Obituaries E UG ENE M. S HO EM AK ER Eugene M. Shoemaker, One Of

Total Page:16

File Type:pdf, Size:1020Kb

Obituaries E UG ENE M. S HO EM AK ER Eugene M. Shoemaker, One Of and was also involved in istry of the Colorado plateau the Ranger and Surveyor country, studies of the Struc­ miss ions. ture and mechanics of meteor After leaving Caltech for craters, the search for planet­ Flagstaff, Arizona, in 1985, crossi ng as teroids, and studies Shoemaker focused his studies of the magnetostratigraphy of Obituaries on impact craters, as teroids, sedi mentary rocks. and comers. His observing H e codiscovered the team, which included hi s mineral stishovite, which is a wife, Carolyn. discovered hi gh-pressure form of quartz several thousand asteroids and produced only during large 33 comets, including Comet impact events. This discov­ Schoemaker-Levy 9, which ery established the extra­ crashed inro Jupiter in 1994. terres trial origin of many Shoemaker's many other cryptoexplosion structures. scientific accomplishments Shoemaker was elected to included seuing up the Inter­ the National Academy of planetary Geological Time Sciences in 1980; he received Scale, based on crater densi­ the National Medal of Science ties on planetary surfaces. in 1992, and the Bowie This allows age estimates Medal (rhe highest award of E UG ENE M. S HO EM AK ER to be made for terrains from the American Geophysical 1928-1997 other planets based on space Union) in 1996. photographs. His other research included exploration for uranium de­ posits and salt structures in Eugene M. Shoemaker, one Colorado and Utah , research of the world's foremost plane­ on rhe geology and geochem- tary scientists, was killed in an automobile accident in Australia on Thursday, July 17. His wife, Carolyn, was also injured in the accident. Shoemaker first came to A Celebration of Life for Eugene Shoelliaker war held in Flagstaff Cal tech as an undergraduate, Octoher 11. Harrison ('Jack" Schmitt (BS '57, Apollo 17 astronaut, and earned his bachelor's and former senator frml1 Nelli Mexico) delivered the main address, from degree in 1947 and his mas­ which the following is adapted. rer's in 1948. He received a second master's degree and When I received the phone caU about this celebration of life his doctorate from Princeton for Gene, I was reading Undaunted Courage, Stephen Ambrose's University, and returned to remarkable narrative about Meriwether Lewis, Thomas Jefferson, Caltech in 1962 as a visiting and the opening of the American West. J could not absorb professor. He served as a Ambrose's words without relating those events, people, and research associate in astro­ consequences to our own experiences in the 19605. geology here from 1964 ro As 1 reached the end of the book, I was reminded particularly 1968, as professor of geology of Gene's most unique quality during those heady days. I could Carolyn and Gene Shoemaker in 1969- 1980, and professor of not help but compare Gene as leader, as well as a scientific front of t he Alu mni House during geology and planetary science explorer. to Captain Lewis and an earlier Corps of Discovery. 1980-85. Shoemaker served Paraphrasing just a little, as Ambrose said of Lewis: "How he Commencement weekend as chairman of the Division led is no mystery. His techniques were time-honored. He knew in June 1997. of Geological and Planetary hi s [people). He saw to it that they had [regular inspiration, Sciences from 1969 ro 1972. neces-sary resources, sufficient rools). He pushed them to bur He also worked for many never beyond the breaking point. He got OUt of them more. than years with the U.S. Geologi­ they knew they had to give. His concern for them was that of a cal Survey, and was affiliated father for his son. He was head of a fami ly." with the Lowell Observatory Many of us saw our lives moved forward professionally because at rhe time of hi s death. He of Gene's knack for inspiring people to go far beyond what any was a principal investigator of us believed we could do. We kn ew then as we know now thar for geological field investiga­ we worked with one of the truly great scientists and visionaries tions for the Apollo lunar of this latest age of exploration. Like Lewis, "[h]is intense curi­ programs from 1965 ro 1970, osity abollt everything new he saw around him was infectious. I 9 9 7 ENGINEERING & HI EN (E NO. 41 On the February 1966 cover of £&S, Gene Shoemaker holds a handful of tektites, which he thought were remnants of lunar material ejected from the Moon's surface during impact from a high~ speed object. Such objects (meteorites, asteroids, comets) Shoemaker believed. also created the craters visible on the Moon, Mars and Earth. a theory now universally accepted. him," he added. Well, I had emotion, the excitement, and, no idea who Gene Shoemaker we believed, the