Coleoptera, Curculionidae, Scolytinae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Clave De Perforadores De Coníferas 04
Clave de Perforadores de Coníferas Orden: Coleoptera. Suborden: Polyphaga Superfamilia: Curculionoidea. Familias: Scolytidae y Curculionidae CONSEJERÍA DE MEDIO AMBIENTE ESPECIES: Escolítidos y Curculiónidos, “barrenillos de la madera” y “gorgojos”, respectivamente. Las que presentan un mayor potencial patógeno dentro de Andalucía son los escolítidos Tomicus destruens (Wollaston,1865) y Orthotomicus erosus (Wollaston, 1857) ESPECIES AFECTADAS: Principalmente Coníferas DAÑOS: Se alimentan de la parte subcortical de los árboles que colonizan, provocándoles la muerte ya que al desarrollarse las larvas impiden el flujo de savia y agua. Ficha Resumen DISTRIBUCIÓN: La clave trata sobre especies existentes en la Comunidad Autónoma de Andalucía. ■ CURIOSIDADES: Con la alimentación de las larvas se graba en la madera una serie de galerías que son características y casi exclusivas de cada especie de perforador. 04 INTRODUCCIÓN medidas correctoras mas convenientes para redu- cir la densidad de las poblaciones de perforado- Los perforadores son coleópteros de peque- res hasta el umbral de tolerancia deseado. ño tamaño (no superan los 10 mm de longitud), de colores oscuros, negros o castaños. Son vola- A la hora de llevar a cabo la identificación de dores, y poseen una gran capacidad de disper- un individuo será necesario conocer sus caracte- sión. rísticas morfológicas, pero también es muy útil y Desarrollan su ciclo reproductor sobre los en muchos casos determinante saber que hábitos pies muertos que mantienen su madera húmeda, tienen y donde los desarrollan. En muchos casos sobre los enfermos o debilitados por sequías, por conocer esos hábitos determinará claramente que ataque de otras plagas, etc. Estos insectos son especie es la causante de los daños. -
Fungi Associated with Three Common Bark Beetle Species in Norwegian
Preface Finally, two years of study for the master degree at the Norwegian University of Life Science is completed. This thesis is the end of my education in forestry science. It has been a long and sometimes challenging journey, but this is it. It started as a “worst case scenario”, when I had to change my thesis assignment. Two months of fieldwork resulted in nothing due to unlucky circumstances. I was saved by the hero Dr. Halvor Solheim who is my main supervisor. He came up with the idea of study fungi associated with some bark beetle species. This thesis has given me the opportunity to practice and learn about new fields, that I thought I never would bother to try to understand. I’ve been working with tree samples, beetle species and DNA! Normally I was the one who usually prayed, that DNA wouldn’t be a subject in the examinations. In additions to Dr. Halvor Solheim, many people have inspired, helped and motivated me through the whole process. They have answered all my questions and have been there for me when I needed help. Dr. Paal Krokene for advisements and borrowing out literature. Senior Engineers Helge Meissner and Anne Eskild Nilsen for instructions and advising in the biochemistry lab. Senior Research Scientist Ari M. Hietala for advising me about the laboratory methods and the writing process. Lead Engineer Inger M. Heldal for advisements and mixing of different solutions, such as primers and enzymes. Lead Engineer Gro Wollebæk for the advisements and instructions for the laboratory work. Scientific Adviser Torstein Kvamme for assisting with the fieldwork, beetle identification and comments on the manuscript. -
Willows of Interior Alaska
