Dateentere<L -L01987
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Final Treatability Study Technical Memorandum Formosa Mine
Final Treatability Study Technical Memorandum Formosa Mine Superfund Site Douglas County, Oregon Prepared for: U.S. Environmental Protection Agency Region 10 1200 Sixth Avenue, Suite 900 Seattle, Washington 98101 Prepared by: CDM Federal Programs 1218 Third Avenue, Suite 1100 Seattle, Washington 98101 Parametrix 411 108th Avenue NE, Suite 100 Bellevue, Washington 98004 R‐10 AES (SMALL BUSINESS) CONTRACT NO. 68‐S7‐03‐04 June 12, 2014 Task Order No. 047B Final Treatability Study Technical Memorandum Formosa Mine Superfund Site Douglas County, Oregon R‐10 AES (SMALL BUSINESS) CONTRACT NO. 68‐S7‐03‐04 Task Order No. 047B 06/12/14 Prepared by: Date Stephen Dent, Ph.D. CDM Smith Project Scientist1 06/12/14 Reviewed by: Date Roger Olsen, Ph.D. CDM Smith Technical Reviewer 06/12/14 Reviewed by: Date David J. Reisman CDM Smith Technical Consultant 06/12/14 Approved by: Date Michael C. Allen, P.E. CDM Smith Project Manager Distribution List (via email) Chris Cora Remedial Project Manager EPA Region 10 Seattle, WA i This page intentionally left blank ii Table of Contents Section 1 Introduction .................................................................................................................................. 1‐1 1.1 Site Description and Background ........................................................................................................................ 1‐1 1.2 Purpose of Treatability Study ............................................................................................................................... 1‐2 -
Pacific Division Meeting Field Trip Guide for the Blue Ledge Mine
Pacific Division Meeting Field Trip Guide for the Blue Ledge Mine, Siskiyou County, California Field Trip Leaders: Bill Elliott (Dept. of Geology), Kathleen Page (Dept. of Biology), and Steve Petrovic (Dept. of Chemistry), Southern Oregon University Field trip guide written by William S. Elliott, Jr. Southern Oregon University June 12, 2005 Medford Jacksonville Phoenix Applegate Ruch Talent 99 Pompadour Bluff Ashland K L A M Mt. A Ashland T H 5 Applegate o Reservoir W 123 00’ OREGON o N 42 00’ M CALIFORNIA Joe Elliott Creek Creek O U BLUE LEDGE MINE Condrey N Mountain T A I N S 96 N Yreka 0 10 20 km Figure 1: Index map to the travel log and location of the Blue Ledge Mine in Siskiyou County, California. 2 Travel Log Below is a brief travel log that summarizes the geological and historical aspects of the route to the Blue Ledge Mine. Refer to Figure 1 for the location of the communities and routes described in the passages and Figure 2 for a regional geologic map of southwestern Oregon and northern California. Historical information is partially derived from the Southern Oregon Historical Society’s Historic Discovery Drives. The mileages provided are cumulative. 0 miles 0 km Leave the parking lot in front of the Science Building at Southern Oregon University. Travel west on Ashland Street to Mountain Avenue, then turn right heading north. At the intersection with Siskiyou Boulevard (Highway 99), turn left and head northwest toward Ashland. A few blocks beyond downtown Ashland, there are views of the southern part of the Bear Creek Valley. -
Blue Ledge Mine D
