Desertification
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Report of the United Nations Environment Programme to the Conference of the Parties to the United Nations Convention to Combat Desertification at Its Eighth Session*
22 October 2007 ENGLISH ONLY UNITED NATIONS CONVENTION TO COMBAT DESERTIFICATION CONFERENCE OF THE PARTIES Eighth session Madrid, 3–14 September 2007 Report of the United Nations Environment Programme to the Conference of the Parties to the United Nations Convention to Combat Desertification at its eighth session* I. Introduction 1. This report describes major activities of the United Nations Environment Programme (UNEP) in support of the implementation of the United Nations Convention to Combat Desertification (UNCCD) for submission to the Conference of the Parties to the Convention at its eighth session. The report describes key UNEP activities and issues during the reporting period in areas relevant to the Convention. 2. UNEP advocates the view that decisions can and should be made not to change the desert but to live with it and preserve its resources for the future. The active participation of community groups in this task should include their taking charge of their own development, planning for risks and adapting to changing conditions while preserving their deep connections to these remarkable landscapes. The challenge remains to harness not only local but also global policy mechanisms and market incentives to develop a viable future for deserts through the achievement of both environmental conservation and economic development. The degradation of drylands is a growing problem that needs imaginative, collaborative and multi-sectoral action, since it is both a result of and a contributor to climate change, as well as a cause and consequence of poverty. II. World Environment Day 3. World Environment Day, commemorated each year on 5 June, is one of the principal vehicles through which the United Nations stimulates worldwide awareness of the environment and enhances political attention and action. -
North America Other Continents
Arctic Ocean Europe North Asia America Atlantic Ocean Pacific Ocean Africa Pacific Ocean South Indian America Ocean Oceania Southern Ocean Antarctica LAND & WATER • The surface of the Earth is covered by approximately 71% water and 29% land. • It contains 7 continents and 5 oceans. Land Water EARTH’S HEMISPHERES • The planet Earth can be divided into four different sections or hemispheres. The Equator is an imaginary horizontal line (latitude) that divides the earth into the Northern and Southern hemispheres, while the Prime Meridian is the imaginary vertical line (longitude) that divides the earth into the Eastern and Western hemispheres. • North America, Earth’s 3rd largest continent, includes 23 countries. It contains Bermuda, Canada, Mexico, the United States of America, all Caribbean and Central America countries, as well as Greenland, which is the world’s largest island. North West East LOCATION South • The continent of North America is located in both the Northern and Western hemispheres. It is surrounded by the Arctic Ocean in the north, by the Atlantic Ocean in the east, and by the Pacific Ocean in the west. • It measures 24,256,000 sq. km and takes up a little more than 16% of the land on Earth. North America 16% Other Continents 84% • North America has an approximate population of almost 529 million people, which is about 8% of the World’s total population. 92% 8% North America Other Continents • The Atlantic Ocean is the second largest of Earth’s Oceans. It covers about 15% of the Earth’s total surface area and approximately 21% of its water surface area. -
Asia's Wicked Environmental Problems
