Thesis Reference

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Reference Thesis Regulation of major histocompatibility class II (MHCII) genes LEIMGRUBER, Elisa Abstract Les molécules CMHII sont spécialisées dans la présentation d'antigènes extracellulaires aux cellules T qui déclenchent une réponse immunitaire spécifique à l'antigène. L'élément du promoteur le plus important pour l'expression des gènes CMHII est le module S-Y, qui est reconnu par le transactivateur CIITA et les facteurs de transcription qui composent l'enhanceosome. La première partie de cette thèse porte sur l'étude du remodelage de la chromatine qui est induit aux promoteurs des gènes CMHII. La deuxième partie de cette thèse démontre l'existence d'un module S-Y en amont du gène BTN2A2. CIITA et l'enhanceosome se lient de façon efficace à ce module et régulent l'expression du gène BTN2A2. Par conséquent, l'expression du gène BTN2A2 est étroitement co-régulée avec les gènes CMHII. Reference LEIMGRUBER, Elisa. Regulation of major histocompatibility class II (MHCII) genes. Thèse de doctorat : Univ. Genève, 2009, no. Sc. 4133 URN : urn:nbn:ch:unige-45661 DOI : 10.13097/archive-ouverte/unige:4566 Available at: http://archive-ouverte.unige.ch/unige:4566 Disclaimer: layout of this document may differ from the published version. 1 / 1 UNIVERSITE DE GENEVE Département de biologie moléculaire FACULTE DES SCIENCES Professeur David Shore Département de pathologie et immunologie FACULTE DE MEDECINE Professeur Walter Reith ___________________________________________________________________ Regulation of major histocompatibility class II (MHCII) genes – role of nucleosome eviction in MHCII gene activation and identification of BTN2A2, a relative of the B7 family of immunomodulatory molecules, as a novel target gene of the MHCII-specific regulatory machinery THESE présentée à la Faculté des sciences de l’Université de Genève pour obtenir le grade de Docteur ès sciences, mention biologie par Elisa LEIMGRUBER de Fribourg (FR) Thèse n° 4133 Atelier d’impression ReproMail Genève 2009 Remerciements Je suis profondément reconnaissante envers le Prof. Walter Reith de m’avoir accueillie dans son laboratoire et d’avoir dirigé mon travail de thèse. Je le remercie également d’avoir été toujours disponible pour discuter de mon travail et de m’avoir transmis son intérêt et sa grande connaissance du domaine de la régulation des gènes. Je remercie également le Prof. David Shore d’avoir accepté d’être mon co-directeur de thèse et de l’intérêt qu’il a porté à mon travail. Un grand Merci aussi aux personnes qui se trouvaient dans le laboratoire à mon arrivée, en particulier Michal et Queralt, qui m’ont fait partager leur motivation et leur passion de la science. Je les remercie aussi pour leur amitié et pour avoir donné tant de leur temps pour m’aider au jour le jour dans le laboratoire. Je remercie beaucoup Queralt qui m’a accompagnée durant toutes ces années et qui s’est intéressée de près et avec grand intérêt à mes sujets de recherche. Je remercie tout particulièrement Isabelle qui, malgré son arrivée plus tardive dans le laboratoire, a rejoint très vite le groupe des personnes qui ont grandement contribué à la réussite de mon travail de thèse. Je la remercie également pour son amitié et pour les bons moments passés à côté d’elle à la paillasse. Merci à Antoine, qui a contribué à ce travail de thèse en me proposant toujours très généreusement son aide pour la réussite de mes expériences mais aussi pour entretenir le bien commun du laboratoire. Je suis reconnaissante également envers toutes les personnes du laboratoire, les personnes du département de pathologie et immunologie, et les collaborateurs externes qui ont participé à ce travail et qui ont contribué à sa publication dans des journaux scientifiques. Finalement, je suis très reconnaissante envers ma famille, mes amis et surtout mon Nicolas, qui m’ont apporté leur précieux soutient durant toutes ces années de thèse. 