1 Willows of Interior Alaska Dominique M. Collet US Fish and Wildlife Service 2004 2 Willows of Interior Alaska Acknowledgements The development of this willow guide has been made possible thanks to funding from the U.S. Fish and Wildlife Service- Yukon Flats National Wildlife Refuge - order 70181-12-M692. Funding for printing was made available through a collaborative partnership of Natural Resources, U.S. Army Alaska, Department of Defense; Pacific North- west Research Station, U.S. Forest Service, Department of Agriculture; National Park Service, and Fairbanks Fish and Wildlife Field Office, U.S. Fish and Wildlife Service, Department of the Interior; and Bonanza Creek Long Term Ecological Research Program, University of Alaska Fairbanks. The data for the distribution maps were provided by George Argus, Al Batten, Garry Davies, Rob deVelice, and Carolyn Parker. Carol Griswold, George Argus, Les Viereck and Delia Person provided much improvement to the manuscript by their careful editing and suggestions. I want to thank Delia Person, of the Yukon Flats National Wildlife Refuge, for initiating and following through with the development and printing of this guide. Most of all, I am especially grateful to Pamela Houston whose support made the writing of this guide possible. Any errors or omissions are solely the responsibility of the author. Disclaimer This publication is designed to provide accurate information on willows from interior Alaska. If expert knowledge is required, services of an experienced botanist should be sought. Contents -
ANNUAL REPORT 2020 Plant Protection & Conservation Programs
Oregon Department of Agriculture Plant Protection & Conservation Programs ANNUAL REPORT 2020 www.oregon.gov/ODA Plant Protection & Conservation Programs Phone: 503-986-4636 Website: www.oregon.gov/ODA Find this report online: https://oda.direct/PlantAnnualReport Publication date: March 2021 Table Tableof Contents of Contents ADMINISTRATION—4 Director’s View . 4 Retirements: . 6 Plant Protection and Conservation Programs Staff . 9 NURSERY AND CHRISTMAS TREE—10 What Do We Do? . 10 Christmas Tree Shipping Season Summary . 16 Personnel Updates . .11 Program Overview . 16 2020: A Year of Challenge . .11 New Rule . 16 Hawaii . 17 COVID Response . 12 Mexico . 17 Funding Sources . 13 Nursery Research Assessment Fund . 14 IPPM-Nursery Surveys . 17 Phytophthora ramorum Nursery Program . 14 National Traceback Investigation: Ralstonia in Oregon Nurseries . 18 Western Horticultural Inspection Society (WHIS) Annual Meeting . 19 HEMP—20 2020 Program Highlights . 20 2020 Hemp Inspection Annual Report . 21 2020 Hemp Rule-making . 21 Table 1: ODA Hemp Violations . 23 Hemp Testing . .24 INSECT PEST PREVENTION & MANAGEMENT—25 A Year of Personnel Changes-Retirements-Promotions High-Tech Sites Survey . .33 . 26 Early Detection and Rapid Response for Exotic Bark Retirements . 27 and Ambrosia Beetles . 33 My Unexpected Career With ODA . .28 Xyleborus monographus Early Detection and Rapid Response (EDRR) Trapping . 34 2020 Program Notes . .29 Outreach and Education . 29 Granulate Ambrosia Beetle and Other Wood Boring Insects Associated with Creosoting Plants . 34 New Detections . .29 Japanese Beetle Program . .29 Apple Maggot Program . .35 Exotic Fruit Fly Survey . .35 2018 Program Highlights . .29 Japanese Beetle Eradication . .30 Grasshopper and Mormon Cricket Program . .35 Grasshopper Outbreak Response – Harney County . -
Populus Tremuloides Mortality Near the Southwestern Edge of Its Range ⇑ Thomas J
Forest Ecology and Management 282 (2012) 196–207 Contents lists available at SciVerse ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Populus tremuloides mortality near the southwestern edge of its range ⇑ Thomas J. Zegler a, , Margaret M. Moore a, Mary L. Fairweather b, Kathryn B. Ireland a, Peter Z. Fulé a a School of Forestry, Northern Arizona University, Flagstaff, AZ 86011, USA b USDA Forest Service, Arizona Zone of Forest Health Protection, Flagstaff, AZ 86011, USA article info abstract Article history: Mortality and crown dieback of quaking aspen (Populus tremuloides) were extensive on the Williams Ran- Received 3 May 2012 ger District, Kaibab National Forest in northern Arizona. We collected data from a random sample of 48 Received in revised form 5 July 2012 aspen sites to determine the relationship of predisposing site and stand factors and contributing agents to Accepted 5 July 2012 ramet mortality. Mortality of overstory (P10.1 cm DBH) aspen stems averaged 50% (44% by basal area). Pine–oak type aspen stands suffered greater basal area mortality (57%) than stands in mixed conifer