science of the might be, but Danny and I future. A few days later, had overlapped at both Cal­ Gordon Swann and others tech and Harvard. If Danny arrived and, with Gene's daily thought what Gene was inspiration, an eclectic group doing was interesting, it went to work. almost certainly was! We began learning our Not having any idea what I new lessons by trial and error, Certainly he would be was getting into, I headed Out mostly error-lessons that anyone's first choice for a of Cambridge in my '55 ultimately were to become companion on an ex tended Chevy Business Coupe for part of the foundations of camping trip." Route 66, Flagstaff, and the Gene's Apollo field geology Before I arrived on the old Astrogeology Branch experiment, underpinning Shoemakers' doorstep in Flag­ Headquarters. I became a almost everything Apollo staff in 1964, Gene and I little suspicious only when accomplished scientifically on wrote twO tenees that had Danny and others in Menlo the Moon. With Arizona literally crossed in the mail. decided nor to relocate in freshmen, Spence Titley, long He was contacting people on Flag. What did they know hours, and Jim Beam, we set the Geological Survey's list of thar I didn't know? Exci ting about answering questions those who had passed its things, however, were about never asked before. 1963 employment exam, and to happen. How do you communicate I was looking fot a job. After arrival at the old detailed geologic notes by Interesting and adventur­ museum offices in the pines tadio across the 240,000 ous jobs in geology seemed at the north edge of town, miles of space, when Swann nonexistent to this new PhD and JoD Swann's enthusiastic keeps stepping on your lines? in 1964- none in academia, welcome, Gene provided me How should the lunar surface and the ongoing slump in with a tough choice between debris, latet to be defined by metal prices didn't help in joining Don Elston, Ray Gene as the now famous lunar other areas where "hard-rock" Batson, and others on the regolith. be sampled,.when and field experience might be ongoing Surveyor television the old International Travel­ applied. Fo[cunareiy, I re­ project, or heading up work Ails can't get us to Torn membered that in 1960, after on a new NASA contract to McGetchin's Mexican Hat helping line up a trip to look develop lunar field geological kimberlite location? How do for West Coast eclogites, Bob methods. Surveyor was very you photographically docu­ Coleman had taken me down real and had exc.iting science ment a sample location and a dark hallway in the Survey's potential. Lunar field work orientation without using Menlo Park facility and intro­ was in the misty, undefined more than an absolute mini­ duced "Gene Shoemaker, who future, but there was really no mum of extraordinarily valu­ is doing weird things like cboice: as important as able time, when Schmitt can't mapping the Moon. Danny Surveyor was and would rurn keep the Polaroid film out of Milton is even working for out to be, in Apollo lay tbe the Hopi Bucres' dust? What 42 ENGINHRING & SCIENCE NO. 1997 intellectual foundation for this history of science to record that for the first time we had gained a first-order understanding of another planet. Gene, "more than any other individual, was responsible for the incorporation of geology into the In 1992, Gene joined a University of Wisconsin team Ame rican space program. " We might add thac, more than any other individual, he was responsible as chief scientist on a proposal to operate twO scientific for our present consideration of the Moon and Mars as places for future seulements rovers si multaneously and co­ operatively on the surface of of our children and grandchildren. the Moon. Our objectives were to unravel the three­ dimensional nature of the regolith and to define the basis for bringing its energy resources back to Earth. Who would have thought when we first gathered in Flagstaff in training vocabulary do YOll The question I asked myself, for our presenr consideration the '60s that Gene's legacy use when your field men are however, was, "If someone of the Moon and Mars as would include the potential not geologists but rather are actually does land on the places for fueure sertlements for providing for the long­ headstrong test pilots? Moon, and if I passed up a of our children and grand­ term energy and environmen­ Ultimately, all our questions chance to try to be that children. tal needs of humankind? had answers, but none was person. would I regret it?" Gene's influence within the Gene would have. Yes, obvious when Gene started The answer being obvious, space agency in rhe 19605 indeed! With the usual geology down rhis parh of the rest is histOry-helped was f.'1r greater than even he unbounded enthusiasm, he lunar exploration and along, I strongly suspect, by imagined.