2 Résumé Les molécules du complexe majeur d’histocompatibilité (CMH) jouent un rôle crucial dans la défense du corps contre les micro-organismes pathogènes. Il existe deux classes de molécules CMH : CMH de classe I (CMHI) et CMH de classe II (CMHII). Les molécules CMHII sont spécialisées dans la présentation d’antigènes d’origine extracellulaire aux cellules T CD4 +. La reconnaissance des complexes antigène-CMHII par les cellules T CD4 + déclenche la prolifération et l’activation des cellules T et induit les réponses immunes spécifiques à l’antigène. Les molécules CMHII jouent également un rôle important dans les processus de sélection positive et négative qui dirigent le développement des cellules T CD4 + dans le thymus. Les molécules CMHII sont exprimées de façon constitutive à la surface des cellules présentatrices d’antigènes (les cellules dendritiques, les cellules B et les macrophages) et les cellules épithéliales du thymus. L’expression des gènes CMHII peut également être induite par l’interféron gamma (IFN γ) dans des cellules qui n’expriment normalement pas les molécules CMHII. Des défauts dans l’expression des gènes CMHII conduisent au développement d’un déficit immunitaire appelé “le syndrome des lymphocytes nus ”. L’expression des molécules CMHII est coordonnée et régulée principalement au niveau transcriptionnel. L’élément régulateur le plus important est le module S-Y qui est localisé en amont de chaque promoteur CMHII . Ce module est composé de quatre séquences d’ADN conservées, les boîtes S, X, X2 et Y, qui sont reconnues par les facteurs de transcription qui régulent l’expression des gènes CMHII . Les facteurs qui se lient au module S-Y sont RFX, CREB et NF-Y. Ces facteurs forment un complexe multi-protéique appelé «l’enhanceosome ». Le trans-activateur CIITA se lie ensuite à l’enhanceosome pour activer l’expression des gènes CMHII . La chromatine joue un rôle important dans le contrôle de l’accès de facteurs de transcription aux promoteurs. La chromatine est organisée sous forme de nucléosomes, qui sont composés des histones H2A, H2B, H3 et H4. Les histones peuvent subir des modifications, principalement l’acétylation et la méthylation, que peuvent affecter l’état de condensation de la chromatine et influencer le recrutement de co-facteurs requis pour l’activation de la transcription. Ces co-facteurs sont impliqués dans le déplacement des nucleosomes et dans l’établissement de modifications des histones. Ces processus permettent 3 finalement le recrutement de la polymérase II et de la machinerie générale de la transcription au site d’initiation de la transcription. La première partie des résultats présentés dans cette thèse porte sur l’étude du remodelage de la chromatine qui est induit aux promoteurs des gènes CMHII lors de l’activation de leur expression. Ce travail décrit les modifications des histones qui sont introduites aux promoteurs des gènes CMHII lors de leur activation et documente le déplacement des nucléosomes aux promoteurs CMHII, permettant au module S-Y et au site d’initiation de la transcription d’être accessibles aux facteurs de transcription . Les résultats montrent que l’enhanceosome médie l’éviction des nucléosomes et que le repositionnement des nucléosomes dans la région promotrice détermine la position du site d’initiation pour la transcription des gènes CMHII . CIITA a longtemps été décrit comme un activateur hautement spécifique de l’expression des gènes CMHII . Cependant, plusieurs études récentes ont montré que ce facteur pouvait aussi contrôler l’expression de gènes n’appartenant pas à la famille des gènes CMHII . La deuxième partie de cette thèse démontre l’existence d’un module S-Y en amont du gène BTN2A2 , qui code pour une protéine appartenant à la famille des molécules de costimulation B7. La machinerie de transcription des gènes CMHII , composée de CIITA et RFX, se lie de façon efficace à ce module et régule l’expression du