type (38%). An average of 48% of live overstory aspen stems had >33% crown dieback, and mortality signifi- Keywords: cantly increased with increasing crown dieback. Based upon univariate relationships, elevation was the Quaking aspen most significant site factor and relative conifer basal area was the most significant stand factor related Decline Conifer encroachment to overstory mortality. Canker diseases and wood-boring insects were significantly related to overstory Canker disease mortality. Sapling (P5.1–10.1 cm DBH) and tall regeneration (<5.1 cm DBH) aspen mortality were high Wood-boring insect (>80% and 70%, respectively), while short regeneration (<1.37 m tall) mortality was low (16%). -
Continued Eastward Spread of the Invasive Ambrosia Beetle Cyclorhipidion Bodoanum (Reitter, 1913) in Europe and Its Distribution in the World
BioInvasions Records (2021) Volume 10, Issue 1: 65–73 CORRECTED PROOF Rapid Communication Continued eastward spread of the invasive ambrosia beetle Cyclorhipidion bodoanum (Reitter, 1913) in Europe and its distribution in the world Tomáš Fiala1,*, Miloš Knížek2 and Jaroslav Holuša1 1Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic 2Forestry and Game Management Research Institute, Prague, Czech Republic *Corresponding author E-mail: [email protected] Citation: Fiala T, Knížek M, Holuša J (2021) Continued eastward spread of the Abstract invasive ambrosia beetle Cyclorhipidion bodoanum (Reitter, 1913) in Europe and its Ambrosia beetles, including Cyclorhipidion bodoanum, are frequently introduced into distribution in the world. BioInvasions new areas through the international trade of wood and wood products. Cyclorhipidion Records 10(1): 65–73, https://doi.org/10. bodoanum is native to eastern Siberia, the Korean Peninsula, Northeast China, 3391/bir.2021.10.1.08 Southeast Asia, and Japan but has been introduced into North America, and Europe. Received: 4 August 2020 In Europe, it was first discovered in 1960 in Alsace, France, from where it has slowly Accepted: 19 October 2020 spread to the north, southeast, and east. In 2020, C. bodoanum was captured in an Published: 5 January 2021 ethanol-baited insect trap in the Bohemian Massif in the western Czech Republic. The locality is covered by a forest of well-spaced oak trees of various ages, a typical Handling editor: Laura Garzoli habitat for this beetle. The capture of C. bodoanum in the Bohemian Massif, which Thematic editor: Angeliki Martinou is geographically isolated from the rest of Central Europe, confirms that the species Copyright: © Fiala et al. -
Patterns of Coevolution Between Ambrosia Beetle Mycangia and the Ceratocystidaceae, with Five New Fungal Genera and Seven New Species
Persoonia 44, 2020: 41–66 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2020.44.02 Patterns of coevolution between ambrosia beetle mycangia and the Ceratocystidaceae, with five new fungal genera and seven new species C.G. Mayers1, T.C. Harrington1, H. Masuya2, B.H. Jordal 3, D.L. McNew1, H.-H. Shih4, F. Roets5, G.J. Kietzka5 Key words Abstract Ambrosia beetles farm specialised fungi in sapwood tunnels and use pocket-like organs called my- cangia to carry propagules of the fungal cultivars. Ambrosia fungi selectively grow in mycangia, which is central 14 new taxa to the symbiosis, but the history of coevolution between fungal cultivars and mycangia is poorly understood. The Microascales fungal family Ceratocystidaceae previously included three ambrosial genera (Ambrosiella, Meredithiella, and Phia Scolytinae lophoropsis), each farmed by one of three distantly related tribes of ambrosia beetles with unique and relatively symbiosis large mycangium types. Studies on the phylogenetic relationships and evolutionary histories of these three genera two new typifications were expanded with the previously unstudied ambrosia fungi associated with a fourth mycangium type, that of the tribe Scolytoplatypodini. Using ITS rDNA barcoding and a concatenated dataset of six loci (28S rDNA, 18S rDNA, tef1-α, tub, mcm7, and rpl1), a comprehensive phylogeny of the family Ceratocystidaceae was developed, including Inodoromyces interjectus gen. & sp. nov., a non-ambrosial species that is closely related to the family. Three minor morphological variants of the pronotal disk mycangium of the Scolytoplatypodini were associated with ambrosia fungi in three respective clades of Ceratocystidaceae: Wolfgangiella gen. -