ADBI Working Paper Series Asia’s Wicked Environmental Problems Stephen Howes and Paul Wyrwoll No. 348 February 2012 Asian Development Bank Institute Stephen Howes and Paul Wyrwoll are director and researcher, respectively, at the Development Policy Centre, Crawford School, Australian National University. This paper was prepared as a background paper for the Asian Development Bank (ADB)/Asian Development Bank Institute (ADBI) study Role of Key Emerging Economies—ASEAN, the People Republic of China, and India—for a Balanced, Resilient and Sustainable Asia. The views expressed in this paper are the views of the authors and do not necessarily reflect the views or policies of ADBI, the ADB, its Board of Directors, or the governments they represent. ADBI does not guarantee the accuracy of the data included in this paper and accepts no responsibility for any consequences of their use. Terminology used may not necessarily be consistent with ADB official terms. The Working Paper series is a continuation of the formerly named Discussion Paper series; the numbering of the papers continued without interruption or change. ADBI’s working papers reflect initial ideas on a topic and are posted online for discussion. ADBI encourages readers to post their comments on the main page for each working paper (given in the citation below). Some working papers may develop into other forms of publication. Suggested citation: Howes, S. and P. Wyrwoll. 2012. Asia’s Wicked Environmental Problems. ADBI Working Paper 348. Tokyo: Asian Development Bank Institute. Available: http://www.adbi.org/working- paper/2012/02/28/5009.asia.wicked.environmental.problems/ Please contact the author(s) for information about this paper. -
Tides-Of-The-Desert.Pdf
UNIVERSITÄT ZU KÖLN Heinrich -Barth -Institut für Archäologie und Geschichte Afrikas 14 A F R I C A P R A E H I S T O R I C A Monographien zur Archäologie und Umwelt Afrikas Monographs on African Archaeology and Environment Monographies sur l'Archéologie et l'Environnement d'Afrique Herausgegeben von Rudolph Kuper KÖLN 2002 Tides of the Desert – Gezeiten der Wüste Contributions to the Archaeology and Environmental History of Africa in Honour of Rudolph Kuper Beiträge zu Archäologie und Umweltgeschichte Afrikas zu Ehren von Rudolph Kuper Edited by Jennerstrasse 8 Jennerstrasse 8 comprises Tilman Lenssen-Erz, Ursula Tegtmeier and Stefan Kröpelin as well as Hubert Berke, Barbara Eichhorn, Michael Herb, Friederike Jesse, Birgit Keding, Karin Kindermann, Jörg Linstädter, Stefanie Nußbaum, Heiko Riemer, Werner Schuck and Ralf Vogelsang HEINRICH-BARTH-INSTITUT © HEINRICH-BARTH - INSTITUT e.V., Köln 2001 Jennerstraße 8, D – 50823 Köln http://www.uni-koeln.de/hbi/ Alle Rechte vorbehalten. Reproduktionen jeglicher Art nur mit ausdrücklicher Genehmigung. CIP – Titelaufnahme der Deutschen Bibliothek Tides of the desert : contributions to the archaeolo- gy and environmental history of Africa in honour of Rudolph Kuper = Gezeiten der Wüste : Beiträge zu Archäologie und Umweltgeschichte Afrikas zu Ehren von Rudolph Kuper / Heinrich-Barth-In- stitut. Ed. by Jennerstrasse 8. - Köln : Heinrich- Barth-Inst., 2002 (Africa praehistorica ; 14) ISBN 3-927688-00-2 Printed in Germany Druck: Hans Kock GmbH, Bielefeld Typographisches Konzept: Klaus Kodalle Digitale Bildbearbeitung: Jörg Lindenbeck Satz und Layout: Ursula Tegtmeier Titelgestaltung: Marie-Theres Erz Redaktion: Jennerstrasse 8 Gesetzt in Palatino ISSN 0947-2673 Contents Prolog Jennerstrasse 8 – The Editors Eine Festschrift für Rudolph Kuper.......................... -
Desertification and Deforestation in Africa - R
LAND USE, LAND COVER AND SOIL SCIENCES – Vol. V – Desertification and Deforestation in Africa - R. Penny DESERTIFICATION AND DEFORESTATION IN AFRICA R. Penny Environmental and Developmental Consultant/Practitioner, Cape Town, South Africa Keywords: arid, semi-arid, dry sub-humid, drought, drylands, land degradation, land tenure, sustainability Contents 1. Introduction 2. Global Context 3. Land Degradation in Africa Today 3.1. Geographical Regions 3.2. Socio-Economic Aspects 4. Causes and Consequences 4.1. Drought and Other Disasters 4.2. Water Quality and Availability 4.3. Loss of Vegetative Cover 4.4. Loss of Soil Fertility 4.5. Poverty and Population 4.6. Effect of Land Tenure 4.7. Health 5. Combating Desertification 5.1. Past Trends 5.2. Current Attempts to Combat Desertification 5.3. Synergy of the Three Sustainable Development Conventions 5.4. The Role of Science and Technology in Combating Desertification 5.5. Synergy in Environmental Policy Development 6. Future Perspectives: The Way Forward 7. Conclusions Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS Africa is particularly vulnerable to desertification. Two thirds of the continent consists of desert or drylands.SAMPLE The obvious causes of desertificatiCHAPTERSon and deforestation consist of major ecosystem changes, such as land conversion for various purposes, over- dependence on natural resources and several forms of unsustainable land use. However, the issue of desertification is inseparable from social problems such as poverty and land tenure issues. Politics, war and national disasters affect the movements of people and thus impact on the land. International trade policies as well play a part in land management and/or exploitation. -
