Stepwise Histone Modifications Are Mediated by Multiple Enzymes That
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Subcloning, Expression, and Enzymatic Study of PRMT5
Georgia State University ScholarWorks @ Georgia State University Biology Theses Department of Biology Summer 7-12-2010 Subcloning, Expression, and Enzymatic Study of PRMT5 Ran Guo Georgia State University Follow this and additional works at: https://scholarworks.gsu.edu/biology_theses Part of the Biology Commons Recommended Citation Guo, Ran, "Subcloning, Expression, and Enzymatic Study of PRMT5." Thesis, Georgia State University, 2010. https://scholarworks.gsu.edu/biology_theses/26 This Thesis is brought to you for free and open access by the Department of Biology at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Biology Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. SUBCLONING, EXPRESSION, AND ENZYMATIC STUDY OF PRMT5 by RAN GUO Under the Direction of Yujun George Zheng ABSTRACT Protein arginine methyltransferases (PRMTs) mediate the transfer of methyl groups to arginine residues in histone and non-histone proteins. PRMT5 is an important member of PRMTs which symmetrically dimethylates arginine 8 in histone H3 (H3R8) and arginine 3 in histone H4 (H4R3). PRMT5 was reported to inhibit some tumor suppressors in leukemia and lymphoma cells and regulate p53 gene, through affecting the promoter of p53. Through methylation of H4R3, PRMT5 can recruit DNA-methyltransferase 3A (DNMT3A) which regulates gene transcription. All the above suggest that PRMT5 has an important function of suppressing cell apoptosis and is a potential anticancer target. Currently, the enzymatic activities of PRMT5 are not clearly understood. In our study, we improved the protein expression methodology and greatly enhanced the yield and quality of the recombinant PRMT5. -
Inferring Causal Relationships Among Different Histone Modifications and Gene Expression
Downloaded from genome.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Inferring Causal Relationships among Different Histone Modifications and Gene Expression Hong Yu*, Shanshan Zhu*, Bing Zhou*, Huiling Xue and Jing-Dong J. Han Chinese Academy of Sciences Key Laboratory of Molecular Developmental Biology, Center for Molecular Systems Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Beijing, 100101, China * These authors contributed equally to this work. Correspondence should be addressed to J.-D.J.H ([email protected]). Running title: histone modification and gene expression network Keywords: histone modification, gene expression, Bayesian network, causal relationship, epigenetics 1 Downloaded from genome.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract Histone modifications are major epigenetic factors regulating gene expression. They play important roles in maintaining stem cell pluripotency and in cancer pathogenesis. Different modifications may combine to form complex ‘histone codes’. Recent high throughput technologies, such as ‘ChIP-chip’ and ‘ChIP-seq’, have generated high resolution maps for many histone modifications on the human genome. Here we use these maps to build a Bayesian network to infer causal and combinatorial relationships among histone modifications and gene expression. A pilot network derived by the same method among polycomb group (PcG) genes and H3K27 trimethylation is accurately supported by current literature. Our unbiased network model among histone modifications is also well supported by cross validation results. It not only confirmed already known relationships, such as those of H3K27me3 to gene silencing, H3K4me3 to gene activation, and the effect of bivalent modification of both H3K4me3 and H3K27me3, but also identified many other relationships that may predict new epigenetic interactions important in epigenetic gene regulation. -
Anti-H3r2me2(Asym) Antibody