Recommended publications
  • Cross-References ASTEROID IMPACT Definition and Introduction History of Impact Cratering Studies
    18 ASTEROID IMPACT Tedesco, E. F., Noah, P. V., Noah, M., and Price, S. D., 2002. The identification and confirmation of impact structures on supplemental IRAS minor planet survey. The Astronomical Earth were developed: (a) crater morphology, (b) geo- 123 – Journal, , 1056 1085. physical anomalies, (c) evidence for shock metamor- Tholen, D. J., and Barucci, M. A., 1989. Asteroid taxonomy. In Binzel, R. P., Gehrels, T., and Matthews, M. S. (eds.), phism, and (d) the presence of meteorites or geochemical Asteroids II. Tucson: University of Arizona Press, pp. 298–315. evidence for traces of the meteoritic projectile – of which Yeomans, D., and Baalke, R., 2009. Near Earth Object Program. only (c) and (d) can provide confirming evidence. Remote Available from World Wide Web: http://neo.jpl.nasa.gov/ sensing, including morphological observations, as well programs. as geophysical studies, cannot provide confirming evi- dence – which requires the study of actual rock samples. Cross-references Impacts influenced the geological and biological evolu- tion of our own planet; the best known example is the link Albedo between the 200-km-diameter Chicxulub impact structure Asteroid Impact Asteroid Impact Mitigation in Mexico and the Cretaceous-Tertiary boundary. Under- Asteroid Impact Prediction standing impact structures, their formation processes, Torino Scale and their consequences should be of interest not only to Earth and planetary scientists, but also to society in general. ASTEROID IMPACT History of impact cratering studies In the geological sciences, it has only recently been recog- Christian Koeberl nized how important the process of impact cratering is on Natural History Museum, Vienna, Austria a planetary scale.
    [Show full text]
  • Destination Moon
    Ill ".=\'.\, . : t.\ i...ii. 4'i.' --- v 1, 2*..- e> . 1.... ...*f. - .. .. .../C-'.»i.:5.1:• \ I: .. ...: ... ':4r-... - i.. ·.· I . I ·#. - I, :P.k 0 1 '. -1-3:Z:,ile<52.4 -2. .3••••4 - ....., 1 - I ..... 3/4 I <:.9, . /•/f••94*/ ,,iS· .... I ... ....... 9492./i- ..·,61« 4/.th_ r-*- .. -I,r * 116.-452*:••:il-.--•• . .....a• 1 --, •.11:E I . ".59/.-R:&6.Aidillizatu:ill'Illrclilllll 9 St" "' 4.... ... 'Ablf*liE•*.0/8/49/18•09#J'£• .-t-i «, ...' '-t ---- ·· -.t-:.:.'• --,•1*4*14-=..»r,3.hk= 4-lk/ *7·· •-,·:s - '' 21:1 . -0.6..ts-9....4559*"4914*Em'6rt'" .. « 036 ·.. '.... ..'·2&4:i•#+,M/ri:.1*-%,TYRf/036B.e... - ....2:'. .. *... '. '!..i. '':3..i-,f....35"ti F:Y.'..t•: &.....:. 39•'.•........ - ..., ..7. .- P 036.1..' -.Zi - , 93327 . « tr. 1 '. .- I . '.. I ... .'... 'SS> <13· '9•25 ."'t-·,·:·- " :· •t :Ali.•'.'; • - 'r ...• r..... ' ... .... .. " .4 4 ..2- -.*.. 3. .. : , _sry»5433.5.,+· i<29*643, W5• ./'..'r· -. 4-··./.-i--fR...1-L...'.te....bkir.i<Ativi•haRN,1.254i'*"*61»4-=•• 6.... 61 . 31 /'- 5 301... ....•L . , . - - . '2.1 . ' -' »4 /2/323#9/44 ZEIII:ill)*lill//Il/6,1-'.cri:rre I. p ·: , 4 ·,.3*4,·to.4.-•44 4 .,I-tS••7•,<•.•·:L,4..'::....,i... ..I·."i271/Ve;*m#6:d 54.... .. -,•....- . I..,418'I.,4I.,•....6..#i r:'.,:•St»1.·:·'7· ···- . t'-.,jit- 1-6#.19.-'*-. ' -e - .c, .•.. C'!•-042,.-• .... -I ./- =r- . 2 2. -" ' .t. · '., -042,,. ' '/.9. •SS ..2.. 11•11•»..••...qwGILLET+*frs'.. :. " . .... I .- , .. - ....,.k.... -< 3.5*«· ·: . ' i.1., li-, f 20- PR :21 . 0• . c. .Fh: ---, 1.4':. '•,. -,-t.Z:ft,•• •'r,4.4, 4 r • .
