Outbreak Densities of the Coral Predator Drupella in Relation to in Situ Acropora Growth Rates on Ningaloo Reef, Western Australia

Total Page:16

File Type:pdf, Size:1020Kb

Outbreak Densities of the Coral Predator Drupella in Relation to in Situ Acropora Growth Rates on Ningaloo Reef, Western Australia Outbreak densities of the coral predator Drupella in relation to in situ Acropora growth rates on Ningaloo Reef, Western Australia C. Bessey, R. C. Babcock, D. P. Thomson & M. D. E. Haywood Coral Reefs Journal of the International Society for Reef Studies ISSN 0722-4028 Coral Reefs DOI 10.1007/s00338-018-01748-7 1 23 Your article is protected by copyright and all rights are held exclusively by Springer- Verlag GmbH Germany, part of Springer Nature. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Coral Reefs https://doi.org/10.1007/s00338-018-01748-7 REPORT Outbreak densities of the coral predator Drupella in relation to in situ Acropora growth rates on Ningaloo Reef, Western Australia 1,2 2,3 1 3 C. Bessey • R. C. Babcock • D. P. Thomson • M. D. E. Haywood Received: 25 September 2017 / Accepted: 26 October 2018 Ó Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Outbreaks of coral predators are defined as maximum number of Drupella that could be sustained increases (often rapid) in their abundance above threshold across a range of coral cover. Our data suggest that the densities that can be sustained by local coral assemblages, outbreak density of Drupella at the average level of coral which in turn depends on the abundance and turnover of cover for back reef sites at Mandu reef (17.6 ± 13.7%) is coral prey. To investigate the outbreak densities of the approximately 0.95 individuals m-2 reef area. At the corallivorous gastropod Drupella cornus, we conducted maximum coral cover observed at Mandu reef (60%), the both in situ feeding and coral growth experiments at outbreak density of Drupella is estimated to be approxi- Mandu reef within the Ningaloo Marine Park, Western mately 2.83 individuals m-2 reef area. Establishing Dru- Australia. Over two 10-day periods, we tagged and pho- pella outbreak densities assists managers in predicting tographed feeding scars on colonies of the tabulate coral possible outbreak abundances and in monitoring coral reef Acropora spicifera that harboured Drupella feeding health. aggregations. We calculated a mean in situ Drupella con- sumption rate of 1.16 ± 1.1 cm2 coral area individual-1 - Keywords Ningaloo Marine Park Á Western Australia Á d-1. We also determined coral growth rates by tagging and Management Á Coral growth Á Consumption rate photographing 24 colonies of Acropora spicifera at time zero and then again 1 year later. We calculated a mean linear extension rate of 7.9 ± 3.7 cm yr-1 for actively Introduction growing Acropora spicifera, which we then used to esti- mate A. spicifera growth rates over a range of coral cover Drupella is a genus of marine gastropods (Family Muri- values. This combination allowed us to determine the cidae) that feeds almost exclusively on the living tissue of corals (Robertson 1970; Claremont et al. 2011). These generalist corallivores occur throughout the shallow waters Topic Editor Morgan S. Pratchett of the Indo-Pacific (Claremont et al. 2011). However, excessive densities (outbreaks) of corallivores can result in & C. Bessey dramatic and widespread decline in coral cover (Pratchett [email protected] et al. 2014; Babcock et al. 2016). Outbreaks are defined as 1 Oceans and Atmosphere, Commonwealth Scientific and increases (often rapid) in the abundance of coral predators Industrial Research Organization, 64 Fairway, Crawley, above threshold densities that can be sustained by local WA 6009, Australia coral assemblages, which in turn depend on the abundance 2 School of Plant Biology and the Oceans Institute, University and turnover of coral prey. of Western Australia, 