Modeling Seasonal Migration of Fall Armyworm Moths

Total Page:16

File Type:pdf, Size:1020Kb

Modeling Seasonal Migration of Fall Armyworm Moths Int J Biometeorol (2016) 60:255–267 DOI 10.1007/s00484-015-1022-x ORIGINAL PAPER Modeling seasonal migration of fall armyworm moths J. K. Westbrook1,4 & R. N. Nagoshi2 & R. L. Meagher2 & S. J. Fleischer3 & S. Jairam1 Received: 18 September 2014 /Revised: 15 May 2015 /Accepted: 23 May 2015 /Published online: 5 June 2015 # ISB (outside the USA) 2015 Abstract Fall armyworm, Spodoptera frugiperda (J.E. (for locations which captured ≥10 moths), which on average Smith), is a highly mobile insect pest of a wide range of host indicated that the model simulated first immigration 2 weeks crops. However, this pest of tropical origin cannot survive before first captures in pheromone traps. The results contrib- extended periods of freezing temperature but must migrate ute to knowledge of fall armyworm population ecology on a northward each spring if it is to re-infest cropping areas in continental scale and will aid in the prediction and interpreta- temperate regions. The northward limit of the winter- tion of inter-annual variability of insect migration patterns breeding region for North America extends to southern re- including those in response to climatic change and adoption gions of Texas and Florida, but infestations are regularly re- rates of transgenic cultivars. ported as far north as Québec and Ontario provinces in Canada by the end of summer. Recent genetic analyses have charac- Keywords Dispersal . HYSPLIT . Insect . Lepidoptera . terized migratory pathways from these winter-breeding re- Spodoptera frugiperda . Corn-strain gions, but knowledge is lacking on the atmosphere’srolein influencing the timing, distance, and direction of migratory flights. The Hybrid Single-Particle Lagrangian Integrated Tra- Introduction jectory (HYSPLIT) model was used to simulate migratory flight of fall armyworm moths from distinct winter-breeding Fall armyworm, Spodoptera frugiperda (J.E. Smith), is a source areas. Model simulations identified regions of domi- highly mobile insect pest of a wide range of host crops nant immigration from the Florida and Texas source areas and (Luginbill 1928; Sparks 1979). Unlike numerous other mi- overlapping immigrant populations in the Alabama–Georgia grant species, fall armyworm does not possess a capability and Pennsylvania–Mid-Atlantic regions. This simulated mi- to enter diapause, a dormant state which allows insects to gratory pattern corroborates a previous migratory map based survive extended periods of inhospitable conditions including on the distribution of fall armyworm haplotype profiles. We extreme cold or drought (Luginbill 1928; Sparks 1979). Lack- found a significant regression between the simulated first ing a diapause trait, this pest of tropical origin must begin a week of moth immigration and first week of moth capture new series of northward migratory flights each spring if it is to re-infest a succession of cropping areas in the temperate mid- latitude zone (Luginbill 1928). Long-distance migration of fall * J. K. Westbrook armyworm moths and many other crop pests benefits from [email protected] strong and persistent wind patterns (Drake and Gatehouse 1995). Southern Texas and southern Florida are the purported northern-most winter-breeding areas available to fall army- 1 USDA-ARS, College Station, TX, USA worm populations (Luginbill 1928; Snow and Copeland 2 USDA-ARS, Gainesville, FL, USA 1969). However, by the end of the growing season in late 3 Pennsylvania State University, State College, PA, USA summer, fall armyworm infestations are regularly reported as 4 Insect Control and Cotton Disease Research Unit, USDA, ARS, far north as Ontario and Québec, Canada (Rose et al. 1975; SPARC, 2771 F & B Road, College Station, TX 77845-4966, USA Mitchell et al. 1991). 