-- -- -------------------------~- '·,._ -~~~ .. :7\~:.":~-=~-;--'i}{/~::}f·:i~_:~t···· b /i:?;,·~··~;&'~Uc<//?~K .,/(Y !}/It? .Vr.'ct/G" Z),,p,,c-15/U.4,,p~.c /10cf /14,.vk/'v~ 6'/Pr a~,# &~c LEZ?c:;;c-u,"r~$A/c; ( U,c?,J.Ra~v#4~~ 5.c-V~--9~ 7A7);?!:1") • Jacksonville,Nugget ... March 2, 1979 "· ,. , . .. .... ... 11 : · ?'~rtt1llt~,,~1t-:fj/~ creek; the latter in. turn. '.em- ':"'i\'f: i 'sontetimesidescrlbed as il' cob-,,'\;"! f'. ; ,,,. plying into the east forif of the . .'' ''\. tacf vein :1 because, of . the. Copper Mining Applegate. There are eleven ·. · variation of the walls in this claims in the group, and while respect. The vein strikes with not patented, they have· all the formation whose general Continues In The been located by survey. They· dii'ection·is ten degrees east of , are given on the accompanying . 'north and also dips with ,the· map under the names of · . : ... formation, ·. the· · angle being ;' i Malone, Cooper, · L. · F. about,... fity ··:degrees .. from\',. Cooper, McVay and :Adams, · .horizontal and'the dip to the/ . ~!~.~M2f!.!?t?s~=s .. W. H. Hamilton, Brown Bear, west. In other words, the Blue'., ··· Malone, Hamilton,. L. H., Ledge-.;•and aH tlie other veins McVay, Lake, S •. G; Adams, of the district, for that matter, · The Blue Ledge Mine D. Malone,· .and . Adams. ·appear to occupy rifts In the(' ·. There is a new :wagon road up laminations · of the. schist, . the _Applegate arid up the east . which· ~~minatlons .are · like ...... · fork to within four miles off . fissures: ; in :, their · general .: ,, · The month of June wit be unearthed in the next few the Blue Ledge. -
What Can EPA Do About Abandoned Mines in California?
What Can EPA Do About Abandoned Mines in California? Debbie Schechter US EPA Region 9, Superfund Division Presented at Reclaiming the Sierra: Community Summit on Mining Impacts November 8, 2010 What Can EPA Do about Abandoned Mines in California? EPA and federal land managers have cleanup authority under CERCLA, or Superfund EPA’s Brownfields Program can provide funding and technical assistance to eligible grantees Prioritization is critical: there 47,000 abandoned mines in California 2 CERCLA Cleanup Authority CERCLA authorizes the federal government to respond to releases or threats of releases that may endanger human health or the environment Private land: EPA Public land: federal land mgmt. agency CERCLA provides for liability for responsible parties and authorizes the federal government to compel parties to clean up sites CERCLA authorizes two kinds of responses: Removals (short term) Remedial actions (at sites on the National Priorities List) Iron Mountain Mine, Redding, CA 3 Clean Water Act Authority Regulates pollutant discharges from point sources into navigable waters Designed to address industrial facilities Applies to current owners/operators Acid mine drainage is considered a point source Newton Mine, Amador County, CA 4 Bodie State Historic Park Mono County, Eastern Sierra 250,000 visitors per year Elevated levels of lead, arsenic and mercury in soils, mill tailings, indoor dust and indoor air 300,000 cy tailings pile north of town with elevated lead and mercury levels; mercury found off-site in creek and -
26Th Quarterly Literature Update
Measurement & Monitoring: 26th Quarterly Literature Update These references have been added to the literature database developed for the Measurement and Monitoring Technologies for the 21st Century (21M2) website. The searchable archive of abstracts is located at www.clu-in.org/programs/21m2/litsearch.cfm 1,4-Dioxane: The Impact of Analytical Method -- A Case Study Linton, P.J. (Blasland, Bouck, and Lee, Inc., Tampa, FL); T. Armstrong (Lockheed Martin, Bethesda, MD); J. Alonso and B. Foster (Blasland, Bouck, and Lee, Inc.). The 23rd Annual International Conference on Contaminated Soils, Sediments and Water, 15-18 October 2007, University of Massachusetts at Amherst. Northeast Regional Environmental Health Center, Univ. of Massachusetts, Amherst. Abstracts, 2007 Commercial laboratories commonly analyze for 1,4-dioxane (CAS 123-91-1) in groundwater by either EPA Method 8260 or 8270, though 1,4-dioxane is not listed for the latter method. Method 8260 generally does not achieve reporting limits that meet regulatory concentrations. Determination of 1,4-dioxane in water at low detection levels also can be accomplished using a modified approach to Method 8270 with isotope dilution. Because of time and sample volume concerns, many laboratories have begun analyzing for 1,4-dioxane using a modified Method 8260 with specific ion monitoring (SIM) GC-MS to improve the detection limits. During recent characterization sampling at a central Florida site in groundwater affected by chlorinated volatile organic compounds and 1,4-dioxane, split samples of groundwater were collected and analyzed by both Method 8270 and 8260 SIM. The difference in reported concentrations of 1,4-dioxane by the two methods was significant, sometimes by orders of magnitude. -
