlNeb 05 58 +46 06 Aur 12” Eskimo Nebula - NGC 2392 PlNeb 07 30 +20 53 Gem 42” Albireo - β1 Cygni Double 07 53 +19 31 Cyg 35” τ1 Hydrae Double 09 30 -02 50 Hya 68” Ghost of Jupiter - NGC 3242 PlNeb 10 26 -18 43 Hya 36” V Hydrae Carbon 10 52 -21 19 Hya SS Virginis Carbon 12 26 +00 41 Vir Baby Eskimo - IC 3568 PlNeb 12 33 +82 29 Cam 18” 24 Comae Berenices Double 12 36 +18 18 Com 20” La Superba - Y CVn Carbon 12 46 +45 21 CVn Izar - ε Bootis Double 14 45 +27 00 Boo 3” Antares - α Scorpii Double 16 30 -26 28 Sco 2.6” Turtle Nebula - NGC 6210 PlNeb 16 45 +23 46 Her 12” α Herculis Double 17 15 +14 23 Her 5” Cat's Eye Nebula - NGC 6543 PlNeb 17 59 +66 38 Dra 18” 95 Herculis Double 18 02 +21 36 Her 7” Blue Racquetball - NGC 6572 PlNeb 18 13 +06 52 Oph 12” T Lyrae Carbon 18 33 +37 01 Lyr Ring Nebula - Messier 57 PlNeb 18 54 +33 03 Lyr 66” V Aquilae Carbon 19 05 -05 40 Aql Little Gem - NGC 6818 PlNeb 19 45 -14 07 Sgr 12” Blinking Planetary - NGC 6826 PlNeb 19 45 +50 34 Cyg 126” ο1 Cygni Triple 20 14 +46 47 Cyg 331” γ2 Delphini Double 20 47 +16 11 Del 9” Saturn Nebula - NGC 7009 PlNeb 21 05 -11 18 Aqr 24” Green Rectangle - NGC 7027 PlNeb 21 08 +42 18 Cyg 12” Garnet Star - μ Cephei Star 21 44 +58 51 Cep Blue Snowball - NGC 7662 PlNeb 23 27 +42 37 And 30” “I HAVE NO IDEA WHERE I AM” Object Type R.A. Dec Con Size Mag Date Time NGC 2129 OpCl 06 02 +24 05 Gem 6.0 6.7 NGC 2681 Glxy 08 54 +51 19 Uma 4.0 10.3 NGC 2682 OpCl 08 52 +11 46 Cnc 25.0 6.6 M67 NGC 2683 Glxy 08 53 +33 25 Lyn 9x3 9.8 NGC 2903 Glxy 09 33 +21 27 Leo 12x6 8.9 NGC 3115 Glxy 10 06 ‐07 46 Sex 8x3 9.0 NGC 3344 Glxy 10 44 +24 55 Lmi 7.0 9.9 NGC 3923 Glxy 11 51 ‐28 48 Hya 7x5 9.6 NGC 3962 Glxy 11 55 ‐13 58 Crt 3.0 10.7 NGC 4526 Glxy 12 34 +07 42 Vir 7x3 9.7 Stargate Ast 12 36 ‐12 05 Crv 15.0 7.5 NGC 5024 GbCl 13 13 +18 10 Com 13.0 7.5 M53 NGC 5033 Glxy 13 14 +36 32 Cvn 10x4 10.0 NGC 5248 Glxy 13 38 +08 53 Boo 6.0 10.3 NGC 5897 GbCl 15 18 ‐21 01 Lib 13.0 8.6 Tough NGC 5904 GbCl 15 19 +02 03 Ser 28.0 5.8 M5 NGC 6144 GbCl 16 27 ‐26 01 Sco 7.0 9.0 NGC 6210 PlNeb 16 45 +23 49 Her 14sec 8.8 NGC 6572 PlNeb 18 12 +06 51 Oph 8sec 8.1 NGC 6626 GbCl 18 25 ‐24 52 Sgr 15.0 6.8 M28 Kimble 2 Ast 18 35 +72 23 Dra 20.0 5.6 NGC 6694 OpCl 18 46 ‐09 22 Sct 7.0 8.2 M26 NGC 6709 OpCl 18 52 +10 20 Aql 13.0 6.7 NGC 6779 GbCl 19 17 +30 11 Lyr 7.0 8.3 M56 NGC 6838 GbCl 19 54 +18 47 Sge 7.2 8.0 M71 NGC 6891 PlNeb 20 16 +12 44 Del 15sec 10.0 NGC 6910 OpCl 20 24 +40 48 Cyg 10.0 7.0 NGC 6940 OpCl 20 35 +28 19 Vul 15.0 6.3 NGC 7510 OpCl 23 12 +60 34 Cep 5.0 7.9 .