256 Int J Biometeorol (2016) 60:255–267 Insect migration flights have been simulated by atmospher- each area, but there are reproducible differences in their rela- ic simulation models such as Hybrid Single-Particle Lagrang- tive proportions, particularly with respect to the ratio of the h2 ian Integrated Trajectory (HYSPLIT) (Draxler and Hess 1997, and h4 haplotypes. Specifically, comparisons based on sur- 1998;Draxler1999; Draxler and Rolph 2013), GenSim veys over multiple years and locations showed that the CS (Rochester et al. 1996), and Nuclear Accident Model populations in Florida (identified here as the FLA population) (NAME) (Chapman et al. 2012). The HYSPLIT model has displayed an h4/h2 ratio consistently greater than 1.5, while simulated dispersal of boll weevils (Anthonomus grandis populations in Texas (identified here as the TEX population) Boheman) in Texas (Kim et al. 2010; Westbrook et al. 2011) were associated with a ratio less than 0.5 (Nagoshi et al. and migratory trajectories of corn earworms [Helicoverpa zea 2007a, b, 2008). (Boddie)] in the central USA (Westbrook 2008). Similar stud- This ability to distinguish fall armyworm from Texas (TX) ies have been conducted to investigate how synoptic weather and Florida (FL) provides a method for defining the migration conditions, wind trajectories, and atmospheric dispersion af- pathways from these winter-breeding source locations fect the frequency, intensity, and displacement of migratory (Fig. 1). As a proof of concept, Nagoshi et al. (2008)showed flights of noctuid moths in North America (Lingren et al. that fall armyworm isolated from Georgia (GA) closely resem- 1994; Westbrook et al. 1995, 1997), Europe (Chapman et al. bled those from FL, while those in Alabama (AL), Mississippi 2012),Australia(Rochesteretal.1996; Gregg et al. 2001), (MS), and Louisiana (LA) were similar to the TX profile. and Asia (Feng et al. 2009). Although trap data and insect Subsequent studies demonstrated that migration from TX is scouting data have been used to validate migration models, the primary source of fall armyworm infestations west of the confirming these relationships is often problematic because of Appalachian Mountain Range, while the FL migration is the difficulty in identifying the original source of suspected largely limited to the states located on the Atlantic coast immigrants. When source areas can be unambiguously deter- (Nagoshi et al. 2009, 2012). Ambiguous haplotype profiles, mined, as was the case in one study where corn earworm a result expected from the mixing of the Florida and Texas moths were marked naturally by citrus pollen, strong correla- populations, are limited to locations within the states of AL– tions were found between the extrapolated flight paths and GA in the southeast and the Pennsylvania (PA)–Mid-Atlantic synoptic wind trajectories (Lingren et al. 1994; Westbrook region of the eastern seaboard. These results are remarkably et al. 1998a, b). Early studies based on the timing of trap consistent with earlier descriptions based on inferences from captures or synoptic wind patterns provided a broad picture the timing of fall armyworm appearances in different locations of fall armyworm migration but with only limited resolution (reviewed in Nagoshi and Meagher 2008). These indicated a (Mitchell 1979). Migration estimates have been compared northward movement from TX into Oklahoma (OK) and the with general patterns of moth captures in traps or field collec- High Plains states and northeastward flow from southern TX tions of eggs or larvae (i.e., immature stages of fall army- that follows the Coastal Plain into the Mississippi and Ohio worm) (Luginbill 1928; Snow and Copeland 1969;Hartstack River valleys (Luginbill 1928;Pairetal.1986). Populations in et al. 1982). Without a natural or synthetic mark, it is difficult southern FL appear to migrate into GA by June, continuing to identify particular source areas that contribute to immigra- east of the Appalachian Mountains into South Carolina (SC) tions. A direct method is needed for identifying the winter- by July, and likely continue northward along the Atlantic breeding origin of migrant moths that allows extrapolation of Coastal Plain (Luginbill 1928; Snow and Copeland 1969). migratory pathways for the fall armyworm subpopulation. These descriptions are also generally consistent with move- Genetic markers have been developed that can distinguish ments expected from average synoptic meteorological condi- fall armyworm subpopulations (Nagoshi et al. 2007b). Fall tions (Mitchell et al. 1991;Roseetal.1975; Westbrook and armyworm can be subdivided into two behaviorally distinct Sparks 1986) and the geographical distribution of subpopula- but morphologically identical strains that were initially iden- tions that differed with respect to disease or pesticide resis- tified by differences in plant host distribution, hence their tance (Young 1979;Pitre1988; Fuxa 1987). The results sup- designation as rice-strain (RS) and corn-strain (CS) (Pashley port the