gène BTN2A2 . Par conséquent, l’expression du gène BTN2A2 est étroitement co-régulée avec les gènes CMHII dans les cellules B et les cellules induites par l’IFN γ. 4 Summary The molecules of the major histocompatibility complex (MHC) play a crucial role in defending the body against micro-organisms. There are two classes of MHC molecules: MHC class I (MHCI) and MHC class II (MHCII). MHCII molecules are specialised for the presentation of antigens of extracellular origin to CD4 + T cells. Recognition of antigen- MHCII complexes by CD4 + T cells triggers T cell proliferation and activation, and thus induces antigen-specific immune responses. MHCII molecules also play an important role in the positive and negative selection processes that drive the development of CD4 + T cells in the thymus. MHCII molecules are expressed constitutively at the surface of antigen presenting cells (dendritic cells, B cells, macrophages) and thymic epithelial cells. The expression of MHCII genes can also be induced by interferon gamma (IFNγ) in cells that do normally not express MHCII molecules. Defects in the expression of MHCII genes lead to a severe immunodeficiency disease called “the bare lymphocyte syndrome”. MHCII gene expression is coordinated and regulated mainly at the transcriptional level. The most important regulatory element is the S-Y module, which is located upstream of each MHCII promoter. This module is composed of four conserved DNA sequences, the S, X, X2 and Y boxes, which are recognised by transcription factors that regulate MHCII gene expression. The factors that bind to the S-Y module are RFX, CREB and NF-Y. These factors form a multi-protein complex called the "enhanceosome". The trans-activator CIITA is recruited to the enhanceosome and activates MHCII gene expression. Chromatin plays an important role in controlling the access of transcription factors to promoters. Chromatin is organised into nucleosomes, which are composed of histones H2A, H2B, H3 and H4. Histones can undergo modifications, such as acetylation and methylation, which can affect chromatin accessibility and influence the recruitment of co-factors required for transcription activation. These co-factors are involved in the displacement of nucleosomes and the establishment of histone modifications.
Recommended publications
  • Anti-H3r2me2(Asym) Antibody
    FOR RESEARCH USE ONLY! 01/20 Anti-H3R2me2(asym) Antibody CATALOG NO.: A2025-100 (100 µl) BACKGROUND DESCRIPTION: Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Nucleosomes consist of approximately 146 bp of DNA wrapped around a histone octamer composed of pairs of each of the four core histones (H2A, H2B, H3, and H4). The chromatin fiber is further compacted through the interaction of a linker histone, H1, with the DNA between the nucleosomes to form higher order chromatin structures. This gene is intronless and encodes a replication-dependent histone that is a member of the histone H3 family. Transcripts from this gene lack poly A tails; instead, they contain a palindromic termination element. This gene is located separately from the other H3 genes that are in the histone gene cluster on chromosome 6p22-p21.3. H3.4; H3/g; H3FT; H3t; HIST3H3; Histone H3; HIST1H3A ALTERNATE NAMES: ANTIBODY TYPE: Polyclonal HOST/ISOTYPE: Rabbit / IgG IMMUNOGEN: A synthetic methylated peptide targeting residues around Arginine 2 of human Histone H3 MOLECULAR WEIGHT: 17 kDa PURIFICATION: Affinity purified FORM: Liquid FORMULATION: In PBS with 0.02% sodium azide, 50% glycerol, pH 7.3 SPECIES REACTIVITY: Human, Mouse, Rat STORAGE CONDITIONS: Store at -20ºC. Avoid freeze / thaw cycles APPLICATIONS AND USAGE: WB 1:500 - 1:2000, IHC 1:50 - 1:200, IF 1:50 - 1:200 Note: This information is only intended as a guide. The optimal dilutions must be determined by the user Western blot analysis of H3R2me2(asym) expression in Dot-blot analysis of methylation peptides using Anti- HeLa cells and H3 protein.