Biodiversity in Drylands: Challenges And
1 The Global Drylands Partnership CIDA UNSO UNDP/GEF IIED IUCN WWF NEF BIODIVERSITY IN DRYLANDS: CHALLENGES AND OPPORTUNITIES FOR CONSERVATION AND SUSTAINABLE USE Written by Edouard G. Bonkoungou (IUCN) Edited by Maryam-Naimir-Fuller (UNDP/GEF) 2 Tables of Contents EXECUTIVE SUMMARY..................................................................................................................................... 3 1. INTRODUCTION .......................................................................................................................................... 4 2. DEFINITION AND EXTENT OF DRYLANDS ........................................................................................... 4 3. DRYLAND BIODIVERSITY STATUS AND TRENDS .................................................................................. 5 3.1- Driving Forces of Biodiversification in Drylands........................................................................................ 5 3.2- Status of Dryland Biodiversity..................................................................................................................... 6 3.3 - Special Features of Dryland Biodiversity ................................................................................................... 7 3.4 - Threats to Dryland Ecosystems and Species Diversity……………………………………………………12 4. BIODIVERSITY, DESERTIFICATION AND CLIMATE INTERACTIONS IN DRYLANDS.................... 14 5 . CONSERVATION,SUSTAINABLE USE OF DRYLAND BIODIVERSITY - A CALL FOR ACTION.... 15 5.1- Lessons Learnt From -
Road Impact on Deforestation and Jaguar Habitat Loss in The
ROAD IMPACT ON DEFORESTATION AND JAGUAR HABITAT LOSS IN THE MAYAN FOREST by Dalia Amor Conde Ovando University Program in Ecology Duke University Date:_______________________ Approved: ___________________________ Norman L. Christensen, Supervisor ___________________________ Alexander Pfaff ___________________________ Dean L. Urban ___________________________ Randall A. Kramer Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the University Program in Ecology in the Graduate School of Duke University 2008 ABSTRACT ROAD IMPACT ON DEFORESTATION AND JAGUAR HABITAT LOSS IN THE MAYAN FOREST by Dalia Amor Conde Ovando University Program in Ecology Duke University Date:_______________________ Approved: ___________________________ Norman L. Christensen, Supervisor ___________________________ Alexander Pfaff ___________________________ Dean L. Urban ___________________________ Randall A. Kramer An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the University Program in Ecology in the Graduate School of Duke University 2008 Copyright by Dalia Amor Conde Ovando 2008 Abstract The construction of roads, either as an economic tool or as necessity for the implementation of other infrastructure projects is increasing in the tropical forest worldwide. However, roads are one of the main deforestation drivers in the tropics. In this study we analyzed the impact of road investments on both deforestation and jaguar habitat loss, in the Mayan Forest. As well we used these results to forecast the impact of two road investments planned in the region. Our results show that roads are the single deforestation driver in low developed areas, whether many other drivers play and important role in high developed areas. In the short term, the impact of a road in a low developed area is lower than in a road in a high developed area, which could be the result of the lag effect between road construction and forest colonization. -
Keeping Global Warming Within 1.5°C Constrains Emergence of Aridification