Coleoptera, Curculionidae: Scolytinae)
Zootaxa 4722 (6): 540–554 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.6.2 http://zoobank.org/urn:lsid:zoobank.org:pub:4ADBCE90-97D2-4A34-BCDC-5E207D8EDF0D Two new genera of Oriental xyleborine ambrosia beetles (Coleoptera, Curculionidae: Scolytinae) ANTHONY I. COGNATO1,3, SARAH M. SMITH1 & ROGER A. BEAVER2 1Michigan State University, Department of Entomology, 288 Farm Lane, room 243, East Lansing, MI 48824, USA. 2161/2 Mu 5, Soi Wat Pranon, T. Donkaew, A. Maerim, Chiangmai 50180, Thailand. 3Corresponding author. E-mail: [email protected] Abstract As part of an ongoing revision of the Southeast Asian fauna two distinct species groups were identified and hypothesized as new genera. These species groups were monophyletic as evidenced by a Bayesian analysis of DNA sequences from four genes for 181 xyleborine taxa augmented by 18 species newly included in this phylogenetic analysis. The species groups and newly discovered species demonstrated unique combinations of diagnostic characters and levels of DNA sequence difference commensurable to other xyleborine taxa. Hence, two new genera and three new species were described: Fraudatrix gen. n., Tricosa gen. n., Tricosa cattienensis sp. n., T. indochinensis sp. n., T. jacula sp. n.. The following new combinations are proposed: Fraudatrix cuneiformis (Schedl, 1958) (Xyleborus) comb. n., Fraudatrix melas (Eggers, 1927) comb. n., F. pileatula (Schedl, 1975) (Xyleborus) comb. n., F. simplex (Browne, 1949), (Cryptoxyleborus) comb. n., Tricosa mangoensis (Schedl, 1942) (Xyleborus) comb. n., T. metacuneola (Eggers, 1940) (Xyleborus) comb. n. -
Boring Beetles (Coleoptera: Scolytidae, Buprestidae, Cerambycidae) in White Spruce (Picea Glauca (Moench) Voss) Ecosystems of Alaska
United States Department of Agriculture Effect of Ecosystem Disturbance Forest Service on Diversity of Bark and Wood- Pacific Northwest Research Station Boring Beetles (Coleoptera: Research Paper PNW-RP-546 April 2002 Scolytidae, Buprestidae, Cerambycidae) in White Spruce (Picea glauca (Moench) Voss) Ecosystems of Alaska Richard A. Werner This publication reports research involving pesticides. It does not contain recommenda- tions for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate state and federal agencies, or both, before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife—if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. Author Richard A. Werner was a research entomologist (retired), Pacific Northwest Research Station, 8080 NW Ridgewood Drive, Corvallis, OR 97330. He is currently a volunteer at the Pacific Northwest Research Station conducting research for the Long Term Ecological Research Program in Alaska. Abstract Werner, Richard A. 2002. Effect of ecosystem disturbance on diversity of bark and wood-boring beetles (Coleoptera: Scolytidae, Buprestidae, Cerambycidae) in white spruce (Picea glauca (Moench) Voss) ecosystems of Alaska. Res. Pap. PNW-RP-546. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 15 p. Fire and timber harvest are the two major disturbances that alter forest ecosystems in interior Alaska. Both types of disturbance provide habitats that attract wood borers and bark beetles the first year after the disturbance, but populations then decrease to levels below those in undisturbed sites. -
Bark Beetles and Pinhole Borers Recently Or Newly Introduced to France (Coleoptera: Curculionidae, Scolytinae and Platypodinae)