Environmental Considerations Related to Mining of Non-Fuel Minerals
Environmental Considerations Related to Mining of Non-Fuel Minerals Course No: P01-002 Credit: 1 PDH James R. Weaver, P.E. Continuing Education and Development, Inc. 22 Stonewall Court Woodcliff Lake, NJ 07677 P: (877) 322-5800 [email protected] Environmental Considerations Related to Mining of Nonfuel Minerals Chapter B of Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply Professional Paper 1802–B U.S. Department of the Interior U.S. Geological Survey Periodic Table of Elements 1A 8A 1 2 hydrogen helium 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 lithium beryllium boron carbon nitrogen oxygen fluorine neon 6.94 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 13 14 15 16 17 18 sodium magnesium aluminum silicon phosphorus sulfur chlorine argon 22.99 24.31 3B 4B 5B 6B 7B 8B 11B 12B 26.98 28.09 30.97 32.06 35.45 39.95 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 potassium calcium scandium titanium vanadium chromium manganese iron cobalt nickel copper zinc gallium germanium arsenic selenium bromine krypton 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.39 69.72 72.64 74.92 78.96 79.90 83.79 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 rubidium strontium yttrium zirconium niobium molybdenum technetium ruthenium rhodium palladium silver cadmium indium tin antimony tellurium iodine xenon 85.47 87.62 88.91 91.22 92.91 95.96 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 72 73 74 75 76 77 78 79 80 81 82 -
Environmental Considerations Related to Mining of Nonfuel Minerals
Environmental Considerations Related to Mining of Nonfuel Minerals Chapter B of Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply Professional Paper 1802–B U.S. Department of the Interior U.S. Geological Survey Periodic Table of Elements 1A 8A 1 2 hydrogen helium 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 lithium beryllium boron carbon nitrogen oxygen fluorine neon 6.94 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 13 14 15 16 17 18 sodium magnesium aluminum silicon phosphorus sulfur chlorine argon 22.99 24.31 3B 4B 5B 6B 7B 8B 11B 12B 26.98 28.09 30.97 32.06 35.45 39.95 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 potassium calcium scandium titanium vanadium chromium manganese iron cobalt nickel copper zinc gallium germanium arsenic selenium bromine krypton 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.39 69.72 72.64 74.92 78.96 79.90 83.79 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 rubidium strontium yttrium zirconium niobium molybdenum technetium ruthenium rhodium palladium silver cadmium indium tin antimony tellurium iodine xenon 85.47 87.62 88.91 91.22 92.91 95.96 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 cesium barium hafnium tantalum tungsten rhenium osmium iridium platinum gold mercury thallium lead bismuth polonium astatine radon 132.9 137.3 178.5 180.9 183.9 186.2 190.2 192.2 195.1 197.0 200.5 204.4 207.2 209.0 (209) (210)(222) 87 88 104 -
TABLE ROCK SENTINEL May/June 1990 9 Very Well Saturday and Yesterday; Not So Good Today