Recommended publications
  • Arxiv:2012.09981V1 [Astro-Ph.SR] 17 Dec 2020 2 O
    Contrib. Astron. Obs. Skalnat´ePleso XX, 1 { 20, (2020) DOI: to be assigned later Flare stars in nearby Galactic open clusters based on TESS data Olga Maryeva1;2, Kamil Bicz3, Caiyun Xia4, Martina Baratella5, Patrik Cechvalaˇ 6 and Krisztian Vida7 1 Astronomical Institute of the Czech Academy of Sciences 251 65 Ondˇrejov,The Czech Republic(E-mail: [email protected]) 2 Lomonosov Moscow State University, Sternberg Astronomical Institute, Universitetsky pr. 13, 119234, Moscow, Russia 3 Astronomical Institute, University of Wroc law, Kopernika 11, 51-622 Wroc law, Poland 4 Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk University, Kotl´aˇrsk´a2, 611 37 Brno, Czech Republic 5 Dipartimento di Fisica e Astronomia Galileo Galilei, Vicolo Osservatorio 3, 35122, Padova, Italy, (E-mail: [email protected]) 6 Department of Astronomy, Physics of the Earth and Meteorology, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynsk´adolina F-2, 842 48 Bratislava, Slovakia 7 Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, H-1121 Budapest, Konkoly Thege Mikl´os´ut15-17, Hungary Received: September ??, 2020; Accepted: ????????? ??, 2020 Abstract. The study is devoted to search for flare stars among confirmed members of Galactic open clusters using high-cadence photometry from TESS mission. We analyzed 957 high-cadence light curves of members from 136 open clusters. As a result, 56 flare stars were found, among them 8 hot B-A type ob- jects. Of all flares, 63 % were detected in sample of cool stars (Teff < 5000 K), and 29 % { in stars of spectral type G, while 23 % in K-type stars and ap- proximately 34% of all detected flares are in M-type stars.
    [Show full text]
  • Radio Continuum and CO Emission in Star-Forming Galaxies
    A&A 385, 412–424 (2002) Astronomy DOI: 10.1051/0004-6361:20020140 & c ESO 2002 Astrophysics Radio continuum and CO emission in star-forming galaxies M. Murgia1,A.Crapsi1,2, L. Moscadelli3, and L. Gregorini1,4 1 Istituto di Radioastronomia del CNR, Via Gobetti 101, 40129, Bologna, Italy 2 Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125, Firenze, Italy 3 Osservatorio Astronomico di Cagliari, Loc. Poggio dei Pini, Strada 54, 09012 Capoterra (CA), Italy 4 Dipartimento di Fisica, Universit`a di Bologna, Via B. Pichat 6/2, 40127 Bologna, Italy Received 30 October 2001 / Accepted 23 January 2002 Abstract. We combine the radio continuum images from the NRAO VLA Sky Survey with the CO-line observations from the extragalactic CO survey of the Five College Radio Astronomy Observatory to study the relationship between molecular gas and the star formation rate within the disks of 180 spiral galaxies at 4500 resolution. We find a tight correlation between these quantities. On average, the ratio between the radio continuum and the CO emission is constant, within a factor of 3, both inside the same galaxy and from galaxy to galaxy. The mean star formation efficiency deduced from the radio continuum corresponds to convert 3.5% of the available molecular gas into stars on a time scale of 108 yr and depends weakly on general galaxy properties, such as Hubble type or nuclear activity. A comparison is made with another similar analysis performed using the Hα luminosity as star formation indicator. The overall agreement we find between the two studies reinforces the use of the radio luminosity as star formation rate indicator not only on global but also on local scales.
