2019 Annual Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Natural Cures and Complex Technologies PVAMU Microbiologist Raul Cuero’S Latest Target: Skin Cancer
Excellence in education, research and service FEBRUARY 2010 VOL. 2, ISSUE 1 Natural Cures and Complex Technologies PVAMU Microbiologist Raul Cuero’s Latest Target: Skin Cancer By Bryce Hairston Kennard The hard streets of Buenaventura, Colombia, didn’t provide Raul Cuero with the usual range of toys available to children from more prosperous families—but there were plenty of lizards, cockroaches and insects. Humble as those amusements were, they ignited a lifelong interest in biology and NEW DISCOVERIES Dr. Theresa Fossum (left) and Dr. Matthew Miller review images in the cardiac nature that led to extensive research with Martian soil, plant catheterization laboratory at the new TIPS facility in College Station. organisms and cancer. If you have heard of Cuero recently, it is likely in connection with developing a breakthrough discovery in the labs at Prairie View A&M University that could lead to the prevention of skin cancer in humans and animals. Aided by funding from NASA, the professor of microbiology Building TIPS for Texas in the College of Agriculture and Human Sciences is seeking a patent for a natural compound that blocks cancer-inducing How Terry Fossum Advanced Texas A&M’s Leadership in Biotech Innovation ultra-violet radiation. He describes the discovery as a way to help researchers and scientists “elucidate an important scientific By Melissa Chessher quest about the way organisms were able to survive at the beginning of earth, when there was a great UV presence in the Terry Fossum’s journey to create the Texas A&M Institute for Preclinical Studies began in 1997 during a atmosphere. -
Douglas Dean Osheroff Papers
http://oac.cdlib.org/findaid/ark:/13030/c8v40ww2 No online items Guide to the Douglas Dean Osheroff Papers Daniel Hartwig Stanford University. Libraries.Department of Special Collections and University Archives Stanford, California November 2013 Copyright © 2015 The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Guide to the Douglas Dean SC1181 1 Osheroff Papers Overview Call Number: SC1181 Creator: Osheroff, Douglas D. Title: Douglas Dean Osheroff papers Dates: 1969-2003 Physical Description: 5 Linear feet Summary: Laboratory notebooks. Language(s): The materials are in English. Repository: Department of Special Collections and University Archives Green Library 557 Escondido Mall Stanford, CA 94305-6064 Email: [email protected] Phone: (650) 725-1022 URL: http://library.stanford.edu/spc Information about Access The materials are open for research use. Audio-visual materials are not available in original format, and must be reformatted to a digital use copy. Ownership & Copyright All requests to reproduce, publish, quote from, or otherwise use collection materials must be submitted in writing to the Head of Special Collections and University Archives, Stanford University Libraries, Stanford, California 94305-6064. Consent is given on behalf of Special Collections as the owner of the physical items and is not intended to include or imply permission from the copyright owner. Such permission must be obtained from the copyright owner, heir(s) or assigns. See: http://library.stanford.edu/spc/using-collections/permission-publish. Restrictions also apply to digital representations of the original materials. Use of digital files is restricted to research and educational purposes. Cite As [identification of item], Douglas D. -
Chicago Section American Chemical
http://chicagoacs.org NOVEMBER • 2008 CHICAGO SECTION AMERICAN CHEMICAL SOCIETY Joint Meeting of the University of Chicago Department of Chemistry and the Chicago Section ACS WEDNESDAY, NOVEMBER 19, 2008 The Parthenon Restaurant Vegetarian Spinach-Cheese Pie, Vege- PRESENTATION OF STIEGLITZ 314 South Halsted Street tarian Pastitsio (Macaroni baked with LECTURE 8:00 P.M. Chicago, IL broccoli, Bechamel sauce and Kefalotiri), 312-726-2407 Dolmades (vine leaves stuffed with rice, meats and herbs), Rotisserie-roasted DIRECTIONS TO THE MEETING lamb served with rice pilaf and roasted potatoes. Desserts: Baklava (flaky layers From Kennedy (I-90) or Edens (I-94): of Phyllo baked with nuts and honey) Drive downtown and exit at Adams and Galaktobouriko (flaky layers of Phyl- Street. Turn right to Halsted. Turn left at lo with vanilla custard and baked with Halsted. Restaurant is approximately syrup. Beverages, bread and butter. 