    [Show full text]
  • [Dimethyl Arg17] Antibody NBP2-59162
    Product Datasheet Histone H3 [Dimethyl Arg17] Antibody NBP2-59162 Unit Size: 100 ul Store at -20C. Avoid freeze-thaw cycles. Protocols, Publications, Related Products, Reviews, Research Tools and Images at: www.novusbio.com/NBP2-59162 Updated 5/13/2021 v.20.1 Earn rewards for product reviews and publications. Submit a publication at www.novusbio.com/publications Submit a review at www.novusbio.com/reviews/destination/NBP2-59162 Page 1 of 3 v.20.1 Updated 5/13/2021 NBP2-59162 Histone H3 [Dimethyl Arg17] Antibody Product Information Unit Size 100 ul Concentration Please see the vial label for concentration. If unlisted please contact technical services. Storage Store at -20C. Avoid freeze-thaw cycles. Clonality Polyclonal Preservative 0.05% Sodium Azide Isotype IgG Purity Whole Antiserum Buffer Serum Target Molecular Weight 15 kDa Product Description Host Rabbit Gene ID 126961 Gene Symbol H3C14 Species Human Immunogen The exact sequence of the immunogen to this Histone H3 [Dimethyl Arg17] antibody is proprietary. Product Application Details Applications Western Blot, Chromatin Immunoprecipitation, Dot Blot, ELISA Recommended Dilutions Western Blot 1:250, Chromatin Immunoprecipitation 10 - 15 uL/IP, ELISA 1:1000 - 1:3000, Dot Blot 1:20000 Page 2 of 3 v.20.1 Updated 5/13/2021 Images Western Blot: Histone H3 [Dimethyl Arg17] Antibody [NBP2-59162] - Histone extracts of HeLa cells (15 ug) were analysed by Western blot using the antibody against H3R17me2(asym) diluted 1:250 in TBS- Tween containing 5% skimmed milk. Observed molecular weight is ~17 kDa. Chromatin Immunoprecipitation: Histone H3 [Dimethyl Arg17] Antibody [NBP2-59162] - ChIP assays were performed using human osteosarcoma (U2OS) cells, the antibody against H3R17me2(asym) and optimized PCR primer sets for qPCR.
    [Show full text]
  • Arsenite Exposure Inhibits Histone Acetyltransferase P300 For
    !!!!!! "#$%&'(%!%)*+$,#%!'&-'.'($!-'$(+&%!"/%(01(#"&$2%#"$%!*344!2+#! "((%&,"('&5!-3678"/!"(!%&-"&/%#$!'&!1+9:;+$%!%)*+$%;!<+,$%! %<.#0+&'/!2'.#+.1"$(!/%11$! ! ! ! =>! ! 0?@!ABC! ! "!DEFFGHI?IEJ@!FC=KEIIGD!IJ!LJB@F!-JMNE@F!,@EOGHFEI>!E@!PJ@QJHKEI>!REIB!IBG! HGSCEHGKG@IF!QJH!IBG!DGTHGG!JQ!<?FIGH!JQ!$PEG@PG! ! .?UIEKJHGV!<?H>U?@D! ! "MHEUV!74WX! Y!0?@!ABC!74WX! ! "UU!#ETBIF!#GFGHOGD! ! ! !"#$%&'$( .JIB!GMEDGKEJUJTEP?U!E@OGFIET?IEJ@F!?@D!?@EK?U!FICDEGF!B?OG!UE@NGD!?HFG@EP! PJ@I?KE@?IGD!R?IGH!IJ!P?@PGHFZ!.GFEDGF!TG@JIJ[EPEI>V!?HFG@EP!G[MJFCHG:HGU?IGD! M?IBJTG@GFEF!JQ!DEFG?FG!EF!REDGU>!PJ@FEDGHGD!IBHJCTB!GMETG@GIEP!KGPB?@EFKF\! BJRGOGHV!IBG!C@DGHU>E@T!KGPB?@EFK!HGK?E@F!IJ!=G!DGIGHKE@GDZ!-GHGE@!RG!G[MUJHG! IBG!E@EIE?U!GMETG@GIEP!PB?@TGF!OE?!?PCIG!UJR:DJFG!?HFG@EIG!G[MJFCHGF!JQ!KJCFG! GK=H>J@EP!QE=HJ=U?FI!]<%2^!PGUUF!?@D!BEFIJ@G!-368_!KGIB>UIH?@FQGH?FG!;+(W1! N@JPNJCI!<%2!];JIW1:`:^!PGUUFZ! 2EHFIV!RG!DGPEDGD!IBG!G[MJFCHG!PJ@PG@IH?IEJ@!?@D!IEKG!JQ!FJDECK!?HFG@EIG! ?PPJHDE@T!IJ!IBG!G[MHGFFEJ@!JQ!&HQ7Z!9G!FI?HIGD!JCH!G[MJFCHG!G[MGHEKG@IF!REIB!IRJ! IEKG!MJE@IF!]a!?@D!7b!B^!?@D!QJCH!PJ@PG@IH?IEJ@F!]4V!7V!cV!?@D!W4!d<^Z!"QIGH!a!B! IHG?IKG@IV!IBG!?KJC@I!JQ!&HQ7!FBJRGD!DJFG:GQQGPI!HGU?IEJ@FBEMF!REIB!IBG! PJ@PG@IH?IEJ@F!JQ!FJDECK!?HFG@EIG!E@!=JIB!PGUU!UE@GF!?@D!IBGHG!RGHG!FET@EQEP?@I! DEQQGHG@PG!=GIRGG@!7!d<!?@D!c!d<!THJCMFZ!(BG!?KJC@I!JQ!&HQ7!?QIGH!7b!B!G[MJFCHG! ?UFJ!FBJRGD!DJFG:GQQGPI!HGU?IEJ@FBEMF!REIB!IBG!PJ@PG@IH?IEJ@F!JQ!FJDECK!?HFG@EIGZ! -JRGOGHV!PJKM?HGD!REIB!a!B!THJCMFV!7b!B!THJCMF!FBJRGD!DEQQGHG@I!M?IIGH@!JQ!&HQ7! ii G[MHGFFEJ@!=GIRGG@!IRJ!PGUU!UE@GFV!RBEPB!KETBI!=G!P?CFGD!=>!;JIW1!U?PNE@TZ!