64 Fairway, Crawley, WA 6009, Outbreaks of the coral predator Drupella are associated Australia with high coral mortality (Moyer et al. 1982; Fujioka and 3 Oceans and Atmosphere, Queensland Biosciences Precinct, Yamazato 1983; Ayling and Ayling 1987; Turner 1994; Commonwealth Scientific and Industrial Research Organization, 306 Carmody Rd, St Lucia, QLD 4072, Antonius and Reigl Antonius and Riegl 1997; Shafir and Australia Gur 2008; Cumming 2009a). In Japan, coral degradation 123 Author's personal copy Coral Reefs was associated with large aggregations of Drupella, where relate to field monitoring data of coral cover. Furthermore, densities of Drupella spp. (mainly D. fragum) reached 5.12 little is known about in situ Drupella feeding rates. individuals m-2 (Moyer et al. 1982; Fujioka and Yamazato Growth of the preferred prey of Drupella is another 1983). In the Red Sea, densities of D. cornus were more essential component in calculating the outbreak densities of than 200 individuals per 30-cm-diameter coral colony on Drupella that can be sustained by the coral community. multiple genera, resulting in 100% coral mortality at the The growth rates of acroporids, the preferred prey of study site; the southern end of a 150-m artificial limestone Drupella, can vary depending on growth form, species, and quay (Shafir and Gur 2008). Similarly, correlations local environment, as well as the method used to quantify between declining coral cover and increasing frequency of their growth (Pratchett et al. 2015; Drury et al. 2017). D. cornus had also been observed in the Red Sea by Obtaining a measure of growth requires direct quantifica- Antonius and Riegl (1997), who reported average densities tion of colony linear dimensions, area, volume, or weight, of up to 12.24 Drupella m-2 (Al-Moghrabi 1997). On taken at various time increments to calculate a time-aver- Ningaloo Reef, in Western Australia, D. cornus densities of aged rate of growth (Pratchett et al. 2015). Linear exten- up to 19.4 m-2 have been associated with a 75% reduction sion, measured as a change in colony radius over a year, is in coral cover (Ayling and Ayling 1987; Turner 1994). a common metric of coral growth. There are relatively few Corals form the basic reef structure that provides habitat studies of coral growth rates in Western Australia. Annual for a myriad of organisms, including economically linear extension rates for Acropora spicifera are reported as important, iconic, and endangered species. Understanding 12.4 ± 1.4 cm at Ningaloo Reef (western side of the North the densities of Drupella that can be sustained based on West Cape) and 10.5 ± 1.2 cm at Bundegi Reef, which is coral cover and growth is essential information required to located within the Exmouth Gulf on the eastern side of the help managers monitor and predict possible outbreak North West Cape (Stimson 1996). Annual coral growth abundances. ranged from 7.3 to 14.6 cm for the closely related species Drupella feeding rates are a key component in calcu- Acropora hyacinthus in the Dampier Archipelago (Simp- lating the outbreak densities of Drupella that can be sus- son 1988). Ideally this growth should be expressed as tained by a coral community. Although Drupella can projected surface area, since photographic monitoring of forage on a range of coral morphologies (branching, tab- coral typically uses percent cover (e.g. Speed et al. 2013). ulate, massive and encrusting) and genera (Acropora, While linear extension rates may be a more accurate rep- Astreopora, Fungia, Millepora, Montipora, Pavona, resentation of colony growth, these are difficult to deter- Pocillopora, Porites, Seriatopora, Stylophora, and mine outside of a controlled laboratory environment and Turbinaria) using a specialised radula for scraping (Fujioka are not typically used in large-scale monitoring and Yamazato 1983; Ayling 2000; Shafir