TABLE ROCK $2.50 MAY JUNE 1990 - II The Magazine of the Southern Oregon Historical Society t:�� SOUTHERN :::: H1SlORICAL OREGON 1 .. 1 SOCIETY - '1,,,1 1>.I�f> Administrative Staff Executive Director: Samuel J. Wegner DeputyDirector: Brad Linder Development Director: Ted E. Lawson Finance Director: Maureen Smith Coordinator oj Photography and Publications: Natalie Brown Membership Coordinator: Susan Cox Board of Trustees President William Bagley, Medford First Vice President: Mary Foster, Medford Second Vice President: Lydia Beekman's grave in the Jacksonville Cemetery SOHS #12518 Donald McLaughlin, Medford On October 22, 1873, six-year-old Lydia Beekman died of smallpox and Secretary: was buried in the Jacksonville Cemetery. Family members followed her Jean M. Smith, Central Point in death years later-father C. C. Beekman in 1915, mother Julia in 1931, Treasurer: sister Carrie in 1959 and brother Ben in 1945-all buried in that same quiet, Thomas W. Pickering, Jacksonville wooded cemetery on the hill northeast of town. Their family markers, as well as the plots of other famous and anonymous local citizens, give today's cem Gary Arford, Medford etery visitors a sense of continuity with previous generations. Vern Arnold, Medford The historic value of southern Oregon cemeteries is not challenged, yet their Theodore Birdseye, Gold Hill preservation cannot be taken for granted. Cemeteries fall prey to overgrowth, Mark Dennett, Jacksonville neglect and vandalism. Recognizing the need to protect these oases of heri Terry Grant, Ashland tage and memories, citizens in a variety of communities have dedicated their Jessie McGraw, Eagle Point energies toward renovation and maintenance. Cemetery associations or individuals maintain the Brownsboro Cemetery, Antioch Cemetery, Tr ail Cem Thomas Parks, Medford etery and Logtown Cemetery, among others. -
Technical Evaluation of the Gold King Mine Incident
Technical Evaluation of the Gold King Mine Incident San Juan County, Colorado U.S. Department of the Interior Bureau of Reclamation Technical Service Center Denver, Colorado October 2015 Mission Statements The Department of the Interior protects and manages the Nation's natural resources and cultural heritage; provides scientific and other information about those resources; and honors its trust responsibilities or special commitments to American Indians, Alaska Natives, and affiliated island communities. The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public. Technical Evaluation of the Gold King Mine Incident San Juan County, Colorado Peer reviewed by: U.S. Geological Survey U.S. Army Corps of Engineers U.S. Department of the Interior Bureau of Reclamation Technical Service Center Denver, Colorado October 2015 Technical Approval The results, findings, and recommendations provided in this Technical Evaluation of the Gold King Mine Incident are technically sound and consistent with current professional practice. Technical Evaluation of the Gold King Mine Incident Table of Contents page Executive Summary ...............................................................................................1 Introduction............................................................................................................5 Composition of the Evaluation Team ..................................................................6 -
Autobiography Leroy
Autobiography of LEROY NEFF 1 To the Family Published by the author Copyright © 1987, 1996, 1997, 2000, 2007 by Leroy Neff 2 Comment [1]: Be sure to repaginate before printing again. CONTENTS Introduction i Chapter 1 Where Did We Come From? 1 Chapter 2 The War Years 15 Chapter 3 The Post War Years 28 Chapter 4 A New Church, A New Beginning! 35 Chapter 5 The Ambassador College Years 44 Chapter 6 Maxine's Illness, We Move to Texas 55 Chapter 7 The Family Grows 66 Chapter 8 More Travels - More Moves 77 Chapter 9 Church Leadership Changes 91 Chapter 10 More Royalty, More Travels 100 Chapter 11 Our Golden Wedding Anniversary 113 Chapter 12 Larry's Accident - Church Turmoil 128 Chapter 13 Is This a New Beginning? 