` Keeping global warming within 1.5°C constrains emergence of aridification Chang-Eui Park1, Su-Jong Jeong1*, Manoj Joshi2, Timothy J. Osborn2, Chang-Hoi Ho3, Shilong Piao4,5,6, Deliang Chen7, Junguo Liu1, Hong Yang8,9, Hoonyoung Park3, Baek-Min Kim10, Song Feng11 1School of Environmental Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China 2Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK 3School of Earth and Environmental Sciences, Seoul National University, Seoul, Republic of Korea 4Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China 5Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China 6Center for Excellence in Tibetan Earth Science, Chinese Academy of Sciences, Beijing 100085, China 7Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden 8EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland 9Faculty of Sciences, University of Basel, Basel, Switzerland 10Korea Polar Research Institution, Inchon, Korea 11Department of Geosciences, University of Arkansas, Fayetteville, 72701, AR, USA Nature Climate Change (Accepted) *Corresponding author: Prof. Su-Jong Jeong, School of Environmental Science and Engineering, South University of Science and Technology of China, Shenzhen 518055, Guangdong, China ([email protected]) ` Aridity – the ratio of atmospheric water supply (precipitation; P) to demand (potential evapotranspiration; PET) – is projected to decrease (i.e., become drier) as a consequence of anthropogenic climate change, aggravating land degradation and desertification1-6. However, the timing of significant aridification relative to natural variability – defined here as the time of emergence for aridification (ToEA) – is unknown, despite its importance in designing and implementing mitigation policy7-10. -
New Siberian Islands Archipelago)
Detrital zircon ages and provenance of the Upper Paleozoic successions of Kotel’ny Island (New Siberian Islands archipelago) Victoria B. Ershova1,*, Andrei V. Prokopiev2, Andrei K. Khudoley1, Nikolay N. Sobolev3, and Eugeny O. Petrov3 1INSTITUTE OF EARTH SCIENCE, ST. PETERSBURG STATE UNIVERSITY, UNIVERSITETSKAYA NAB. 7/9, ST. PETERSBURG 199034, RUSSIA 2DIAMOND AND PRECIOUS METAL GEOLOGY INSTITUTE, SIBERIAN BRANCH, RUSSIAN ACADEMY OF SCIENCES, LENIN PROSPECT 39, YAKUTSK 677980, RUSSIA 3RUSSIAN GEOLOGICAL RESEARCH INSTITUTE (VSEGEI), SREDNIY PROSPECT 74, ST. PETERSBURG 199106, RUSSIA ABSTRACT Plate-tectonic models for the Paleozoic evolution of the Arctic are numerous and diverse. Our detrital zircon provenance study of Upper Paleozoic sandstones from Kotel’ny Island (New Siberian Island archipelago) provides new data on the provenance of clastic sediments and crustal affinity of the New Siberian Islands. Upper Devonian–Lower Carboniferous deposits yield detrital zircon populations that are consistent with the age of magmatic and metamorphic rocks within the Grenvillian-Sveconorwegian, Timanian, and Caledonian orogenic belts, but not with the Siberian craton. The Kolmogorov-Smirnov test reveals a strong similarity between detrital zircon populations within Devonian–Permian clastics of the New Siberian Islands, Wrangel Island (and possibly Chukotka), and the Severnaya Zemlya Archipelago. These results suggest that the New Siberian Islands, along with Wrangel Island and the Severnaya Zemlya Archipelago, were located along the northern margin of Laurentia-Baltica in the Late Devonian–Mississippian and possibly made up a single tectonic block. Detrital zircon populations from the Permian clastics record a dramatic shift to a Uralian provenance. The data and results presented here provide vital information to aid Paleozoic tectonic reconstructions of the Arctic region prior to opening of the Mesozoic oceanic basins. -
The North American Mosaic: an Overview of Key Environmental Issues 3
The North American Mosaic An Overview of Key Environmental Issues June 2008 Commission for Environmental Cooperation section title A This report addresses the state of the environment in the territories of the Parties to the North American Agreement on Environmental Cooperation by providing an overview of key environmental issues. It provides an objective appraisal of environmental trends and conditions to inform the Council’s deliberations on strategic planning and future cooperative activities. This publication was prepared by the Secretariat of the Commission for Environmental Cooperation. The design and implementation of this report benefited from the participation of the State of the Environment Advisory Group, which is composed of environmental reporting experts from the Parties. The