and Gur 2008; programmes. Hoeksema et al. 2013), they display a strong preference for The goal of our study was to determine the outbreak the acroporids (mainly Acropora and Montipora; Boucher densities of Drupella that can be sustained by a coral 1986; Turner 1994; Cumming 1999; Schoepf et al. 2010; community, based on coral cover and growth, in order to Moerland et al. 2016). Drupella tend to create discrete help managers predict possible outbreak abundances. We feeding scars and feed at the interface between live and conducted our study in the Ningaloo Marine Park, Western dead corallites during both day and night (although pre- Australia, where previously reported Drupella outbreaks dominantly at night) and show an attraction to stressed or have been associated with substantial declines in coral damaged coral (Forde 1992; Turner 1994; Morton et al. cover (Turner 1994). The purpose of our study was to (1) 2002; Bruckner et al. 2017). Field experiments report D. determine the percent cover of Drupella prey (hard coral cornus moving more than 2 m overnight to aggregate on and preferred prey species Acropora spicifera), (2) deter- damaged coral, potentially detecting prey species through mine Drupella density, (3) determine in situ Drupella species-specific chemical substances (Kohn 1961; Turner feeding rates on A. spicifera, (4) measure in situ growth 1994; Kita et al. 2005). Aquarium experiments estimate D. rates of A. spicifera, and (5) develop estimates of the cornus feeding rates at 2.3 cm2 of coral individual-1 d-1, maximum sustainable density of Drupella for maintenance where the average-sized Drupella was 28–35 mm (Cum- of net coral growth over a range of coral cover, thereby ming 2009b) and coral tissue was measured as the total quantifying a Drupella outbreak density for Ningaloo Reef.
Recommended publications
  • Checklist of Marine Gastropods Around Tarapur Atomic Power Station (TAPS), West Coast of India Ambekar AA1*, Priti Kubal1, Sivaperumal P2 and Chandra Prakash1
    www.symbiosisonline.org Symbiosis www.symbiosisonlinepublishing.com ISSN Online: 2475-4706 Research Article International Journal of Marine Biology and Research Open Access Checklist of Marine Gastropods around Tarapur Atomic Power Station (TAPS), West Coast of India Ambekar AA1*, Priti Kubal1, Sivaperumal P2 and Chandra Prakash1 1ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri West, Mumbai - 400061 2Center for Environmental Nuclear Research, Directorate of Research SRM Institute of Science and Technology, Kattankulathur-603 203 Received: July 30, 2018; Accepted: August 10, 2018; Published: September 04, 2018 *Corresponding author: Ambekar AA, Senior Research Fellow, ICAR-Central Institute of Fisheries Education, Off Yari Road, Versova, Andheri West, Mumbai-400061, Maharashtra, India, E-mail: [email protected] The change in spatial scale often supposed to alter the Abstract The present study was carried out to assess the marine gastropods checklist around ecologically importance area of Tarapur atomic diversity pattern, in the sense that an increased in scale could power station intertidal area. In three tidal zone areas, quadrate provide more resources to species and that promote an increased sampling method was adopted and the intertidal marine gastropods arein diversity interlinks [9]. for Inthe case study of invertebratesof morphological the secondand ecological largest group on earth is Mollusc [7]. Intertidal molluscan communities parameters of water and sediments are also done. A total of 51 were collected and identified up to species level. Physico chemical convergence between geographically and temporally isolated family dominant it composed 20% followed by Neritidae (12%), intertidal gastropods species were identified; among them Muricidae communities [13].
    [Show full text]
  • Do Singapore's Seawalls Host Non-Native Marine Molluscs?