    [Show full text]
  • The Scientific Method an Investigation of Impact Craters
    National Aeronautics and Space Administration The Scientific Method: An Investigation of Impact Craters Recommended for Grades 5,6,7 www.nasa.gov Table of Contents Digital Learning Network (DLN) .................................................................................................... 3 Overview................................................................................................................................................. 3 National Standards............................................................................................................................. 4 Sequence of Events........................................................................................................................... 5 Videoconference Outline ................................................................................................................. 6 Videoconference Event .................................................................................................................... 7 Vocabulary...........................................................................................................................................10 Videoconference Guidelines........................................................................................................11 Pre- and Post-Assessment ...........................................................................................................12 Post-Conference Activity...............................................................................................................14
    [Show full text]
  • 19. Near-Earth Objects Chelyabinsk Meteor: 2013 ~0.5 Megaton Airburst ~1500 People Injured
    Astronomy 241: Foundations of Astrophysics I 19. Near-Earth Objects Chelyabinsk Meteor: 2013 ~0.5 megaton airburst ~1500 people injured (C) Don Davis Asteroids 101 — B612 Foundation Great Daylight Fireball: 1972 Earthgrazer: The Great Daylight Fireball of 1972 Tunguska Meteor: 1908 Asteroid or comet: D ~ 40 m ~10 megaton airburst ~40 km destruction radius The Tunguska Impact Tunguska: The Largest Recent Impact Event Barringer Crater: ~50 ky BP M-type asteroid: D ~ 50 m ~10 megaton impact 1.2 km crater diameter Meteor Crater — Wikipedia Chicxulub Crater: ~65 My BP Asteroid: D ~ 10 km 180 km crater diameter Chicxulub Crater— Wikipedia Comets and Meteor Showers Comets shed dust and debris which slowly spread out as they move along the comet’s orbit. If the Earth encounters one of these trails, we get a Breakup of a Comet meteor shower. Meteor Stream Perseid Meteor Shower Raining Perseids Major Meteor Showers Forty Thousand Meteor Origins Across the Sky Known Potentially-Hazardous Objects Near-Earth object — Wikipedia Near-Earth object — Wikipedia Origin of Near-Earth Objects (NEOs) ! WHAM Mars Some fragments wind up on orbits which are resonant with Jupiter. Their orbits grow more elliptical, finally entering the inner solar system. Wikipedia: Asteroid belt Asteroid Families Many asteroids are members of families; they have similar orbits and compositions (indicated by colors). Asteroid Belt Populations Inner belt asteroids (left) and families (right). Origin of Key Stages in the Evolution of the Asteroid Vesta Processed Family Members Crust Surface Magnesium-Sliicate Lavas Meteorites Mantle (Olivine) Iron-Nickle Core Stony Irons? As smaller bodies in the early Solar System Heavier elements sink to the Occasional impacts with other bodies fall together, the asteroid agglomerates.
    [Show full text]
  • Brief History
    CO n tJ} CO BRIEF HISTORY About 49,500 years ago an unbroken level plain stretched where you now stand. Out of the north a bright pinpoint of light arose rapidly Into a blazing sun as it approached this spot. Traveling nearly 43,000 miles per hour, with deafening sound and blinding light, a huge nickel-iron meteorite or > m N 3J cluster of such meteorites, weighing millions of tons, struck CD T) the solid rock of the level plain. With forces greater than any recorded nuclear explosion, the main mass was instantly con verted to a gaseous state, and a huge mushroom-shaped cloud arose far into the stratosphere. From this cloud rained meteoritic droplets mixed with rock debris. For miles around, every tree was flattened and no living creature survived. Before impact pieces of meteorite weighing up to a ton or more were stripped from the mass by friction of the lower at mosphere. Other pieces were thrown back out of the impact site. Layers of rock were flipped over, and blocks of rock- some as large as small houses—were blasted out. In ail, about 300 million tons of rock were displaced, much of It form ing the raised rim around the crater. The floor of the crater is 560 feet deep—equivalent to a 60-story building-and is more than 4,100 feet across; and the rim is more than 3 miles in circumference. If the Wash ington Monument were erected on the floor of the crater, the top would just about reach the level where you now stand.