    [Show full text]
  • Messier Plus Marathon Text
    Messier Plus Marathon Object List by Wally Brown & Bob Buckner with additional objects by Mike Roos Object Data - Saguaro Astronomy Club Score is most numbered objects in a single night. Tiebreaker is count of un-numbered objects Observer Name Date Address Marathon Obects __________ Tiebreaker Objects ________ SEQ OBJECT TYPE CON R.A. DEC. RISE TRANSIT SET MAG SIZE NOTES TIME M 53 GLOCL COM 1312.9 +1810 7:21 14:17 21:12 7.7 13.0' NGC 5024, !B,vC,iR,vvmbM,st 12.. NGC 5272, !!,eB,vL,vsmbM,st 11.., Lord Rosse-sev dark 1 M 3 GLOCL CVN 1342.2 +2822 7:11 14:46 22:20 6.3 18.0' marks within 5' of center 2 M 5 GLOCL SER 1518.5 +0205 10:17 16:22 22:27 5.7 23.0' NGC 5904, !!,vB,L,eCM,eRi, st mags 11...;superb cluster M 94 GALXY CVN 1250.9 +4107 5:12 13:55 22:37 8.1 14.4'x12.1' NGC 4736, vB,L,iR,vsvmbM,BN,r NGC 6121, Cl,8 or 10 B* in line,rrr, Look for central bar M 4 GLOCL SCO 1623.6 -2631 12:56 17:27 21:58 5.4 36.0' structure M 80 GLOCL SCO 1617.0 -2258 12:36 17:21 22:06 7.3 10.0' NGC 6093, st 14..., Extremely rich and compressed M 62 GLOCL OPH 1701.2 -3006 13:49 18:05 22:21 6.4 15.0' NGC 6266, vB,L,gmbM,rrr, Asymmetrical M 19 GLOCL OPH 1702.6 -2615 13:34 18:06 22:38 6.8 17.0' NGC 6273, vB,L,R,vCM,rrr, One of the most oblate GC 3 M 107 GLOCL OPH 1632.5 -1303 12:17 17:36 22:55 7.8 13.0' NGC 6171, L,vRi,vmC,R,rrr, H VI 40 M 106 GALXY CVN 1218.9 +4718 3:46 13:23 22:59 8.3 18.6'x7.2' NGC 4258, !,vB,vL,vmE0,sbMBN, H V 43 M 63 GALXY CVN 1315.8 +4201 5:31 14:19 23:08 8.5 12.6'x7.2' NGC 5055, BN, vsvB stell.
    [Show full text]
  • Delite Eyepiece Between 100X and 200X for a Given Tele- Line for Tele Vue Optics
    EQUIPMENT REVIEW to help prevent an errant eyepiece from blue, and twin-lobed, somewhat reminis- falling to the ground. cent of the Little Dumbbell Nebula (M76), When I test eyepieces, it’s important to although the emphasis was on the lobes Select these eyepieces to enhance your observing me to use them in a variety of telescopes so rather than the center. without ruining your credit. by Tom Trusock I can understand what aberrations the tele- Finally, I took the time to check the scope adds to the design. Through the contrast with the Fetus Nebula (NGC We test years, I’ve seen amateurs blame specific 7008). With a bright star just off the edge of aberrations on eyepiece design that were this planetary nebula, its large size and low the fault of the telescope. Always remem- surface brightness can make it difficult to ber, we deal with an optical system. pick out the distinctive shape, but it was in Because of this, I’m careful to review eye- clear view through the DeLites. pieces in various telescopes I am already familiar with. For this review, I used an Comparing sizes Tele Vue’s DeLite 18-inch f/4.5 Newtonian reflector These are excellent eyepieces. But which (equipped with the Tele Vue Paracorr), a one did I prefer? I found that my favorite 3.6-inch f/7 apochromatic refractor, and a eyepiece depended greatly on the telescope 6-inch f/15 Maksutov reflector. I used it in. Overall, each DeLite performed My testing showed all three scopes per- similarly, so I matched magnification to formed similarly, so the comments in gen- sky conditions.
    [Show full text]
  • Chemistry and Star Formation in the Host Galaxies of Type Ia Supernovae
    Chemistry and Star Formation in the Host Galaxies of Type Ia Supernovae The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Gallagher, Joseph S., Peter M. Garnavich, Perry Berlind, Peter Challis, Saurabh Jha, and Robert P. Kirshner. 2005. “Chemistry and Star Formation in the Host Galaxies of Type Ia Supernovae.” The Astrophysical Journal 634 (1): 210–26. https:// doi.org/10.1086/491664. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41399918 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The Astrophysical Journal, 634:210–226, 2005 November 20 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. CHEMISTRY AND STAR FORMATION IN THE HOST GALAXIES OF TYPE Ia SUPERNOVAE Joseph S. Gallagher and Peter M. Garnavich Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556-5670 Perry Berlind F. L. Whipple Observatory, 670 Mount Hopkins Road, P.O. Box 97, Amado, AZ 85645 Peter Challis Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 Saurabh Jha Department of Astronomy, 601 Campbell Hall, University of California, Berkeley, CA 94720-3411 and Robert P. Kirshner Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 Received 2005 March 4; accepted 2005 July 22 ABSTRACT We study the effect of environment on the properties of Type Ia supernovae by analyzing the integrated spectra of 57 local Type Ia supernova host galaxies.