    [Show full text]
  • Stepwise Histone Modifications Are Mediated by Multiple Enzymes That
    ARTICLE Received 4 Apr 2013 | Accepted 29 Oct 2013 | Published 26 Nov 2013 DOI: 10.1038/ncomms3841 Stepwise histone modifications are mediated by multiple enzymes that rapidly associate with nascent DNA during replication Svetlana Petruk1, Kathryn L. Black1, Sina K. Kovermann2, Hugh W. Brock2 & Alexander Mazo1 The mechanism of epigenetic inheritance following DNA replication may involve dissociation of chromosomal proteins from parental DNA and reassembly on daughter strands in a specific order. Here we investigated the behaviour of different types of chromosomal proteins using newly developed methods that allow assessment of the assembly of proteins during DNA replication. Unexpectedly, most chromatin-modifying proteins tested, including methylases, demethylases, acetyltransferases and a deacetylase, are found in close proximity to PCNA or associate with short nascent DNA. Histone modifications occur in a temporal order following DNA replication, mediated by complex activities of different enzymes. In contrast, components of several major nucleosome-remodelling complexes are dissociated from parental DNA, and are later recruited to nascent DNA following replication. Epigenetic inheritance of gene expression patterns may require many aspects of chromatin structure to remain in close proximity to the replication complex followed by reassembly on nascent DNA shortly after replication. 1 Department of Biochemistry and Molecular Biology and Kimmel Cancer Center, Thomas Jefferson University, 1020 Locust Street, Philadelphia, Pennsylvania 19107, USA. 2 Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4. Correspondence and requests for materials should be addressed to A.M. (email: [email protected]). NATURE COMMUNICATIONS | 4:2841 | DOI: 10.1038/ncomms3841 | www.nature.com/naturecommunications 1 & 2013 Macmillan Publishers Limited.
    [Show full text]
  • H3r17me2(Asym)K18ac Polyclonal Antibody
    H3R17me2(asym)K18ac polyclonal antibody Cat. No. C15410171 Specificity: Human, mouse, wide range expected Type: Polyclonal Purity: Affinity purified polyclonal antibody in PBS containing ChIP-grade / ChIP-seq-grade 0.05% azide and 0.05% ProClin 300. Source: Rabbit Storage: Store at -20°C; for long storage, store at -80°C. Lot #: A1922-001P Avoid multiple freeze-thaw cycles. Size: 50 µg/ 53 µl Precautions: This product is for research use only. Not for use in diagnostic or therapeutic procedures. Concentration: 0.94 µg/µl Description: Polyclonal antibody raised in rabbit against the region of histone H3 containing the asymmetrically dimethylated R17 and the acetylated lysine 18 (H3R17me2(asym)K18ac), using a KLH-conjugated synthetic peptide. Applications Suggested dilution Results ChIP* 1 µg per IP Fig 1, 2 ELISA 1:1,000 Fig 3 Dot blotting 1:20,000 Fig 4 Western blotting 1:1,000 Fig 5 IF 1:500 Fig 6 * Please note that the optimal antibody amount per ChIP should be determined by the end-user. We recommend testing 1-5 µg per IP. Target description Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes.