use of haplotype ratios as a natural marker of the TEX et al. 1985, 1987; Pashley 1986, 1988). Polymorphisms in the and FLA fall armyworm populations that can be used to val- mitochondrial cytochrome oxidase I (COI) gene provide a idate simulation models of migration on a continental scale. convenient and accurate marker for strain identity based on Thegoalofthisstudywastodevelopaseasonalfallarmy- correlations with behavioral differences (Levy et al. 2002;Lu worm migration model that accounts for the phenological de- and Adang 1996; Meagher and Gallo-Meagher 2003; Prowell velopment of corn host plants and fall armyworm populations et al. 2004). and seasonal (multi-generational) migration of fall armyworm The CS population can be further subdivided
Recommended publications
  • The Seasonal Abundance and Impact of Predatory Arthropods on Helicoverpa Species in Australian Cotton Fields
    The Seasonal Abundance and Impact of Predatory Arthropods on Helicoverpa Species in Australian Cotton Fields by John Newton Stanley B.Rur. Sc. (University of New England) A thesis submitted for the degree of Doctor of Philosophy from the University of New England Department of Agronomy and Soil Science September 1997 Many Thanks to the Following: Associate Professor Peter Gregg, who, as sole supervisor, provided a broad field of opportunities, as well as cotton, for the discovery of entomological things. Thank you for your guidance and support. Mr. Richard Browne, of Auscott Pty. Ltd., and Ben and Dave Coulton, of Coulton Farming Ltd. for allowing me access to their crops and for adjusting their cultural practices to accommodate experimental designs. Particular thanks to Terry Haynes (Senior Agronomist; Auscott Pty. Ltd. Moree) for discussions on pest management and generously supplying assistance at critical times. The taxonomists who identified material for the insect survey. Mr. L. Bauer (Thysanoptera) Dr. A. Calder (Coleoptera) Dr. M. Carver (Homoptera and Trichogrammatidae) Dr. D. H. Colless (Diptera) Dr. M. J. Fletcher (Cicadellidae) Dr. M. R. Gray (Aracnida) Dr. M. B. Malipatil (Hemiptera) Dr. I. D. Naumann (Hymenoptera) Dr. T. R. New (Neuroptera) Dr. T. A. Weir (Coleoptera) The people who provided technical assistance: Holly Ainslie, Dr. Steven Asante, Doreen Beness, Laura Bennett, Samantha Browne, Dr. Mark Coombs, Peter Foreman, Jacqueline Prudon, Sally Schwitzer, Kelly Stanley, Anita Stevenson, Donald Wheatley, and Richard Willis. Dr. Steven Trowell for guidance using serological methods and to Dr. Anne Bourne for her statistical significance. Mr. Robert Gregg for accomodating my family at Tyree whilst sampling in Moree.
    [Show full text]
  • Classical Biological Control of Arthropods in Australia
    Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities.
    [Show full text]
  • Autographa Gamma
    1 Table of Contents Table of Contents Authors, Reviewers, Draft Log 4 Introduction to the Reference 6 Soybean Background 11 Arthropods 14 Primary Pests of Soybean (Full Pest Datasheet) 14 Adoretus sinicus ............................................................................................................. 14 Autographa gamma ....................................................................................................... 26 Chrysodeixis chalcites ................................................................................................... 36 Cydia fabivora ................................................................................................................. 49 Diabrotica speciosa ........................................................................................................ 55 Helicoverpa armigera..................................................................................................... 65 Leguminivora glycinivorella .......................................................................................... 80 Mamestra brassicae....................................................................................................... 85 Spodoptera littoralis ....................................................................................................... 94 Spodoptera litura .......................................................................................................... 106 Secondary Pests of Soybean (Truncated Pest Datasheet) 118 Adoxophyes orana ......................................................................................................