1.5 blocks on the west side of the street. The cost is $30 to Section members who From Eisenhower (I-290): Drive east have paid their local section dues, mem- to Chicago. Exit at Racine and turn left. bers' families, and visiting ACS members. Go to Jackson Boulevard and turn right. The cost to members who have NOT Take Jackson to Halsted. Turn right at paid their local section dues and to non- Halsted. Restaurant is approximately Section members is $32. The cost to stu- 1/2 block on the west side of the street. dents and unemployed members is $15. Seating will be available for those who PARKING: Free valet parking. Parking wish to attend the meeting without dinner. -
The Second-Order Correction to the Energy and Momentum in Plane Symmetric Gravitational Waves Like Spacetimes
S S symmetry Article The Second-Order Correction to the Energy and Momentum in Plane Symmetric Gravitational Waves Like Spacetimes Mutahir Ali *, Farhad Ali , Abdus Saboor, M. Saad Ghafar and Amir Sultan Khan Department of Mathematics, Kohat University of Science and Technology, Kohat 26000, Pakistan; [email protected] (F.A.); [email protected] (A.S.); [email protected] (M.S.G.); [email protected] (A.S.K.) * Correspondence: [email protected] Received: 5 December 2018; Accepted: 22 January 2019; Published: 13 February 2019 Abstract: This research provides second-order approximate Noether symmetries of geodetic Lagrangian of time-conformal plane symmetric spacetime. A time-conformal factor is of the form ee f (t) which perturbs the plane symmetric static spacetime, where e is small a positive parameter that produces perturbation in the spacetime. By considering the perturbation up to second-order in e in plane symmetric spacetime, we find the second order approximate Noether symmetries for the corresponding Lagrangian. Using Noether theorem, the corresponding second order approximate conservation laws are investigated for plane symmetric gravitational waves like spacetimes. This technique tells about the energy content of the gravitational waves. Keywords: Einstein field equations; time conformal spacetime; approximate conservation of energy 1. Introduction Gravitational waves are ripples in the fabric of space-time produced by some of the most violent and energetic processes like colliding black holes or closely orbiting black holes and neutron stars (binary pulsars). These waves travel with the speed of light and depend on their sources [1–5]. The study of these waves provide us useful information about their sources (black holes and neutron stars). -
Looking at Earth: an Astronaut's Journey Induction Ceremony 2017
american academy of arts & sciences winter 2018 www.amacad.org Bulletin vol. lxxi, no. 2 Induction Ceremony 2017 Class Speakers: Jane Mayer, Ursula Burns, James P. Allison, Heather K. Gerken, and Gerald Chan Annual David M. Rubenstein Lecture Looking at Earth: An Astronaut’s Journey David M. Rubenstein and Kathryn D. Sullivan ALSO: How Are Humans Different from Other Great Apes?–Ajit Varki, Pascal Gagneux, and Fred H. Gage Advancing Higher Education in America–Monica Lozano, Robert J. Birgeneau, Bob Jacobsen, and Michael S. McPherson Redistricting and Representation–Patti B. Saris, Gary King, Jamal Greene, and Moon Duchin noteworthy Select Prizes and Andrea Bertozzi (University of James R. Downing (St. Jude Chil- Barbara Grosz (Harvard Univer- California, Los Angeles) was se- dren’s Research Hospital) was sity) is the recipient of the Life- Awards to Members lected as a 2017 Simons Investi- awarded the 2017 E. Donnall time Achievement Award of the gator by the Simons Foundation. Thomas Lecture and Prize by the Association for Computational American Society of Hematology. Linguistics. Nobel Prize in Chemistry, Clara D. Bloomfield (Ohio State 2017 University) is the recipient of the Carol Dweck (Stanford Univer- Christopher Hacon (University 2017 Robert A. Kyle Award for sity) was awarded the inaugural of Utah) was awarded the Break- Joachim Frank (Columbia Univer- Outstanding Clinician-Scientist, Yidan Prize. through Prize in Mathematics. sity) presented by the Mayo Clinic Di- vision of Hematology. Felton Earls (Harvard Univer- Naomi Halas (Rice University) sity) is the recipient of the 2018 was awarded the 2018 Julius Ed- Nobel Prize in Economic Emmanuel J. -