    [Show full text]
  • The Role of the Arginine Methyltransferase CARM1 in Global Transcriptional Regulation
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 4-23-2014 12:00 AM The role of the arginine methyltransferase CARM1 in global transcriptional regulation. Niamh Coughlan The University of Western Ontario Supervisor Dr. Joseph Torchia The University of Western Ontario Graduate Program in Biochemistry A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Niamh Coughlan 2014 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Biochemistry Commons Recommended Citation Coughlan, Niamh, "The role of the arginine methyltransferase CARM1 in global transcriptional regulation." (2014). Electronic Thesis and Dissertation Repository. 2013. https://ir.lib.uwo.ca/etd/2013 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. THE ROLE OF THE ARGININE METHYLTRANSFERASE CARM1 IN GLOBAL TRANSCRIPTIONAL REGULATION (Thesis format: Integrated Article) by Niamh Coughlan Graduate Program in Biochemistry A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © Niamh Coughlan 2014 Abstract Arginine methylation is a prevalent post-translational modification that is found on many nuclear and cytoplasmic proteins, and has been implicated in the regulation of gene expression. CARM1 is a member of the protein arginine methyltransferase (PRMT) family of proteins, and is a key protein responsible for arginine methylation of a subset of proteins involved in transcription.
    [Show full text]
  • Anti-H3r8me2(Asym) Antibody
    FOR RESEARCH USE ONLY! 01/20 Anti-H3R8me2(asym) Antibody CATALOG NO.: A2047-100 (100 µl) BACKGROUND DESCRIPTION: Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Nucleosomes consist of approximately 146 bp of DNA wrapped around a histone octamer composed of pairs of each of the four core histones (H2A, H2B, H3, and H4). The chromatin fiber is further compacted through the interaction of a linker histone, H1, with the DNA between the nucleosomes to form higher order chromatin structures. This gene is intronless and encodes a replication-dependent histone that is a member of the histone H3 family. Transcripts from this gene lack poly A tails; instead, they contain a palindromic termination element. This gene is located separately from the other H3 genes that are in the histone gene cluster on chromosome 6p22-p21.3. H3.4; H3/g; H3FT; H3t; HIST3H3; Histone H3; HIST1H3A ALTERNATE NAMES: ANTIBODY TYPE: Polyclonal HOST/ISOTYPE: Rabbit / IgG IMMUNOGEN: A synthetic methylated peptide targeting residues around Arginine 8 of human histone H3 MOLECULAR WEIGHT: 18 kDa PURIFICATION: Affinity purified FORM: Liquid FORMULATION: In PBS with 0.02% sodium azide, 50% glycerol, pH7.3 SPECIES REACTIVITY: Human, Mouse, Rat STORAGE CONDITIONS: Store at -20ºC. Avoid freeze / thaw cycles APPLICATIONS AND USAGE: WB 1:500 - 1:2000, IF 1:50 - 1:200 Note: This information is only intended as a guide. The optimal dilutions must be determined by the user Western blot analysis of H3R8me2(asym) expression in Dot-blot analysis of methylation peptides using Anti- HeLa cells and H3 protein.
    [Show full text]
  • The Role of BCL-3 Feedback Loops in Regulating NF-Κb Signalling
    The role of BCL-3 feedback loops in regulating NF-κB signalling A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences 2012 Thomas Walker School of Chemical Engineering and Analytical Sciences Integrative Systems Biology Contents Contents……………………………………………………………………………….... 1 Word count………………………………………………………………………………. 9 List of figures……………………………………………………………………………. 9 List of tables…………………………………………………………………………….. 11 Abbreviations………………………………………………………………………........ 11 Abstract………………………………………………………………………………...... 15 Declaration & Copyright Statement…………………………………………..…...... 16 Acknowledgements……………………………………………………………..……… 17 Chapter 1 Introduction……………………………………………………………………..……….. 18 1.1. The inflammatory response…………………………………………………………...……………. 18 1.1.1. PAMPs: initial indicators of infection…………………………………………………………….. 18 1.1.2. The inflammatory response………………………………………………………………………. 19 1.1.3. Cytokines…………………………………………………………………………………………… 19 1.1.3.1. The TNF family of cytokines…………………………………………………………..... 20 1.1.3.2. The TNFR family………………………………………………………………………… 20 1.1.3.3. Diverse cell types produce and are responsive to TNF α……………………………. 21 1.1.4. Fibroblasts as inflammation mediators……………………………………………………………. 21 1.2. NF-κB transcription factors………………………………………………………………………… 22 1.2.1. NF-κB subunits and dimer combinations……………………………………………………..... 22 1.2.2. Canonical NF-κB signalling………………………………………………………………………. 23 1.2.3. p50 homodimers………………………………………………………………………………….