    Aquatic Invasions (2018) Volume 13, Issue 3: 365–378 DOI: https://doi.org/10.3391/ai.2018.13.3.05 Open Access © 2018 The Author(s). Journal compilation © 2018 REABIC Research Article Do Singapore’s seawalls host non-native marine molluscs? Wen Ting Tan1, Lynette H.L. Loke1, Darren C.J. Yeo2, Siong Kiat Tan3 and Peter A. Todd1,* 1Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Block S3, #02-05, Singapore 117543 2Freshwater & Invasion Biology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Block S3, #02-05, Singapore 117543 3Lee Kong Chian Natural History Museum, Faculty of Science, National University of Singapore, 2 Conservatory Drive, Singapore 117377 *Corresponding author E-mail: [email protected] Received: 9 March 2018 / Accepted: 8 August 2018 / Published online: 17 September 2018 Handling editor: Cynthia McKenzie Abstract Marine urbanization and the construction of artificial coastal structures such as seawalls have been implicated in the spread of non-native marine species for a variety of reasons, the most common being that seawalls provide unoccupied niches for alien colonisation. If urbanisation is accompanied by a concomitant increase in shipping then this may also be a factor, i.e. increased propagule pressure of non-native species due to translocation beyond their native range via the hulls of ships and/or in ballast water. Singapore is potentially highly vulnerable to invasion by non-native marine species as its coastline comprises over 60% seawall and it is one of the world’s busiest ports. The aim of this study is to investigate the native, non-native, and cryptogenic molluscs found on Singapore’s seawalls.
    [Show full text]
  • Assessing Population Collapse of Drupella Spp. (Mollusca: Gastropoda) 2 Years After a Coral Bleaching Event in the Republic of Maldives
    Hydrobiologia https://doi.org/10.1007/s10750-021-04546-5 (0123456789().,-volV)( 0123456789().,-volV) PRIMARY RESEARCH PAPER Assessing population collapse of Drupella spp. (Mollusca: Gastropoda) 2 years after a coral bleaching event in the Republic of Maldives L. Saponari . I. Dehnert . P. Galli . S. Montano Received: 4 March 2020 / Revised: 14 December 2020 / Accepted: 4 February 2021 Ó The Author(s) 2021 Abstract Corallivory causes considerable damage with higher coral cover. The impact of Drupella spp. to coral reefs and can exacerbate other disturbances. appeared to be minimal with the population suffering Among coral predators, Drupella spp. are considered from the loss of coral cover. We suggest that as delayer of coral recovery in the Republic of monitoring programs collect temporal- and spatial- Maldives, although little information is available on scale data on non-outbreaking populations or non- their ecology. Thus, we aimed to assess their popula- aggregating populations to understand the dynamics of tion structure, feeding behaviour and spatial distribu- predation related to the co-occurrence of anthro- tion around 2 years after a coral bleaching event in pogenic and natural impacts. 2016. Biological and environmental data were col- lected using belt and line intercept transects in six Keywords Corallivory Á Coral Á Coral bleaching Á shallow reefs in Maldives. The snails occurred in Coral recovery Á Predation Á Acropora Á Pocillopora aggregations with a maximum of 62 individuals and exhibited a preference for branching corals. Yet, the gastropods showed a high plasticity in adapting feeding preferences to prey availability. Drupella Introduction spp. were homogenously distributed in the study area with an average of 9.04 ± 19.72 ind/200 m2.