    [Show full text]
  • Unbroken Meteorite Rough Draft
    Space Visitors in Kentucky: Meteorites and Asteroid “Ida.” Most meteorites originate from asteroids. Meteorite Impact Sites in Kentucky Meteorite from Clark County, Ky. Mercury Earth Saturn Venus Mars Neptune Jupiter William D. Ehmann Asteroid Belt with contributions by Warren H. Anderson Uranus Pluto www.uky.edu/KGS Special thanks to Collie Rulo for cover design. Earth image was compiled from satellite images from NOAA and NASA. Kentucky Geological Survey James C. Cobb, State Geologist and Director University of Kentucky, Lexington Space Visitors in Kentucky: Meteorites and Meteorite Impact Sites in Kentucky William D. Ehmann Special Publication 1 Series XII, 2000 i UNIVERSITY OF KENTUCKY Collie Rulo, Graphic Design Technician Charles T. Wethington Jr., President Luanne Davis, Staff Support Associate II Fitzgerald Bramwell, Vice President for Theola L. Evans, Staff Support Associate I Research and Graduate Studies William A. Briscoe III, Publication Sales Jack Supplee, Director, Administrative Supervisor Affairs, Research and Graduate Studies Roger S. Banks, Account Clerk I KENTUCKY GEOLOGICAL SURVEY Energy and Minerals Section: James A. Drahovzal, Head ADVISORY BOARD Garland R. Dever Jr., Geologist V Henry M. Morgan, Chair, Utica Cortland F. Eble, Geologist V Ron D. Gilkerson, Vice Chair, Lexington Stephen F. Greb, Geologist V William W. Bowdy, Fort Thomas David A. Williams, Geologist V, Manager, Steven Cawood, Frankfort Henderson office Hugh B. Gabbard, Winchester David C. Harris, Geologist IV Kenneth Gibson, Madisonville Brandon C. Nuttall, Geologist IV Mark E. Gormley, Versailles William M. Andrews Jr., Geologist II Rosanne Kruzich, Louisville John B. Hickman, Geologist II William A. Mossbarger, Lexington Ernest E. Thacker, Geologist I Jacqueline Swigart, Louisville Anna E.
    [Show full text]
  • Planetary Defense Conferences
    Summary of the 2011 IAA Planetary Defense Conference William Ailor, Ph.D. The Aerospace Corporation Co-Chair, 2011 IAA Planetary Defense Conference [email protected] Presented at the 54th Session of the United Nations Committee on the Peaceful Uses of Outer Space 8 June 2011 1 2011 IAA Planetary Defense Conference • 9-12 May, 2011, Bucharest, Romania • 19 sponsoring organizations • Over 160 participants This presentation provides overview, highlights and preliminary recommendations from conference 2 Host: Romanian Space Agency 3 Organizing Committee V. Adimurthy Indian Space Research Lindley Johnson NASA NEO Observation Program Organization/Department of Space Executive William Ailor* The Aerospace Corporation Tom Jones Astronaut, Member B612 Foundation Ivan Bekey Alex Karl Space Generation Advisory Council Bruce Betts The Planetary Society Detlef Koschny SSA Near-Earth Object Segment Mark Boslough Sandia National Laboratory Manager, European Space Agency Juan-Luis Cano Deimos Space Claudio Maccone International Academy of Sergio Camacho Astronautics (IAA) Ian Carnelli European Space Agency Nahum Melamed The Aerospace Corporation A.C. Charania SpaceWorks Commercial Patrick Michel Côte d'Azur Observatory Pingyuan Cui Institute of Deep Space Exploration, David Morrison NASA Lunar Science Institute Beijing Institute of Technology Marius Piso Romanian Space Agency Jean-Michel Contant International Academy of Dorin Prunariu Romanian Space Agency Astronautics (IAA) Rusty Schweickart Chairman, ASE-NEO Committee Richard Crowther Rutherford Appleton Laboratory Richard Tremayne-Smith* Alan Fitzsimmons Queen’s University, Belfast Giovanni Valsecchi IASF-Roma, INAF Andres Galvez European Space Agency Frans von der Dunk University of Nebraska-Lincoln Mariella Graziano GMV Brian Weeden Secure World Foundation Pedro J. Gutiérrez Instituto de Astrofísica de Andalucía - Bong Wie Iowa State University CSIC Ray Williamson Secure World Foundation Alan Harris German Space Agency (DLR) Don Yeomans Manager, NASA Near-Earth Object Alan W.