    [Show full text]
  • H3r17me2(Asym) | Histone H3 (Asym-Dimethyl Arg17) Product Information
    Product no AS16 3180 H3R17me2(asym) | Histone H3 (asym-dimethyl Arg17) Product information Immunogen KLH-conjugated synthetic peptide Host Rabbit Clonality Polyclonal Purity Affinity purified serum Format Liquid Quantity 50 µg Storage Store lyophilized/reconstituted at -20°C; once reconstituted make aliquots to avoid repeated freeze-thaw cycles. Please, remember to spin tubes briefly prior to opening them to avoid any losses that might occur from lyophilized material adhering to the cap or sides of the tubes. Additional information This antibody preparation is provided in 20 mM Potassium Phosphate pH 7.2, 150 mM NaCl, 0,01% sodium azide and 30% glycerol. Application information Recommended dilution 2-5 µg/million cells (ChIP), 1 : 50 (IF), 1 : 500 (WB) Expected | apparent 15 kDa MW Confirmed reactivity Caenorhabditis elegans, Human Predicted reactivity Chicken, Drosophila melanogaster, Mouse, Plant, Rat, Xenopus sp. Not reactive in No confirmed exceptions from predicted reactivity are currently known. application example Chromatin Immunoprecipitation using anti-H3R17me2a antibodies. Chromatin from one million formaldehyde cross-linked Hela cells was used with 2 ug of H3R17me2a antibody alongside a no antibody (No Ab) control. DNA was measured by qPCR and normalized to total input. Immunofluorescence using anti-H3R17me2a antibodies. Tissue: HeLa cells. Fixation: 0.5% PFA. Primary antibody used at a 1:50 dilution for 1 h at RT. Secondary antibody: FITC secondary antibody at 1:10 000 for 45 min at RT. Localization: Histone H3R17me2a is nuclear and chromosomal. Staining: Histone H3R17me2a is expressed in green, nuclei are counterstained with Dapi (blue). Western Blot anti-H3R17me2a antibodies. 30 µg of C.
    [Show full text]
  • [Ac Lys18] Antibody NBP2-59218
    Product Datasheet Histone H3 [ac Lys18] Antibody NBP2-59218 Unit Size: 50 ug Store at -20C. Avoid freeze-thaw cycles. Protocols, Publications, Related Products, Reviews, Research Tools and Images at: www.novusbio.com/NBP2-59218 Updated 12/9/2020 v.20.1 Earn rewards for product reviews and publications. Submit a publication at www.novusbio.com/publications Submit a review at www.novusbio.com/reviews/destination/NBP2-59218 Page 1 of 3 v.20.1 Updated 12/9/2020 NBP2-59218 Histone H3 [ac Lys18] Antibody Product Information Unit Size 50 ug Concentration Please see the vial label for concentration. If unlisted please contact technical services. Storage Store at -20C. Avoid freeze-thaw cycles. Clonality Polyclonal Preservative 0.05% Sodium Azide and 0.05% ProClin 300 Isotype IgG Purity Peptide affinity purified Buffer PBS Target Molecular Weight 15 kDa Product Description Host Rabbit Gene ID 126961 Gene Symbol H3C14 Species Human, Mouse Immunogen The exact sequence of the immunogen to this Histone H3 [ac Lys18] antibody is proprietary. Product Application Details Applications Western Blot, Chromatin Immunoprecipitation, Dot Blot, ELISA, Immunofluorescence Recommended Dilutions Western Blot 1:1000, Chromatin Immunoprecipitation 1 ug, ELISA 1:1000, Dot Blot 1:20000, Immunofluorescence 1:500 Images Western Blot: Histone H3 [ac Lys18] Antibody [NBP2-59218] - Western blot was performed on whole cell (25 ug, lane 1) and histone extracts (15 ug, lane 2) from HeLa cells, and on 1 ug of recombinant histone H2A, H2B, H3 and H4 (lane 3, 4, 5 and 6, respectively) using the antibody against H3R17me2(asym)K18ac . The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk.