    [Show full text]
  • Unavailable Sequences Are Indicated with Dashes
    SUPPLEMENTARY MATERIAL Table S1. List of samples sequenced in this study. Not all genes are available for each specimen; unavailable sequences are indicated with dashes. Generic assignments are based on our revised classification; uncertain assignments are indicated by single quotation marks. Type species of valid genera are in bold. Voucher locations: Natural History Museum, London (NHMUK); Australian Museum, Sydney (AM); Western Australian Museum, Perth (WAM); Florida Museum of Natural History, Gainesville (UF); University of Costa Rica (UCR); Universidad Nacional Autónoma de México (CNMO); ‘La Sapienza’ University of Rome (BAU); Muséum Nationale d’Histoire Naturelle, Paris (MNHN). Accession numbers beginning with EU were published by Claremont et al. (2008); accession numbers beginning with FN were published by Barco et al. (2010); accession numbers beginning with FR were published by Claremont et al. (2011). Species Locality Voucher 12S 28S 16S COI Rapaninae (outgroup) Concholepas Chile: Isla Rojas, Region NHMUK FN677398 EU391554 FN677453 EU391581 concholepas XI 19990303 (Bruguière, 1789) Dicathais orbita Australia: Tasmania AM C458269 FN677395 FN677459 FN677450 EU391573 (Gmelin, 1791) Mancinella intermedia Mozambique: Cabo NHMUK FN677384 EU391543 FN677434 EU391574 (Kiener, 1835) Delgado Prov. 20060440 Rapana bezoar Japan: Kochi Pref. NHMUK FN677376 FN677476 FN677438 FN677421 (Linnaeus, 1767) 20080038 Thais nodosa Ghana: Matrakni Point NHMUK FN677373 EU391566 FN677425 EU391579 (Linnaeus, 1758) 20070652 Thalessa aculeata New Caledonia: Touho NHMUK FN677374 FN677477 FN677426 FN677422 (Deshayes, 1844) 20070631 Ergalataxinae Kuroda & Habe, 1971 Trachypollia lugubris Costa Rica: Puntarenas UCR 7797 HE583773 HE583860 HE583924 HE584011 (C.B. Adams, 1852) Trachypollia lugubris Panama BAU 00248 HE583774 HE583861 HE583925 HE584012 (C.B. Adams, 1852) CLADE A ‘Morula’ anaxares Mozambique: Cabo NHMUK HE583775 EU391541 HE583926 EU391584 (Kiener, 1836) Delgado Prov.
    [Show full text]
  • 128 Freiberg, 2012 Protoconch Characters of Late Cretaceous
    Freiberger Forschungshefte, C 542 psf (20) 93 – 128 Freiberg, 2012 Protoconch characters of Late Cretaceous Latrogastropoda (Neogastropoda and Neomesogastropoda) as an aid in the reconstruction of the phylogeny of the Neogastropoda by Klaus Bandel, Hamburg & David T. Dockery III, Jackson with 5 plates BANDEL, K. & DOCKERY, D.T. III (2012): Protoconch characters of Late Cretaceous Latrogastropoda (Neogastropoda and Neomesogastropoda) as an aid in the reconstruction of the phylogeny of the Neogastropoda. Paläontologie, Stratigraphie, Fazies (20), Freiberger Forschungshefte, C 542: 93–128; Freiberg. Keywords: Latrogastropoda, Neogastropoda, Neomesogastropoda, Cretaceous. Addresses: Prof. Dr. Klaus Bandel, Universitat Hamburg, Geologisch Paläontologisches Institut und Museum, Bundesstrasse 55, D-20146 Hamburg, email: [email protected]; David T. Dockery III, Mississippi Department of Environmental Quality, Office of Geology, P.O. Box 20307, 39289-1307 Jackson, MS, 39289- 1307, U.S.A., email: [email protected]. Contents: Abstract Zusammenfassung 1 Introduction 2 Palaeontology 3 Discussion 3.1 Characters of protoconch morphology among Muricoidea 3.2 Characteristics of the protoconch of Buccinidae, Nassariidae, Columbellinidae and Mitridae 3.3 Characteristics of the protoconch morphology among Toxoglossa References Abstract Late Cretaceous Naticidae, Cypraeidae and Calyptraeidae can be recognized by the shape of their teleoconch, as well as by their characteristic protoconch morphology. The stem group from which the Latrogastropoda originated lived during or shortly before Aptian/Albian time (100–125 Ma). Several groups of Latrogastropoda that lived at the time of deposition of the Campanian to Maastrichtian (65–83 Ma) Ripley Formation have no recognized living counterparts. These Late Cretaceous species include the Sarganoidea, with the families Sarganidae, Weeksiidae and Moreidae, which have a rounded and low protoconch with a large embryonic whorl.