    [Show full text]
  • Planetary Nebulae
    Planetary Nebulae A planetary nebula is a kind of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from old red giant stars late in their lives. The term "planetary nebula" is a misnomer that originated in the 1780s with astronomer William Herschel because when viewed through his telescope, these objects appeared to him to resemble the rounded shapes of planets. Herschel's name for these objects was popularly adopted and has not been changed. They are a relatively short-lived phenomenon, lasting a few tens of thousands of years, compared to a typical stellar lifetime of several billion years. The mechanism for formation of most planetary nebulae is thought to be the following: at the end of the star's life, during the red giant phase, the outer layers of the star are expelled by strong stellar winds. Eventually, after most of the red giant's atmosphere is dissipated, the exposed hot, luminous core emits ultraviolet radiation to ionize the ejected outer layers of the star. Absorbed ultraviolet light energizes the shell of nebulous gas around the central star, appearing as a bright colored planetary nebula at several discrete visible wavelengths. Planetary nebulae may play a crucial role in the chemical evolution of the Milky Way, returning material to the interstellar medium from stars where elements, the products of nucleosynthesis (such as carbon, nitrogen, oxygen and neon), have been created. Planetary nebulae are also observed in more distant galaxies, yielding useful information about their chemical abundances. In recent years, Hubble Space Telescope images have revealed many planetary nebulae to have extremely complex and varied morphologies.
    [Show full text]
  • Ghost Hunt Challenge 2020
    Virtual Ghost Hunt Challenge 10/21 /2020 (Sorry we can meet in person this year or give out awards but try doing this challenge on your own.) Participant’s Name _________________________ Categories for the competition: Manual Telescope Electronically Aided Telescope Binocular Astrophotography (best photo) (if you expect to compete in more than one category please fill-out a sheet for each) ** There are four objects on this list that may be beyond the reach of beginning astronomers or basic telescopes. Therefore, we have marked these objects with an * and provided alternate replacements for you just below the designated entry. We will use the primary objects to break a tie if that’s needed. Page 1 TAS Ghost Hunt Challenge - Page 2 Time # Designation Type Con. RA Dec. Mag. Size Common Name Observed Facing West – 7:30 8:30 p.m. 1 M17 EN Sgr 18h21’ -16˚11’ 6.0 40’x30’ Omega Nebula 2 M16 EN Ser 18h19’ -13˚47 6.0 17’ by 14’ Ghost Puppet Nebula 3 M10 GC Oph 16h58’ -04˚08’ 6.6 20’ 4 M12 GC Oph 16h48’ -01˚59’ 6.7 16’ 5 M51 Gal CVn 13h30’ 47h05’’ 8.0 13.8’x11.8’ Whirlpool Facing West - 8:30 – 9:00 p.m. 6 M101 GAL UMa 14h03’ 54˚15’ 7.9 24x22.9’ 7 NGC 6572 PN Oph 18h12’ 06˚51’ 7.3 16”x13” Emerald Eye 8 NGC 6426 GC Oph 17h46’ 03˚10’ 11.0 4.2’ 9 NGC 6633 OC Oph 18h28’ 06˚31’ 4.6 20’ Tweedledum 10 IC 4756 OC Ser 18h40’ 05˚28” 4.6 39’ Tweedledee 11 M26 OC Sct 18h46’ -09˚22’ 8.0 7.0’ 12 NGC 6712 GC Sct 18h54’ -08˚41’ 8.1 9.8’ 13 M13 GC Her 16h42’ 36˚25’ 5.8 20’ Great Hercules Cluster 14 NGC 6709 OC Aql 18h52’ 10˚21’ 6.7 14’ Flying Unicorn 15 M71 GC Sge 19h55’ 18˚50’ 8.2 7’ 16 M27 PN Vul 20h00’ 22˚43’ 7.3 8’x6’ Dumbbell Nebula 17 M56 GC Lyr 19h17’ 30˚13 8.3 9’ 18 M57 PN Lyr 18h54’ 33˚03’ 8.8 1.4’x1.1’ Ring Nebula 19 M92 GC Her 17h18’ 43˚07’ 6.44 14’ 20 M72 GC Aqr 20h54’ -12˚32’ 9.2 6’ Facing West - 9 – 10 p.m.