    [Show full text]
  • Metabolic Recoding of Epigenetics in Cancer Yi‑Ping Wang* and Qun‑Ying Lei*
    Wang and Lei Cancer Commun (2018) 38:25 https://doi.org/10.1186/s40880-018-0302-3 Cancer Communications REVIEW Open Access Metabolic recoding of epigenetics in cancer Yi‑Ping Wang* and Qun‑Ying Lei* Abstract Dysregulation of metabolism allows tumor cells to generate needed building blocks as well as to modulate epige‑ netic marks to support cancer initiation and progression. Cancer-induced metabolic changes alter the epigenetic landscape, especially modifcations on histones and DNA, thereby promoting malignant transformation, adaptation to inadequate nutrition, and metastasis. Recent advances in cancer metabolism shed light on how aberrations in metabolites and metabolic enzymes modify epigenetic programs. The metabolism-induced recoding of epigenetics in cancer depends strongly on nutrient availability for tumor cells. In this review, we focus on metabolic remodeling of epigenetics in cancer and examine potential mechanisms by which cancer cells integrate nutritional inputs into epigenetic modifcation. Keywords: Cancer metabolism, Epigenetics, Metabolites, Histone modifcation, DNA methylation, Cancer microenvironment, Nutrient availability Background metabolic activity and nutritional status of cancer cells Dysregulated metabolism is one of the most prominent strongly infuence epigenetics, especially modifcations features of cancer. Since the postulation of aerobic gly- on histone and DNA [15]. Te metabolic reprogramming colysis (Warburg efect) in the early 20th century [1], interacts with epigenetic regulation and signal transduc- metabolic reprogramming in cancer has been the subject tion to promote cancer cell survival and proliferation [16, of extensive research [2]. Cellular metabolism is repro- 17], and to infuence a broad range of biological processes grammed at multiple levels in cancer: genetic, epigenetic, [18]. transcriptional, posttranscriptional, translational control, Tis review summarizes recent advances in our under- and posttranslational [3–10].
    [Show full text]
  • Moshkovich Et Al. PADI4 Negatively Regulates Breast Cancer Stem Cells 1
    Author Manuscript Published OnlineFirst on April 7, 2020; DOI: 10.1158/0008-5472.CAN-19-3018 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Moshkovich et al. PADI4 negatively regulates breast cancer stem cells Peptidylarginine deiminase IV (PADI4) regulates breast cancer stem cells via a novel tumor cell-autonomous suppressor role by Nellie Moshkovich1, Humberto J. Ochoa1, Binwu Tang1, Howard H. Yang1, Yuan Yang1, Jing Huang1, Maxwell P. Lee1 and Lalage M. Wakefield1 1Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda MD 20892, USA Running title: PADI4 negatively regulates breast cancer stem cells Keywords: PADI4, Cancer stem cells, Breast cancer, Citrullination, Epigenetics Financial support: This work was supported by funding from the Intramural Research Program of the National Cancer Institute, Center for Cancer Research, NIH project ZIA BC 005785. Corresponding author: Lalage M. Wakefield D Phil, ORCID ID# 0000-0003-4124-5250 37 Convent Drive, MSC 4255, National Cancer Institute, Building 37, Room 4032A, Bethesda MD 20892-4255 Tel: 240-760-6808 Email: [email protected] Conflict of interest statement: The authors declare no conflicts of interest. Word count: Abstract: 240 Main text: 5772 (excluding acknowledgments, references and figure legends) Number of Figures: 5 Number of Tables: 1 Number of References: 49 1 Downloaded from cancerres.aacrjournals.org on September 30, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on April 7, 2020; DOI: 10.1158/0008-5472.CAN-19-3018 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
    [Show full text]