    [Show full text]
  • Coral-Eating Snail Drupella Cornus Population Increases in Kenyan Coral Reef Lagoons
    MARINE ECOLOGY PROGRESS SERIES Published December 1 Mar. Ecol. Prog. Ser. Coral-eating snail Drupella cornus population increases in Kenyan coral reef lagoons T. R. McClanahan The Wildlife Conservation Society, Coral Reef Conservation Project, PO Box 99470, Mombasa, Kenya ABSTRACT: Data from a study of corallivorous snails in 8 Kenyan coral-reef lagoons sampled at 3 time intervals over a 6 yr period suggest that Drupella cornus populations have increased on Kenyan reefs. This increase was greatest in heavily fished reefs and a transition reef (converted to a park in about 1990) but less pronounced in the unfished parks and a reserve (restricted fishing). The abundance of corallivorous snails was better predicted by the abundance of their predators than the abundance of their coral food. The 2 most abundant species, Coralhophjla violacaea and D. cornus, were associated with the coral genus Porites although D. cornus was found on a wider variety of coral genera than C. violacea. D. cornus was most abundant on fished reefs with the exception of l reef where C. violacea was dominant and persisted at high population densities over the study period. Observed population increases in Kenya and western Australia may be due to oceanic conditions which improved D. cornus recruitment success during the late 1980s. KEY WORDS: Fishing . Marine protected areas. Population dynamics . Prosobranch snails INTRODUCTION Corallivorous snails such as Drupella cornus (syn- onymous with Morula or Drupella elata; Spry 1961, Benthic invertebrates such as coral-eating starfish Wilson 1992), Coralliophila vjolacea (= C. neritoidea; (Moran 1986), prosobranch snails (Moyer et al. 1982, Abbott & Dance 1986) and other members of the 1985, Turner 1992a), and sea urchins (Lessios et al.
    [Show full text]
  • Population Outbreaks and Large Aggregations of Drupella on the Great Barrier Reef
    RESEARCH PUBLICATION NO. 96 Population outbreaks and large aggregations of Drupella on the Great Barrier Reef R.L. Cumming RESEARCH PUBLICATION NO. 96 Population outbreaks and large aggregations of Drupella on the Great Barrier Reef R.L. Cumming Liquiddity Environmental Consulting Cairns QLD 4879 PO Box 1379 Townsville QLD 4810 Telephone: (07) 4750 0700 Fax: (07) 4772 6093 Email: [email protected] www.gbrmpa.gov.au © Commonwealth of Australia 2009 Published by the Great Barrier Reef Marine Park Authority ISBN 978 1 876945 87 9 (pdf) This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without the prior written permission of the Great Barrier Reef Marine Park Authority. The National Library of Australia Cataloguing-in-Publication entry : Cumming, R. L. Population outbreaks and large aggregations of drupella on the Great Barrier Reef [electronic resource] / R. L. Cumming. ISBN 978 1 876945 87 9 (pdf) Research publication (Great Barrier Reef Marine Park Authority. Online) ; 96. Bibliography. Drupella--Control--Environmental aspects--Queensland—Great Barrier Reef. Great Barrier Reef Marine Park Authority. 594.3209943 DISCLAIMER The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Australian Government. While reasonable effort has been made to ensure that the contents of this publication are factually correct, the Commonwealth does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication.
    [Show full text]
  • Changes in Hard Coral Abundance and Composition on Koh Tao, Thailand, 2006-2014
    Changes in hard coral abundance and composition on Koh Tao, Thailand, 2006-2014 Chad M. Scott, Rahul Mehrotra, Madalena Cabral and Sirachai Arunrugstichai Coastal Ecosystems, 2017, vol 4, 26-38 © 2017 Society for Coastal Ecosystems Studies - Asia Pacific Scott CM et al. Changes in coral assemblages on Koh Tao Regular Paper Changes in hard coral abundance and composition on Koh Tao, Thailand, 2006-2014 Chad M. Scott1, Rahul Mehrotra1,2, Madalena Cabral1,3 and Sirachai Arunrugstichai1,4 1New Heaven Reef Conservation Program, 48 Moo 3, Chalok Ban Kao, Koh Tao, 84360, Thailand, 2Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand 3Univeristy of Lisbon, Alameda da Universidade, 1649-004 Lisboa, Portugal 4Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla, 90112, Thailand. Corresponding author : Chad Scott, e-mail: [email protected] Abstract The island of Koh Tao, Thailand, has experienced rapid development over the last two decades due to coral reef-based tourism, with as much as 0.5-1 million visitors per year. Today the island hosts over 67 dive centers, and is second in the world in terms of SCUBA certifications issued per year. In 2006, a study by Yeemin et al. recorded a 17% decline in coral coverage around the island over a five year period, and documented a lack of governance and policy initiatives to regulate the development and marine tourism. This study looks at the changes in coral cover- age and community structure over the nine year period following the study by Yeemin et al.