Fabiola Gianotti
Fabiola Gianotti Date of Birth 29 October 1960 Place Rome, Italy Nomination 18 August 2020 Field Physics Title Director-General of the European Laboratory for Particle Physics, CERN, Geneva Most important awards, prizes and academies Honorary Professor, University of Edinburgh; Corresponding or foreign associate member of the Italian Academy of Sciences (Lincei), the National Academy of Sciences of the United States, the French Academy of Sciences, the Royal Society London, the Royal Academy of Sciences and Arts of Barcelona, the Royal Irish Academy and the Russian Academy of Sciences. Honorary doctoral degrees from: University of Uppsala (2012); Ecole Polytechnique Federale de Lausanne (2013); McGill University, Montreal (2014); University of Oslo (2014); University of Edinburgh (2015); University of Roma Tor Vergata (2017); University of Chicago (2018); University Federico II, Naples (2018); Université de Paris Sud, Orsay (2018); Université Savoie Mont Blanc, Annecy (2018); Weizmann Institute, Israel (2018); Imperial College, London (2019). National honours: Cavaliere di Gran Croce dell'Ordine al Merito della Repubblica, awarded by the Italian President Giorgio Napolitano (2014). Special Breakthrough Prize in Fundamental Physics (shared, 2013); Enrico Fermi Prize of the Italian Physical Society (shared, 2013); Medal of Honour of the Niels Bohr Institute, Copenhagen (2013); Wilhelm Exner Medal, Vienna (2017); Tate Medal of the American Institute of Physics for International Leadership (2019). Summary of scientific research Fabiola Gianotti is a particle physicist working at high-energy accelerators. In her scientific career, she has made significant contributions to several experiments at CERN, including UA2 at the proton-antiproton collider (SpbarpS), ALEPH at the Large Electron-Positron collider (LEP) and ATLAS at the Large Hadron Collider (LHC). -
2005 Annual Report American Physical Society
1 2005 Annual Report American Physical Society APS 20052 APS OFFICERS 2006 APS OFFICERS PRESIDENT: PRESIDENT: Marvin L. Cohen John J. Hopfield University of California, Berkeley Princeton University PRESIDENT ELECT: PRESIDENT ELECT: John N. Bahcall Leo P. Kadanoff Institue for Advanced Study, Princeton University of Chicago VICE PRESIDENT: VICE PRESIDENT: John J. Hopfield Arthur Bienenstock Princeton University Stanford University PAST PRESIDENT: PAST PRESIDENT: Helen R. Quinn Marvin L. Cohen Stanford University, (SLAC) University of California, Berkeley EXECUTIVE OFFICER: EXECUTIVE OFFICER: Judy R. Franz Judy R. Franz University of Alabama, Huntsville University of Alabama, Huntsville TREASURER: TREASURER: Thomas McIlrath Thomas McIlrath University of Maryland (Emeritus) University of Maryland (Emeritus) EDITOR-IN-CHIEF: EDITOR-IN-CHIEF: Martin Blume Martin Blume Brookhaven National Laboratory (Emeritus) Brookhaven National Laboratory (Emeritus) PHOTO CREDITS: Cover (l-r): 1Diffraction patterns of a GaN quantum dot particle—UCLA; Spring-8/Riken, Japan; Stanford Synchrotron Radiation Lab, SLAC & UC Davis, Phys. Rev. Lett. 95 085503 (2005) 2TESLA 9-cell 1.3 GHz SRF cavities from ACCEL Corp. in Germany for ILC. (Courtesy Fermilab Visual Media Service 3G0 detector studying strange quarks in the proton—Jefferson Lab 4Sections of a resistive magnet (Florida-Bitter magnet) from NHMFL at Talahassee LETTER FROM THE PRESIDENT APS IN 2005 3 2005 was a very special year for the physics community and the American Physical Society. Declared the World Year of Physics by the United Nations, the year provided a unique opportunity for the international physics community to reach out to the general public while celebrating the centennial of Einstein’s “miraculous year.” The year started with an international Launching Conference in Paris, France that brought together more than 500 students from around the world to interact with leading physicists. -
2018 March Meeting Program Guide