views contained herein do not necessarily reflect the views of the governments of Canada, Mexico or the United States of America. In general, this report does not address the wide variety of responses to the environmental issues described herein. Likewise, an evaluation of the efficacy of these responses is beyond its scope. More information, including detailed references for the findings in this report, is available on the CEC website: <http://www.cec.org/soe>. Publication details Type: Project report Date: June 2008 Original language: English Review and Quality Assurance Procedures • Review by the Parties: February – April 2008; April – May 2008 • For more information please consult the Acknowledgements. Published by the Communications Department -
Mapping of Climate Change Threats and Human Development Impacts in the Arab Region
Arab Human Development Report Research Paper Series Mapping of Climate Change Threats and Human Development Impacts in the Arab Region Balgis Osman Elasha United Nations Development Programme Regional Bureau for Arab States United Nations Development Programme Regional Bureau for Arab States Arab Human Development Report Research Paper Series 2010 Mapping of Climate Change Threats and Human Development Impacts in the Arab Region Balgis Osman Elasha The Arab Human Development Report Research Paper Series is a medium for sharing recent research commissioned to inform the Arab Human Development Report, and fur- ther research in the field of human development. The AHDR Research Paper Series is a quick-disseminating, informal publication whose titles could subsequently be revised for publication as articles in professional journals or chapters in books. The authors include leading academics and practitioners from the Arab countries and around the world. The findings, interpretations and conclusions are strictly those of the authors and do not neces- sarily represent the views of UNDP or United Nations Member States. The present paper was authored by Balgis Osman Elasha. * * * Balgis Osman-Elasha is a Climate Change Adaptation Expert at the African Development Bank. She holds a Bachelor’s Degree (with Honours) and a Doctorate in Forestry Science, and a Master’s Degree in Environmental Science. She has extensive experience in climate change research, with a focus on the human dimensions of global environmental change (GEC) and sustainable development. She is a winner of the UNEP Champions of the Earth award, 2008, and a member of the IPCC Lead Authors Nobel Peace Prize winners in 2007. -
The Role of Extinction in Evolution DAVID M
Proc. Nati. Acad. Sci. USA Vol. 91, pp. 6758-6763, July 1994 Colloquium Paper Ths paper was presented at a colloquium entled "Tempo and Mode in Evolution" organized by Walter M. Fitch and Francisco J. Ayala, held January 27-29, 1994, by the National Academy of Sciences, in Irvine, CA. The role of extinction in evolution DAVID M. RAuP Department of Geophysical Sciences, University of Chicago, Chicago, IL 60637 ABSTRACT The extinction of species is not normally must remember what has already been said on the probable consideed an important element of neodarwinian theory, in wide intervals of time between our consecutive formations; contrast to the opposite phenomenon, specatlon. This is sur- and in these intervals there may have been much slower prising in view of the special importance Darwin attced to extermination. (pp. 321-322) extinction, and because the number ofspecies extinctions in the Like his geologist colleague Charles Lyell, Darwin was history oflife is almost the same as the number oforiginations; contemptuous ofthose who thought extinctions were caused present-day biodiversity Is the result of a trivial surplus of by great catastrophes. cumulated over millions of years. For an evolu- tions, ... so profound is our ignorance, and so high our presump- tionary biologist to ignore extinction is probably as foolhardy tion, that we marvel when we hear of the extinction of an as for a demographer to ignore mortality. The past decade has organic being; and as we do not see the cause, we invoke seen a resurgence of interest in extinction, yet research on the cataclysms to desolate the world, or invent laws on the topic Is stifl at a reconnaissance level, and our present under- duration of the forms of life! (p.