    [Show full text]
  • Guidebook to the Geology of Barringer Meteorite Crater, Arizona
    Guidebook to the Geology of Barringer Meteorite Crater, Arizona (a k a Meteor Crater) Prepared by David A. Kring for the 70th Annual Meeting of the Meteoritical Society August 2007 Copyright © 2007 Single copy academic use of this material can be made as long as appropriate acknowledgment of the source is maintained. Republication of any portion of the guidebook or any commercial use requires written permission from the author (David A. Kring) or the Lunar and Planetary Institute, in addition to appropriate acknowledgment of the source. David A. Kring (2007) LPI Contribution No. 1355 i Table of Contents Title Page i Table of Contents ii Preface and Acknowledgments iii Chapter 1 Introduction 1 Chapter 2 Target Sequence 6 Chapter 3 Barringer Meteorite Impact Crater 24 Chapter 4 Shock Metamorphism 39 Chapter 5 Crater Rim Uplift and Crater Wall Collapse 47 Chapter 6 Overturned Rim Sequence 53 Chapter 7 Distribution of Ejecta 59 Chapter 8 Projectile 67 Chapter 9 Trajectory 74 Chapter 10 Energy of Impact 77 Chapter 11 Age of the Crater 79 Chapter 12 Environmental Effects of the Impact 81 Chapter 13 Post-Impact Lake 86 Chapter 14 Crater Rim East Trail Guide 89 Chapter 15 Crater Floor Trail Guide 113 Bibliography 139 David A. Kring (2007) LPI Contribution No.1355 ii ˜ Preface and Acknowledgments The geological guidebook that follows has been prepared for the occasion of the 70th Annual Meeting of The Meteoritical Society in Tucson, Arizona, and a society field trip to the crater. The society last visited the crater in 1974 on a trip led by the late Eugene M.
    [Show full text]
  • Conference Report
    2013 IAA Planetary Defense Conference Conference report Background The 2013 IAA Planetary Defense Conference: Gathering for Impact! was held in Flagstaff, Arizona, USA, on April 15-19, and included a special session on Sunday evening, April 14, on the Chelyabinsk Meteor event of February 15, 2013. The conference, which became part of the International Academy of Astronautics (IAA) conference series in 2009, was the fifth in the series of conferences that began in 2004. Pervious conference locations were in Anaheim, California (2004), Washington, D.C. (2007), Granada, Spain (2009), and Bucharest, Romania (2011). As was the case for previous conferences, the 2013 conference brought together world experts to discuss our current understanding of asteroids and comets that might pose an impact threat to our planet, techniques that might be used to deflect or disrupt an oncoming object, the design of deflection campaigns, consequences of an impact, and political and policy issues that might affect a decision to take action. A tabletop exercise on the last day of the conference asked attendees to consider deflection and disaster mitigation responses to a hypothetical asteroid impact threat. The Organizing Committee for the conference is provided in Attachment A. The Flagstaff conference was sponsored by 23 organizations that are listed in Attachment B and was attended by over 225 individuals (see Attachment C). Both the number of sponsoring organizations and the number of attendees have grown over time, as shown in Fig 1. This increase demonstrates the expanding recognition that defending Earth from asteroids and comets is an important issue for our time. Figure 1.