MARCHMEETING2018 LOS ANGELES MARCH 5-9 PROGRAM GUIDE #apsmarch aps.org/meetingapp aps.org/meetings/march Senior Editor: Arup Chakraborty Robert T. Haslam Professor of Chemical Engineering; Professor of Chemistry, Physics, and Institute for Medical Engineering and Science, MIT Now welcoming submissions in the Physics of Living Systems Submit your best work at elifesci.org/physics-living-systems Image: D. Bonazzi (CC BY 2.0) Led by Senior Editor Arup Chakraborty, this dedicated new section of the open-access journal eLife welcomes studies in which experimental, theoretical, and computational approaches rooted in the physical sciences are developed and/or applied to provide deep insights into the collective properties and function of multicomponent biological systems and processes. eLife publishes groundbreaking research in the life and biomedical sciences. All decisions are made by working scientists. WELCOME t is a pleasure to welcome you to Los Angeles and to the APS March I Meeting 2018. As has become a tradition, the March Meeting is a spectacular gathering of an enthusiastic group of scientists from diverse organizations and backgrounds who have broad interests in physics. This meeting provides us an opportunity to present exciting new work as well as to learn from others, and to meet up with colleagues and make new friends. While you are here, I encourage you to take every opportunity to experience the amazing science that envelops us at the meeting, and to enjoy the many additional professional and social gatherings offered. Additionally, this is a year for Strategic Planning for APS, when the membership will consider the evolving mission of APS and where we want to go as a society. -
Calorimetry for Particle Physics
REVIEWS OF MODERN PHYSICS, VOLUME 75, OCTOBER 2003 Calorimetry for particle physics Christian W. Fabjan and Fabiola Gianotti CERN, 1211 Geneva 23, Switzerland (Published 15 October 2003) Calorimetry has become a well-understood, powerful, and versatile measurement method. Besides perfecting this technique to match increasingly demanding operation at high-energy particle accelerators, physicists are developing low-temperature calorimeters to extend detection down to ever lower energies, and atmospheric and deep-sea calorimeters to scrutinize the universe up to the highest energies. The authors summarize the state of the art, with emphasis on the physics of the detectors and innovative technologies. CONTENTS VI. Citius, Altius, Fortius 1280 A. Introduction 1280 B. Atmospheric calorimeters 1280 I. Introduction 1243 1. Setting the energy scale 1283 II. Electromagnetic Calorimetry 1244 2. Energy resolution 1283 A. Physics of the electromagnetic cascade 1244 C. Deep-water calorimeters 1283 B. Energy resolution of electromagnetic VII. Conclusions 1284 calorimeters 1246 Acknowledgments 1284 1. Stochastic term 1247 References 1284 2. Noise term 1247 3. Constant term 1247 4. Additional contributions 1248 C. Main techniques and examples of facilities 1249 I. INTRODUCTION 1. Homogeneous calorimeters 1249 a. Semiconductor calorimeters 1249 Calorimetry is an ubiquitous detection principle in b. Cherenkov calorimeters 1250 particle physics. Originally invented for the study of c. Scintillation calorimeters 1251 cosmic-ray phenomena, this method was developed and d. Noble-liquid calorimeters 1254 perfected for accelerator-based particle physics experi- 2. Sampling calorimeters 1256 mentation primarily in order to measure the energy of a. Scintillation sampling calorimeters 1257 electrons, photons, and hadrons. Calorimeters are b. Gas sampling calorimeters 1257 blocks of instrumented material in which particles to be c. -
Cosmology After WMAP (5)
Cosmology After WMAP (5) DavidDavid SpergelSpergel Geneve June 2008 StandardStandard cosmologicalcosmological modelmodel StillStill FitsFits thethe DataData ! General Relativity + Uniform Universe Big Bang " Density of universe determines its fate + shape ! Universe is flat (total density = critical density) " Atoms 4% " Dark Matter 23% " Dark Energy (cosmological constant?) 