137 Chapter 14 New Home, New Eyes, New Marriages 149 Chapter 15 Two Great-Grandsons and More 161 Chapter 16 The Octogenarians 173 Epilogue 178 Appendix 181 3 Preface to the First Edition Recently, I was a little astonished when one of my grandchildren expressed surprise and ignorance that I had been a teacher at Ambassador College. It was only a few short years ago that my duties as a College instructor took several hours of my life each day. This was long enough in the past, that some of my grandchildren have no knowledge about it. Grandma said I ought to write an autobiography so our children and grandchildren would know more about us. Our children have inherited, for better or worse, many of our physical characteristics. Our grandchildren have received one-half of these characteristics from us. -
Overview of USEPA's ORD Technical Outreach and Support Activities
Overview of USEPA’s ORD Technical Outreach and Support Activities August 12, 2014 Albuquerque, New Mexico Douglas Grosse Office of Research and Development U.S. EPA/ORD/NRMRL Acknowledgements • Doug Grosse, ORD • Greg Gervais, OSWER • Diana Bless, ORD • John McKernan, ORD • Shahid Mahmud, OSWER • Jim Lazorchak, ORD • Michele Mahoney, OSWER • John Hillenbrand, Region 9 • Barbara Butler, ORD • Mark Purcell, Region 6 • Steve Hoffman, OSWER • Steven McDonald, USDA Forest Service • Rob Weber, Region 7 • Roger Yeardley, ORD • Carol Russell, Region 8 • Alina Martin, Leidos • Jim Hanley, Region 8 • Mark Doolan, Region 8 Estimate of Mining Sites in the USA 2 ORD’s Mining Programs • Mine Waste Technology Program (closed) • Engineering Technical Support Center • Technology Transfer Program 3 Collaboration • EPA Program & Regional Offices (focus: OSWER and the Regions) • NRMRL/ORD • Industry Partners • States and Tribes • Western Governors Association • Academia • BLM/Forest Service • DOE/DOD 4 • USGS NRMRL Engineering Technical Support Center (ETSC) • Constructed Wetlands • Bioremediation • MIW Treatment Processes • Liquid/Solid Partitioning • Electrolytic Processes • Sequestration • Capping 5 ORD Technology Transfer and Outreach 1993-2006 Mine Operations, Design, and Closure Conferences, Various 1998 Heavy Metals Contamination Workshop – 150 1998 Mining Workshop, Denver, CO - 300 1999 Heavy Metals Contamination Workshop -180 1999 Pit Lakes Workshop, Reno, NV - 240 2000 Mercury Workshop, San Francisco, CA – 275 2001 Arsenic Workshop, Denver, CO -
PACIFIC NORTHWEST EXPERIENCE Overview
Overview PACIFIC NORTHWEST EXPERIENCE Engineering/Remediation Resources Group, Inc. Engineering/Remediation Resources Group, Inc. A Full-Service Engineering and Construction Resource Intro Engineering/Remediation Resources Group, ERRG is led and managed by seasoned Inc. (ERRG) provides a broad professionals with years of experience in scope of engineering, construction, and consulting and construction, and provides remediation services. Our team consists of a wide array of engineering services nearly 300 full-time employees, including ranging from initial site investigations environmental, civil and geotechnical and characterization through design and engineers, geologists, soil physicists, construction. Working in multidisciplinary scientists, construction managers, teams, ERRG’s staff routinely designs, construction superintendents, equipment implements, and manages projects involving operators, certified hazardous waste planning and development, subcontractor technicians, and administrative personnel. coordination, budget tracking, regulatory Our team’s broad base of environmental, agency interaction, feasibility studies, plans geotechnical, and construction backgrounds and specifications, construction, and enables ERRG to provide the full spectrum construction management services. of turnkey services to our public and private sector clients. Incorporated in 1997, ERRG currently has offices in Martinez, San Francisco, Sacramento, and Tustin, California; Seattle, and Spokane, Washington; Portland, Oregon; Honolulu, Hawaii; and Phoenix,