    [Show full text]
  • First Report of Drupella Cornus Röding, 1798 (Gastropoda: Muricidae), a Biological Indicator of Coral Reef Habitat of Lakshadweep Archipelago, India
    Rec. zool. Surv. India: Vol. 118(1)/ 97-99, 2018 ISSN (Online) : (Applied for) DOI: 10.26515/rzsi/v118/i1/2018/122305 ISSN (Print) : 0375-1511 Short Communication First report of Drupella cornus Röding, 1798 (Gastropoda: Muricidae), a biological indicator of coral reef habitat of Lakshadweep Archipelago, India N. Marimuthu* and Basudev Tripathy Zoological Survey of India, M-Block, New Alipore, Kolkata – 700053, West Bengal, India; [email protected] Abstract The present study infers that the impact of Drupella cornus Röding, 1798, particularly on the coral, Pocillopora verrucosa (Ellis and Solander, 1786) at Minicoy Island, Lakshadweep Archipelago, India. During the benthic reef monitoring in biological indicators of the reef habitat. Further, the description and morphometric characters of the species were studied andconnection presented with in the this health paper. of the reef ecosystem under Tourism Capacity Building project, it was identified as one of the Keywords: Biological indicator, Coral bleaching, Coral reef, Drupella cornus, Pocillopora verrucosa Introduction It is inferred that the bleaching effect (Baird, 1999) on corals due to the loss of symbiotic algae i.e., zooxanthellae The study on biological indicator on coral reef as Drupella cornus consume them for food. Ultimately, habitat is helpful to assess the health of the coral reef corals lose its partial energy source and lead to death, and ecosystem (Al-Sofyani et al., 2014; Marimuthu et al., thereby habitat degradation occurs. Antonius and Riegl 2016). The common coral predator, Crown of Thorn (1997) correlated the outbreak of this species with the Starfish Acanthaster( planci Linnaeus, 1758) believed coral disease. This outbreak was observed only in the reef as a biological indicator in the benthic reef ecosystem.
    [Show full text]
  • SURVEY of the LITERATURE on RECENT SHELLS from the RED SEA (Second Enlarged and Revised Edition)
    TRITON 24 SEPTEMBER 2011 SUPPLEMENT 1 SURVEY OF THE LITERATURE ON RECENT SHELLS FROM THE RED SEA (second enlarged and revised edition) L.J. van Gemert *) Abstract: About 2,100 references are listed in the survey. Shells are being considered here as shell-bearing mollusks of the Gastropoda, Bivalvia and Scaphopoda. And the region covered is not only the Red Sea, but also the Gulf of Aden, including Somalia, and the Suez Canal, including Lessepsian species. Literature on fossils finds, especially from the Pliocene, Pleistocene and Holocene, is listed too. Introduction My interest in recent shells from the Red Sea dates from about 1996. Since then, I have been, now and then, trying to obtain information on this subject. Recently I decide to stop gathering information in a haphazard way and to do it more properly. This resulted in a survey of approximately 1,420 references (Van Gemert, 2010). Since then, this survey has been enlarged considerably and contains now approximately 2,100 references. They are presented here. Scope In principle every publication in which mollusks are reported to live or have lived in the Red Sea should be listed in the survey. This means that besides primary literature, i.e. articles in which researchers are reporting their finds for the first time, secondary and tertiary literature, i.e. reviews, monographs, books, etc are to be included too. These publications were written not only by a wide range of authors ranging from amateur shell collectors to profesional malacologists but also by people interested in other fields. This implies that not only malacological journals and books should be considered, but also publications from other fields or disciplines, such as environmental pollution, toxicology, parasitology, aquaculture, fisheries, biochemistry, biogeography, geology, sedimentology, ecology, archaeology, Egyptology and palaeontology, in which Red Sea shells are mentioned.