72% ! Universe has tiny ripples " Adiabatic, scale invariant, Gaussian Fluctuations " Harrison-Zeldovich-Peebles " Inflationary models QuickQuick HistoryHistory ofof thethe UniverseUniverse " Universe starts out hot, dense and filled with radiation " As the universe expands, it cools. • During the first minutes, light elements form • After 500,000 years, atoms form • After 100,000,000 years, stars start to form • After 1 Billion years, galaxies and quasars ThermalThermal HistoryHistory ofof UniverseUniverse radiation matter NEUTRAL r IONIZED 104 103 z GrowthGrowth ofof FluctuationsFluctuations •Linear theory •Basic elements have been understood for 30 years (Peebles, Sunyaev & Zeldovich) •Numerical codes agree at better than 0.1% (Seljak et al. 2003) Sunyaev & Zeldovich CMBCMB OverviewOverview ! We can detect both CMB temperature and polarization fluctuations ! Polarization Fluctuations can be decomposed into E and B modes q ~180/l ADIABATIC DENSITY FLUCTUATIONS ISOCURVATURE ENTROPY FLUCTUATIONS DeterminingDetermining BasicBasic ParametersParameters Baryon Density 2 Wbh = 0.015,0.017..0.031 also measured through D/H DeterminingDetermining BasicBasic ParametersParameters -
Science & ROGER PENROSE
Science & ROGER PENROSE Live Webinar - hosted by the Center for Consciousness Studies August 3 – 6, 2021 9:00 am – 12:30 pm (MST-Arizona) each day 4 Online Live Sessions DAY 1 Tuesday August 3, 2021 9:00 am to 12:30 pm MST-Arizona Overview / Black Holes SIR ROGER PENROSE (Nobel Laureate) Oxford University, UK Tuesday August 3, 2021 9:00 am – 10:30 am MST-Arizona Roger Penrose was born, August 8, 1931 in Colchester Essex UK. He earned a 1st class mathematics degree at University College London; a PhD at Cambridge UK, and became assistant lecturer, Bedford College London, Research Fellow St John’s College, Cambridge (now Honorary Fellow), a post-doc at King’s College London, NATO Fellow at Princeton, Syracuse, and Cornell Universities, USA. He also served a 1-year appointment at University of Texas, became a Reader then full Professor at Birkbeck College, London, and Rouse Ball Professor of Mathematics, Oxford University (during which he served several 1/2-year periods as Mathematics Professor at Rice University, Houston, Texas). He is now Emeritus Rouse Ball Professor, Fellow, Wadham College, Oxford (now Emeritus Fellow). He has received many awards and honorary degrees, including knighthood, Fellow of the Royal Society and of the US National Academy of Sciences, the De Morgan Medal of London Mathematical Society, the Copley Medal of the Royal Society, the Wolf Prize in mathematics (shared with Stephen Hawking), the Pomeranchuk Prize (Moscow), and one half of the 2020 Nobel Prize in Physics, the other half shared by Reinhard Genzel and Andrea Ghez. -
Educationinnovation2015.Pdf
Edited by: Michael Thoennessen, Michigan State University, and Graham Peaslee, Hope College Layout and design: Erin O’Donnell, NSCL, Michigan State University Front cover: Photograph of lead-tungstate scintillator crystals in a support frame for the Primakoff Experiment (PrimEx) in Hall B at Jefferson Lab. Preamble 3 1 Executive Summary 5 2 Education and Workforce 9 2.1 Workforce Development 9 2.2 Graduate and Postgraduate Education 19 2.3 Undergraduate Education 27 2.4 Outreach and K12 37 3 Innovation 43 3.1 Defense and Security 46 3.2 Energy and Climate 49 3.3 Health and Medicine 54 3.4 Art, Forensic, and other Applications 61 Appendix A: Town Meeting Program 72 Appendix B: Town Meeting Attendees 76 Appendix C: Presentation Abstracts 78 Appendix D: Examples of Outreach Activities 135 Ed Hartouni (Lawrence Livermore National Laboratory) Anna Hayes (Los Alamos National Laboratory) Calvin Howell (Duke University) Cynthia Keppel (Jefferson Lab) Micha Kilburn (University of Notre Dame) Amy McCausey (Michigan State University, conference coordinator) Graham Peaslee (Hope College, co-convener) David Robertson (University of Missouri) Gunther Roland (Massachusetts Institute of Technology) Mike Snow (Indiana University) Michael Thoennessen (Michigan State University, co-convener) The town meeting was supported by the Division of Nuclear Physics and the National Superconducting Cyclotron Laboratory. We would like to thank Kandice Carter, Jolie Cizewski, Micha Kilburn, Peggy Norris, Erich Ormand, and Warren Rogers for suggestions, proof reading, data compilation, collecting the examples of outreach activities. The DNP NSAC Long Range Plan Town Meeting on Education and Innovation was held August 6–8, 2014 on the campus of Michigan State University in East Lansing, MI.