    [Show full text]
  • Open Clusters in Gaia
    Sede Amministrativa: Università degli Studi di Padova Dipartimento di Fisica e Astronomia “G. Galilei” Corso di Dottorato di Ricerca in Astronomia Ciclo XXX OPEN CLUSTERS IN GAIA ERA Coordinatore: Ch.mo Prof. Giampaolo Piotto Supervisore: Dr.ssa Antonella Vallenari Dottorando: Francesco Pensabene i Abstract Context. Open clusters (OCs) are optimal tracers of the Milky Way disc. They are observed at every distance from the Galactic center and their ages cover the entire lifespan of the disc. The actual OC census contain more than 3000 objects, but suffers of incom- pleteness out of the solar neighborhood and of large inhomogeneity in the parameter deter- minations present in literature. Both these aspects will be improved by the on-going space mission Gaia . In the next years Gaia will produce the most precise three-dimensional map of the Milky Way by surveying other than 1 billion of stars. For those stars Gaia will provide extremely precise measure- ment of proper motions, parallaxes and brightness. Aims. In this framework we plan to take advantage of the first Gaia data release, while preparing for the coming ones, to: i) move the first steps towards building a homogeneous data base of OCs with the high quality Gaia astrometry and photometry; ii) build, improve and test tools for the analysis of large sample of OCs; iii) use the OCs to explore the prop- erties of the disc in the solar neighborhood. Methods and Data. Using ESO archive data, we analyze the photometry and derive physical parameters, comparing data with synthetic populations and luminosity functions, of three clusters namely NGC 2225, NGC 6134 and NGC 2243.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Virgo the Virgin
    Virgo the Virgin Virgo is one of the constellations of the zodiac, the group tion Virgo itself. There is also the connection here with of 12 constellations that lies on the ecliptic plane defined “The Scales of Justice” and the sign Libra which lies next by the planets orbital orientation around the Sun. Virgo is to Virgo in the Zodiac. The study of astronomy had a one of the original 48 constellations charted by Ptolemy. practical “time keeping” aspect in the cultures of ancient It is the largest constellation of the Zodiac and the sec- history and as the stars of Virgo appeared before sunrise ond - largest constellation after Hydra. Virgo is bordered by late in the northern summer, many cultures linked this the constellations of Bootes, Coma Berenices, Leo, Crater, asterism with crops, harvest and fecundity. Corvus, Hydra, Libra and Serpens Caput. The constella- tion of Virgo is highly populated with galaxies and there Virgo is usually depicted with angel - like wings, with an are several galaxy clusters located within its boundaries, ear of wheat in her left hand, marked by the bright star each of which is home to hundreds or even thousands of Spica, which is Latin for “ear of grain”, and a tall blade of galaxies. The accepted abbreviation when enumerating grass, or a palm frond, in her right hand. Spica will be objects within the constellation is Vir, the genitive form is important for us in navigating Virgo in the modern night Virginis and meteor showers that appear to originate from sky. Spica was most likely the star that helped the Greek Virgo are called Virginids.
    [Show full text]
  • On the Evolutionary Status of WR-Type Planetary Nebula Nuclei R
    ACTA ASTRONOMICA Vol. 43 (1993) pp. 389±396 On the Evolutionary Status of WR-type Planetary Nebula Nuclei by R. Tylenda and S.K. G o r n y Copernicus Astronomical Center, Chopina 12/18, PL-87100 ToruÂn, Poland ABSTRACT The planetary nebula nuclei showing WR-type spectra constitute a unique class of the central stars: they are He-burners. This work presents preliminary results of a study analyzing the observational characteristics of the WR-type nuclei and their nebulae. The existing He-burning models cannot account for the observations of the WR-type nuclei. In the discussion we consider two scenaria: (i) WR-type nuclei are single stars; (ii) WR phenomenon is an evolutionary phase of binary systems. 1. Introduction The planetary nebula nuclei (PNN) showing Wolf-Rayet features in their spectra constitue a unique class of the central stars. This class includes, at present, about 50 objects and all of them are of WC-type (Tylenda et al. 1993). Their strong winds imply that these stars have active shell sources. This and the fact that their atmospheres are hydrogen-poor (Mendez 1991) imply that the WR-type PNN are burning helium. It is, thus, the only class of PNN for which we know the nuclear burning mode. We have undertaken an extensive study of the WR-type PNN in order to better understand their evolutionary status. This paper presents some preliminary results. 2. Observed Samples From the list of WR-type PNN in Tylenda et al. (1993) we have selected a sample of 30 objects for which we have found necessary observational data (e.g.
    [Show full text]
  • And Ecclesiastical Cosmology
    GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc.
    [Show full text]