Zootaxa 4877 (1): 051–074 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4877.1.2 http://zoobank.org/urn:lsid:zoobank.org:pub:3CABEE0D-D1D2-4150-983C-8F8FE2438953 Bark beetles and pinhole borers recently or newly introduced to France (Coleoptera: Curculionidae, Scolytinae and Platypodinae) THOMAS BARNOUIN1*, FABIEN SOLDATI1,7, ALAIN ROQUES2, MASSIMO FACCOLI3, LAWRENCE R. KIRKENDALL4, RAPHAËLLE MOUTTET5, JEAN-BAPTISTE DAUBREE6 & THIERRY NOBLECOURT1,8 1Office national des forêts, Laboratoire national d’entomologie forestière, 2 rue Charles Péguy, 11500 Quillan, France. 7 https://orcid.org/0000-0001-9697-3787 8 https://orcid.org/0000-0002-9248-9012 2URZF- Zoologie Forestière, INRAE, 2163 Avenue de la Pomme de Pin, 45075, Orléans, France. �[email protected]; https://orcid.org/0000-0002-3734-3918 3Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell’Università, 16, 35020 Legnaro, Italy. �[email protected]; https://orcid.org/0000-0002-9355-0516 4Department of Biology, University of Bergen, P.O. Box 7803, N-5006 Bergen, Norway. �[email protected]; https://orcid.org/0000-0002-7335-6441 5ANSES, Laboratoire de la Santé des Végétaux, 755 avenue du Campus Agropolis, CS 30016, 34988 Montferrier-sur-Lez cedex, France. �[email protected]; https://orcid.org/0000-0003-4676-3364 6Pôle Sud-Est de la Santé des Forêts, DRAAF SRAL PACA, BP 95, 84141 Montfavet cedex, France. �[email protected]; https://orcid.org/0000-0002-5383-3984 *Corresponding author: �[email protected]; https://orcid.org/0000-0002-1194-3667 Abstract We present an annotated list of 11 Scolytinae and Platypodinae species newly or recently introduced to France. -
Co-Adaptations Between Ceratocystidaceae Ambrosia Fungi and the Mycangia of Their Associated Ambrosia Beetles
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2018 Co-adaptations between Ceratocystidaceae ambrosia fungi and the mycangia of their associated ambrosia beetles Chase Gabriel Mayers Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Biodiversity Commons, Biology Commons, Developmental Biology Commons, and the Evolution Commons Recommended Citation Mayers, Chase Gabriel, "Co-adaptations between Ceratocystidaceae ambrosia fungi and the mycangia of their associated ambrosia beetles" (2018). Graduate Theses and Dissertations. 16731. https://lib.dr.iastate.edu/etd/16731 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Co-adaptations between Ceratocystidaceae ambrosia fungi and the mycangia of their associated ambrosia beetles by Chase Gabriel Mayers A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Microbiology Program of Study Committee: Thomas C. Harrington, Major Professor Mark L. Gleason Larry J. Halverson Dennis V. Lavrov John D. Nason The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2018 Copyright © Chase Gabriel Mayers, 2018. -
The Bark and Ambrosia Beetles (Coleoptera: Curculionidae: Scolytinae and Platypodinae) of American Samoa
Zootaxa 4808 (1): 171–195 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4808.1.11 http://zoobank.org/urn:lsid:zoobank.org:pub:9BE4A28B-EC09-4526-99E6-8F1F716A6F24 The bark and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae and Platypodinae) of American Samoa ROBERT J. RABAGLIA1,*, ROGER A. BEAVER2, ANDREW J. JOHNSON3, MARK A. SCHMAEDICK4 & SARAH M. SMITH5 1USDA Forest Service, Forest Health Protection, Washington DC, 20250, U.S.A. �[email protected]; https://orcid.org/0000-0001-8591-5338 2161/2 Mu 5, Soi Wat Pranon, T. Donkaew, A. Maerim, Chiangmai 50180, Thailand. �[email protected]; https://orcid.org/0000-0003-1932-3208 3School of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32611, USA. �[email protected]; https://orcid.org/0000-0003-3139-2257 4American Samoa Community College, Pago Pago, 96799, American Samoa, �[email protected]; https://orcid.org/0000-0002-1629-8556 5Department of Entomology, Michigan State University, East Lansing, Michigan, 48824, U.S.A. �[email protected]; https://orcid.org/0000-0002-5173-3736 *Corresponding author Abstract A survey of five of the islands of American Samoa was conducted from 2016–2018 utilizing multi-funnel traps baited with ethanol and quercivorol (attractants for xyleborine ambrosia beetles). Specimens of Scolytinae and Platypodinae from this survey, as well as specimens in the American Samoa Community College Collection were identified. A total of 53 species of Scolytinae and two species of Platypodinae are reported. Fourteen species of Scolytinae and one species of Platypodinae are reported as new to American Samoa.