    [Show full text]
  • Molecular Characterization of Fall Armyworm (Spodoptera Frugiperda) Resistant to Vip3aa20 Protein Expressed in Corn
    Molecular Characterization of Fall Armyworm (Spodoptera frugiperda) Resistant to Vip3Aa20 Protein Expressed in Corn Dissertation Presented in partial fulfillment of the requirements for the degree of doctor of philosophy in the Graduate School of The Ohio State University Julio Cesar Fatoretto, B. Sc. Graduate Program in Translational Plant Science The Ohio State University 2017 Dissertation Committee: Andrew P. Michel, Advisor Marcio C. Silva Filho Thomas Mitchell Fernando Consoli Copyright by Julio Cesar Fatoretto 2017 Abstract Transgenic plants containing genes from Bacillus thuringiensis have been used as an alternative to chemical insecticides for insect pest control. The vegetative insecticidal proteins (Vip) secreted during the vegetative growth phase of bacteria are considered a second generation of insecticidal proteins since they do not share any structural or sequence homology with previously used crystal proteins (Cry) as well as having a wide insecticidal spectrum. One of the target pests for this protein is the fall armyworm (FAW) (Spodoptera frugiperda), the most important corn pest in South America. Previously it has been controlled by insecticides and corn expressing Cry proteins, but has rapidly evolved resistance to many control practices and remains a top concern for sustainable biotechnology control efforts. Thus, resistance characterization involving mode of action and genetics of resistance can help with Insect Resistance Management strategies, and improve the durability of control. In this dissertation, using selected FAW population resistant to Vip3Aa20 Bt protein (Vip-R1and Vip-R2) we generated comparative proteomic and transcriptomic data among resistant and susceptible colonies. In the chapter 2, we bring FAW biology/ecology and Brazilian agriculture landscape data to support the high adaptive potential of this pest to genetically modified corn expressing Bt Cry proteins in Brazil.
    [Show full text]
  • Aspects of the Ecology of Helicoverpa Punctigera – What Has Changed?
    Chapter 1: Aspects of the ecology of Helicoverpa punctigera – what has changed? 1.1 Background The genus Helicoverpa is part of the noctuid family of moths and has a worldwide range of species, which include Helicoverpa armigera (Hübner, 1805), Helicoverpa assulta (Guenée, 1852) Helicoverpa atacamae (Hardwick, 1965) Helicoverpa fletcheri (Hardwick, 1965), Helicoverpa gelotopoeon (Dyar, 1921), Helicoverpa hardwicki (Matthews, 1999), Helicoverpa hawaiiensis (Quaintance & Brues, 1905), Helicoverpa helenae (Hardwick, 1965), Helicoverpa pallida (Hardwick, 1965), Helicoverpa prepodes (Common, 1985), Helicoverpa punctigera (Wallengren, 1860), Helicoverpa titicaca (Hardwick, 1965), Helicoverpa toddi (Hardwick, 1965) and Helicoverpa zea (Boddie, 1850). As cotton bollworms and legume pod borers, larvae of Helicoverpa spp. are among the most significant crop pests worldwide (Fitt and Cotter, 2005). There are two species of the genus Helicoverpa that are agriculturally significant in Australia, the cotton bollworm Helicoverpa armigera and the native budworm Helicoverpa punctigera. The cosmopolitan H. armigera and the Australian native H. punctigera are the most important pests of field crops in Australia (Zalucki et al., 1986). Although the two species are closely related and share similar colouration and body sizes, each species has differing host-plant ranges, seasonal abundances and geographic ranges (Zalucki et al., 1986, Fitt and Cotter, 2005). Helicoverpa armigera achieves 4-5 generations per season over most of Queensland and much of Northern New South Wales (Fitt and Daly, 1990). The diverse host range of H. armigera means that at any one time there may be a mosaic of subpopulations linked by adult migration, each with different mortality rates and fitness effects imposed by their environment (Dillon et al., 1996).
    [Show full text]
  • Helicoverpa Armigera in North America: Is It Just a Matter of Time?