    [Show full text]
  • Meteorite Impacts, Earth, and the Solar System
    Traces of Catastrophe A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures Bevan M. French Research Collaborator Department of Mineral Sciences, MRC-119 Smithsonian Institution Washington DC 20560 LPI Contribution No. 954 i Copyright © 1998 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Contract No. NASW-4574 with the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any portion thereof requires the written permission of the Insti- tute as well as the appropriate acknowledgment of this publication. Figures 3.1, 3.2, and 3.5 used by permission of the publisher, Oxford University Press, Inc. Figures 3.13, 4.16, 4.28, 4.32, and 4.33 used by permission of the publisher, Springer-Verlag. Figure 4.25 used by permission of the publisher, Yale University. Figure 5.1 used by permission of the publisher, Geological Society of America. See individual captions for reference citations. This volume may be cited as French B. M. (1998) Traces of Catastrophe:A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. LPI Contribution No. 954, Lunar and Planetary Institute, Houston. 120 pp. This volume is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113, USA Phone:281-486-2172 Fax:281-486-2186 E-mail:[email protected] Mail order requestors will be invoiced for the cost of shipping and handling. Cover Art.“One Minute After the End of the Cretaceous.” This artist’s view shows the ancestral Gulf of Mexico near the present Yucatán peninsula as it was 65 m.y.
    [Show full text]
  • Asteroid Institute a Program of B612
    ASTEROID INSTITUTE A PROGRAM OF B612 ANNUAL PROGRESS REPORT 2020 Launched in 2017, the Asteroid Institute is a program of B612 and is designed to be the international center of excellence for scientific collaboration on the discovery and deflection of asteroids as well as an incubator for new technologies. This report outlines progress on science and research within the Asteroid Institute and other public education programs at B612. Cover: Sun glinting off the Pacific Ocean, by Ed Lu from the ISS This page: The Great Barrier Reef, by Ed Lu from the ISS LETTER FROM THE PRESIDENT What a year it has been! Humanity has been plagued by a discovered. Joachim’s research, and how it will drive parts of the ADAM platform, is global health pandemic, turbulent social times, and, on the described later in this report. flip side, we have had interesting celestial headlines including cool comets, a couple of close asteroid fly-bys, and several A major part of our programming has always been public education. Given COVID-19, exciting asteroid missions to inspire our imaginations. we had to pivot quickly and launch a virtual events program. We kicked things off this spring with a light-hearted “Ask Me Anything: Stump the Astronaut” with Ed. We In reflection, one thing we’ve learned from the COVID-19 crisis have since headlined at several public and is the importance of taking the long view. A global pandemic private audiences in partnership with The This world has got many reasons to was an inevitability. History has shown us it happens.
    [Show full text]
  • Shock Metamorphism of the Coconino Sandstone At
    SHOCK METAMORPHISM OF THE COCONINO SANDSTONE AT METEOR CRATER By susan w. Kieffer At Meteor Crater the Coconino Sandstone was metamorphosed by ex­ tremely high pressures and temperatures associated with the impact of the meteorite . The unshocked sandstone and the textural and mineralogical changes recognized in shocked samples are described below . The features described are illustrated in Figures 5 and 6. Unshocked Sandstone The Coconino Sandstone (named by Darton, 1910) underlies 32,000 square miles of the Colorado Plateau province in northern Arizona, extend­ ing south to the Mogollon cliffs and west to the Grand Wash cliffs. It is exposed as far east as Holbrook, Arizona, and thins to apparent ex­ tinction near the Utah border, but probably grades laterally into the DeChelly Formation in the north (Baker and Reeside, 1929) . At Meteor Crater, outcrops of Coconino Sandstone are best seen on the east wall, but small outcrops also occur on the north, west, and south walls . The nearest exposures outside of the crater are 24 km (15 miles) to the south. The sandstone attains a maximum thickness of 330 m (1000 feet) at its southern extent. The Coconino Sandstone, as exposed in the Grand Canyon, was first described by Noble (1914) . He described wedge- shaped units of pale buff, fine~grained, crossbedded sandstone whose distinctive features are the huge scale of the crossbedding, the massive appearance and the uniform fineness of the component grains of sand . The wedge-shaped units often exceed 40 feet in length and 100 feet in height. The dip of the bedding planes in a southern direction is commonly 15° to 25° , or exceptionally, 30°.
    [Show full text]