    [Show full text]
  • Center for Biological Diversity-2009-TN1518-Ctr Bio
    BEFORE THE SECRETARY OF COMMERCE PETITION TO LIST 83 CORAL SPECIES UNDER THE ENDANGERED SPECIES ACT Blue rice coral photo © Keoki Stender Submitted October 20, 2009 NOTICE OF PETITION Gary Locke Secretary of Commerce U.S. Department of Commerce 1401 Constitution Avenue, N.W., Room 5516 Washington, D.C. 20230 E-mail: [email protected] James Balsiger, Acting Director NOAA Fisheries National Oceanographic and Atmospheric Administration 1315 East-West Highway Silver Springs, MD 20910 E-mail: [email protected] PETITIONER The Center for Biological Diversity 351 California Street, Suite 600 San Francisco, CA 94104 ph: (415) 436-9682 fax: (415) 436-9683 Date: October 20, 2009 Miyoko Sakashita Shaye Wolf Center for Biological Diversity Pursuant to Section 4(b) of the Endangered Species Act (“ESA”), 16 U.S.C. §1533(b), Section 553(3) of the Administrative Procedures Act, 5 U.S.C. § 553(e), and 50 C.F.R. §424.14(a), the Center for Biological Diversity (“Petitioner”) hereby petitions the Secretary of Commerce and the National Oceanographic and Atmospheric Administration (“NOAA”), through the National Marine Fisheries Service (“NMFS” or “NOAA Fisheries”), to list 83 coral species and to designate critical habitat to ensure their survival and recovery. The Center for Biological Diversity (“Center”) is a non-profit, public interest environmental organization dedicated to the protection of native species and their habitats through science, policy, and environmental law. The Center has over 43,000 members throughout the United States and internationally. The Center and its members are concerned with the conservation of endangered species, including coral species, and the effective implementation of the ESA.
    [Show full text]
  • Bourmaud, 2003
    Museum d’Histoire Naturelle INVENTAIRE DE LA BIODIVERSITE MARINE RECIFALE A LA REUNION Chloé BOURMAUD Octobre 2003 Maître d’ouvrage : Association Parc Marin de la Réunion Maître d’œuvre : Laboratoire d’Ecologie Marine, ECOMAR Financement : Conseil Régional 1 SOMMAIRE Introduction ……………………………………………………………………………………3 PHASE I : DIAGNOSTIC ....................................................................................................... 5 I. Méthodologie ...................................................................................................................... 6 1. Scientifiques impliqués dans l’étude.............................................................................. 6 1.1. EXPERTS LOCAUX RENCONTRES................................................................... 6 1.2. EXPERTS HORS DEPARTEMENT CONTACTES ............................................. 6 2. Harmonisation des données............................................................................................ 6 2.1. LES SITES ET SECTEURS DU RECIF ................................................................ 7 2.2. LES UNITES GEOMORPHOLOGIQUES DU RECIF ......................................... 8 2.3. LE DEGRE DE VALIDITE DES ESPECES ......................................................... 8 2.4. LE NIVEAU D’ABONDANCE ............................................................................. 9 2.5. LES GROUPES TAXONOMIQUES ................................................................... 10 3. Conception d'un modèle de base de données ..............................................................
    [Show full text]