    RESEARCH ARTICLE The Potential Distribution of Invading Helicoverpa armigera in North America: Is It Just a Matter of Time? Darren J. Kriticos1,2*, Noboru Ota3, William D. Hutchison4, Jason Beddow5, Tom Walsh1, Wee Tek Tay1, Daniel M. Borchert6, Silvana V. Paula-Moreas7, Cecília Czepak8, Myron P. Zalucki2 1 CSIRO, GPO Box 1700, Canberra, ACT, Australia, 2 School of Biological Sciences, Faculty of Science, The University of Queensland, Queensland, 4072 Australia, 3 CSIRO, Private Bag 5, Wembley WA, Australia, 4 Department of Entomology, University of Minnesota, St. Paul, Minnesota, United States of America, 5 Department of Applied Economics, University of Minnesota, St. Paul, Minnesota, United States of America, 6 Animal and Plant Health Inspection Service-Plant Protection and Quarantine-Center for Plant Health Science and Technology, Plant Epidemiology and Risk Analysis Laboratory, Raleigh, North Carolina, United States of America, 7 Embrapa Cerrados, BR 040 km 18, Planaltina-DF, Brasil, 8 Escola de Agronomia e Engenharia de Alimentos, Universidade Federal de Goiás. Campus II, Caixa Postal 131, CEP, Goiânia, Brasil * [email protected] OPEN ACCESS Citation: Kriticos DJ, Ota N, Hutchison WD, Beddow J, Walsh T, Tay WT, et al. (2015) The Potential Distribution of Invading Helicoverpa armigera in North Abstract America: Is It Just a Matter of Time?. PLoS ONE 10(3): e0119618. doi:10.1371/journal.pone.0119618 Helicoverpa armigera has recently invaded South and Central America, and appears to be spreading rapidly. We update a previously developed potential distribution model to high- Academic Editor: Erjun Ling, Institute of Plant Physiology and Ecology, CHINA light the global invasion threat, with emphasis on the risks to the United States.
    [Show full text]
  • Gene Flow in the Green Mirid, Creontiades Dilutus (Hemiptera
    PUBLISHED VERSION Hereward, J. P.; Walter, Gimme H.; DeBarro, P. J.; Lowe, Andrew; Riginos, C. Gene flow in the green mirid, Creontiades dilutus (Hemiptera: Miridae), across arid and agricultural environments with different host plant species, Ecology and Evolution, 2013; 3(4):807-821. © 2013 The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PERMISSIONS http://onlinelibrary.wiley.com/journal/10.1002/%28ISSN%292045- 7758/homepage/ForAuthors.html All articles accepted from 14 August 2012 are published under the terms of the Creative Commons Attribution License. All articles accepted before this date, were published under a Creative Commons Attribution Non-Commercial License. 7th August 2013 http://hdl.handle.net/2440/78979 Gene flow in the green mirid, Creontiades dilutus (Hemiptera: Miridae), across arid and agricultural environments with different host plant species J. P. Hereward1,3, G. H. Walter1, P. J. DeBarro2, A. J. Lowe4,5 & C. Riginos1 1School of Biological Sciences, The University of Queensland, Brisbane, Qld, 4072, Australia 2CSIRO Ecosystem Sciences, GPO Box 2583, Brisbane, Qld, 4001, Australia 3Cotton Catchment Communities CRC, Australian Cotton Research Institute, Locked Mail Bag 1001, Narrabri, NSW, 2390, Australia 4Australian Centre for Evolutionary Biology and Biodiversity, School of Earth and Environmental Sciences, University of Adelaide, SA, 5005, Australia 5State Herbarium of South Australia and Science Resource Centre, Department of Environment and Natural Resources, Hackney Road, SA, 5005, Australia Keywords Abstract Agriculture, dispersal, gene flow, host plant, human-altered landscapes, insect herbivore, Creontiades dilutus (Stal), the green mirid, is a polyphagous herbivorous insect microsatellite, migration, mitochondrial.
    [Show full text]
  • 25 Host Plant Resistance and Insect Pest Management in Chickpea
    25 Host Plant Resistance and Insect Pest Management in Chickpea H.C. SHARMA,1 C.L.L. GOWDA,1 P.C. STEVENSON,2 T.J. RIDSDILL-SMITH,3 S.L. CLEMENT,4 G.V. RANGA RAO,1 J. ROMEIS,5 M. MILES6 AND M. EL BOUHSSINI7 1Genetics Resources Divisions, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Asia Center, Hyderabad 502324, India; 2Natural Resources Institute, University of Greenwich, Chatham, ME4 4TB, UK and Royal Botanic Gardens, Kew, Surrey, TW9 3AB, UK; 3CSIRO Entomology, Private Bag No 5, Wembley, WA 6913, Australia; 4USDA-ARS, 59 Johnson Hall, Washington State University, Pullman, WA 99164-6402, USA; 5Agroscope ART Reckenholz Tänikon, Reckenholzstr, 191, 8046 Zurich, Switzerland; 6Department of Primary Industries and Fisheries, 203 Tor Street, PO Box 102, Toowoomba, Queensland 4350, Australia; 7International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria Insect Pest Problems in Chickpea Chickpea (C. arietinum L.) is the third most important legume crop in the world, after dry beans and peas (FAO, 2003). It is cultivated in 42 countries in South Asia, North and Central America, the Mediterranean region, West Asia and North and East Africa. In recent years, it has become an important crop in Australia, Canada and the USA. Nearly 60 insect species are known to feed on chickpea (Reed et al., 1987) (Table 25.1). The important insect pests damaging chickpea in different regions are: ● Wireworms: false wireworm – Gonocephalum spp.; ● Cutworm: black cutworm – A. ipsilon (Hfn.) and turnip moth – A. segetum Schiff.; ● Termite: Microtermes obesi (Holm.) and Odontotermes sp.; ● Leaf-feeding caterpillars: cabbage looper – Trichoplusia ni (Hub.), leaf caterpillar – S.
    [Show full text]
  • Lepidoptera: Noctuidae) of Australia and Utility of DNA Barcodes for Pest Identification in Helicoverpa and Relatives
    RESEARCH ARTICLE DNA Barcoding the Heliothinae (Lepidoptera: Noctuidae) of Australia and Utility of DNA Barcodes for Pest Identification in Helicoverpa and Relatives Andrew Mitchell1*, David Gopurenko2,3 1 Australian Museum Research Institute, Australian Museum, Sydney, NSW, Australia, 2 NSW Department of Primary Industries, Wagga Wagga, NSW, Australia, 3 Graham Centre for Agricultural Innovation, Wagga a11111 Wagga, NSW, Australia * [email protected] Abstract ’ OPEN ACCESS Helicoverpa and Heliothis species include some of the world s most significant crop pests, causing billions of dollars of losses globally. As such, a number are regulated quarantine Citation: Mitchell A, Gopurenko D (2016) DNA species. For quarantine agencies, the most crucial issue is distinguishing native species Barcoding the Heliothinae (Lepidoptera: Noctuidae) of Australia and Utility of DNA Barcodes for Pest from exotics, yet even this task is often not feasible because of poorly known local faunas Identification in Helicoverpa and Relatives. PLoS and the difficulties of identifying closely related species, especially the immature stages. ONE 11(8): e0160895. doi:10.1371/journal. DNA barcoding is a scalable molecular diagnostic method that could provide the solution to pone.0160895 this problem, however there has been no large-scale test of the efficacy of DNA barcodes Editor: Daniel Doucet, Natural Resources Canada, for identifying the Heliothinae of any region of the world to date. This study fills that gap by CANADA DNA barcoding the entire heliothine moth fauna of Australia, bar one rare species, and com- Received: May 6, 2016 paring results with existing public domain resources. We find that DNA barcodes provide Accepted: July 26, 2016 robust discrimination of all of the major pest species sampled, but poor discrimination of Published: August 10, 2016 Australian Heliocheilus species, and we discuss ways to improve the use of DNA barcodes for identification of pests.
    [Show full text]
  • The Role and Effectiveness of Refuge Crops in Bacillus Thuringiensis
    The Role and Effectiveness of Refuge Crops in Bacillus Thuringiensis Cotton Production, to Reduce Helicoverpa armigera and Helicoverpa punctigera Numbers for Resistance Management. William Tan SID: 308238826 AFNR Research Project B / Research Paper 2013 Number of words: 7933 Number of references: 38 Number of figures: 18 1 | P a g e Thesis Table of Contents 1. Abstract……………………………………………………………………………….4 2. Introduction……………………………………………………………………….….5 a. Pest…………………………………………………………………………….5 b. Integrated Pest Management………………………………………………..7 c. Bt Cotton…………………………………………………………………….10 d. Refuge………………………………………………………………………..11 3. Materials and Method………………………...…………………………………….16 a. Site Description……………………………………………………………...16 b. Visual counts/ Pupae dig method……………………………………...…...17 c. Experimental Design………………………………………………………..17 d. Statistical Analysis…………………………………………………………..19 4. Results……………………………………………………………………………….20 a. Attractiveness……………………………………………………………….20 b. Productivity…………………………………………………………………21 5. Discussion…………………………………………………………………………....26 6. Conclusion…………………………………………………………………………...30 7. References…………………………………………………………………………...31 2 | P a g e Thesis Publications by the Candidate Relevant to the Thesis Tan, W.N., Mansfield, S., Whitehouse, M.E.A., Cross, D. 2013. Corelating refuge attractiveness with productivity (abstract) In: Proc. Of the Association of Australian Cotton Scientists’ Inaugural Cotton Research Conference, 8-11 September 2013, Narrabri, NSW. Association of Australian Cotton Scientists, Narrabri, p.73. Industry Reports
    [Show full text]
  • Monsanto Japan Limited Applicant: Seiichiro Yamane, President Address: 4-10-10, Ginza, Chuo-Ku, Tokyo 10
    Corporation obtaining approval, the name of its representative, and the address of its main office 5 Name: Monsanto Japan Limited Applicant: Seiichiro Yamane, President Address: 4-10-10, Ginza, Chuo-ku, Tokyo 10 Approved Type 1 Use Regulation Name of the Type of Lepidopteran insect-protected soybean Living Modified (Modified cry1Ac, Glycine max (L.) Merr.) (MON87701, OECD UI : Organism MON-877Ø1-2) Content of the Type 1 Provision as food, provision as feed, processing, storage, transportation, Use of Living disposal, and acts incidental to them Modified Organism Method of the Type 1 The applicant performs the monitoring based on the monitoring plan Use of Living specified separately. Modified Organism 1 Outline of the Biological Diversity Risk Assessment Report I. Information collected prior to assessing Adverse Effects on Biological Diversity 1 Information concerning preparation of living modified organisms (1) Information concerning donor nucleic acid 1) Composition and origins of component elements The composition of donor nucleic acid and the origins of component elements used for the development of Lepidopteran insect-protected soybean (Modified cry1Ac, Glycine max (L.) Merr.) (MON87701, OECD UI : MON-877Ø1-2) (hereinafter referred to as “this recombinant soybean”) are shown in Figure 1 (p. 3) and Table 1 (p. 4-6). Seven amino acids of the Cry1Ac protein expressed by the cry1Ac gene introduced into this recombinant soybean are substituted, compared with the wild type (Genbank accession M11068). On the N-terminal region the four amino acids derived from the CTP1 protein were added to one another (Annex 5). Therefore, the cry1Ac gene introduced into this recombinant soybean and the expressed protein are referred to as the “modified cry1Ac gene” and the “modified Cry1Ac protein,” respectively.
    [Show full text]
  • Complex Responses of Global Insect Pests to Climate Change
    bioRxiv preprint doi: https://doi.org/10.1101/425488; this version posted September 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Complex responses of global insect pests to climate change 2 3 Philipp Lehmann1,2,4*, Tea Ammunét3†, Madeleine Barton4†, Andrea Battisti5†, Sanford 4 D. Eigenbrode6†, Jane Uhd Jepsen7†, Gregor Kalinkat8†, Seppo Neuvonen9†, Pekka 5 Niemelä10†, Bjørn Økland11†, John S. Terblanche4†, Christer Björkman3 6 7 1Department of Zoology, Stockholm University, Sweden. 2Centre of Excellence in 8 Biological Interactions Research, Department of Biological and Environmental Science, 9 University of Jyväskylä, Finland. 3Department of Ecology, Swedish University of 10 Agricultural Sciences, Sweden. 4Centre for Invasion Biology, Department of 11 Conservation Ecology and Entomology, Stellenbosch University, South Africa. 12 5Department of Agronomy, Food, Natural Resources, Animals and the Environment, 13 University of Padova, Italy. 6Department of Plant, Soil and Entomological Sciences, 14 University of Idaho, United States of America. 7Department of Arctic Ecology, 15 Norwegian Institute for Nature Research, Norway. 8Department of Biology and Ecology 16 of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Germany. 17 9Natural Resources Institute Finland, Finland. 10Biodiversity Unit, University of Turku, 18 Finland.11Norwegian Institute of Bioeconomy Research, Norway. 19 20 *Corresponding author: Philipp Lehmann, [email protected] 21 †Contributing authors listed alphabetically. 1 bioRxiv preprint doi: https://doi.org/10.1101/425488; this version posted September 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]