FOR RESEARCH USE ONLY! 01/20 Anti-H3R2me2(asym) Antibody CATALOG NO.: A2025-100 (100 µl) BACKGROUND DESCRIPTION: Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Nucleosomes consist of approximately 146 bp of DNA wrapped around a histone octamer composed of pairs of each of the four core histones (H2A, H2B, H3, and H4). The chromatin fiber is further compacted through the interaction of a linker histone, H1, with the DNA between the nucleosomes to form higher order chromatin structures. This gene is intronless and encodes a replication-dependent histone that is a member of the histone H3 family. Transcripts from this gene lack poly A tails; instead, they contain a palindromic termination element. This gene is located separately from the other H3 genes that are in the histone gene cluster on chromosome 6p22-p21.3. H3.4; H3/g; H3FT; H3t; HIST3H3; Histone H3; HIST1H3A ALTERNATE NAMES: ANTIBODY TYPE: Polyclonal HOST/ISOTYPE: Rabbit / IgG IMMUNOGEN: A synthetic methylated peptide targeting residues around Arginine 2 of human Histone H3 MOLECULAR WEIGHT: 17 kDa PURIFICATION: Affinity purified FORM: Liquid FORMULATION: In PBS with 0.02% sodium azide, 50% glycerol, pH 7.3 SPECIES REACTIVITY: Human, Mouse, Rat STORAGE CONDITIONS: Store at -20ºC. Avoid freeze / thaw cycles APPLICATIONS AND USAGE: WB 1:500 - 1:2000, IHC 1:50 - 1:200, IF 1:50 - 1:200 Note: This information is only intended as a guide. The optimal dilutions must be determined by the user Western blot analysis of H3R2me2(asym) expression in Dot-blot analysis of methylation peptides using Anti- HeLa cells and H3 protein. -
[Dimethyl Arg17] Antibody NBP2-59162
Product Datasheet Histone H3 [Dimethyl Arg17] Antibody NBP2-59162 Unit Size: 100 ul Store at -20C. Avoid freeze-thaw cycles. Protocols, Publications, Related Products, Reviews, Research Tools and Images at: www.novusbio.com/NBP2-59162 Updated 5/13/2021 v.20.1 Earn rewards for product reviews and publications. Submit a publication at www.novusbio.com/publications Submit a review at www.novusbio.com/reviews/destination/NBP2-59162 Page 1 of 3 v.20.1 Updated 5/13/2021 NBP2-59162 Histone H3 [Dimethyl Arg17] Antibody Product Information Unit Size 100 ul Concentration Please see the vial label for concentration. If unlisted please contact technical services. Storage Store at -20C. Avoid freeze-thaw cycles. Clonality Polyclonal Preservative 0.05% Sodium Azide Isotype IgG Purity Whole Antiserum Buffer Serum Target Molecular Weight 15 kDa Product Description Host Rabbit Gene ID 126961 Gene Symbol H3C14 Species Human Immunogen The exact sequence of the immunogen to this Histone H3 [Dimethyl Arg17] antibody is proprietary. Product Application Details Applications Western Blot, Chromatin Immunoprecipitation, Dot Blot, ELISA Recommended Dilutions Western Blot 1:250, Chromatin Immunoprecipitation 10 - 15 uL/IP, ELISA 1:1000 - 1:3000, Dot Blot 1:20000 Page 2 of 3 v.20.1 Updated 5/13/2021 Images Western Blot: Histone H3 [Dimethyl Arg17] Antibody [NBP2-59162] - Histone extracts of HeLa cells (15 ug) were analysed by Western blot using the antibody against H3R17me2(asym) diluted 1:250 in TBS- Tween containing 5% skimmed milk. Observed molecular weight is ~17 kDa. Chromatin Immunoprecipitation: Histone H3 [Dimethyl Arg17] Antibody [NBP2-59162] - ChIP assays were performed using human osteosarcoma (U2OS) cells, the antibody against H3R17me2(asym) and optimized PCR primer sets for qPCR. -
BMC Genomics Biomed Central
BMC Genomics BioMed Central Research article Open Access Determination of enriched histone modifications in non-genic portions of the human genome Jeffrey A Rosenfeld1,2,3, Zhibin Wang4, Dustin E Schones4, Keji Zhao4, Rob DeSalle3 and Michael Q Zhang*1 Address: 1Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724 USA, 2Department of Biology, New York University, New York, NY USA, 3American Museum of Natural History, New York, NY USA and 4Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, NIH, Bethesda, MD USA Email: Jeffrey A Rosenfeld - [email protected]; Zhibin Wang - [email protected]; Dustin E Schones - [email protected]; Keji Zhao - [email protected]; Rob DeSalle - [email protected]; Michael Q Zhang* - [email protected] * Corresponding author Published: 31 March 2009 Received: 8 September 2008 Accepted: 31 March 2009 BMC Genomics 2009, 10:143 doi:10.1186/1471-2164-10-143 This article is available from: http://www.biomedcentral.com/1471-2164/10/143 © 2009 Rosenfeld et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP- seq) has recently been used to identify the modification patterns for the methylation and acetylation of many different histone tails in genes and enhancers. Results: We have extended the analysis of histone modifications to gene deserts, pericentromeres and subtelomeres. Using data from human CD4+ T cells, we have found that each of these non- genic regions has a particular profile of histone modifications that distinguish it from the other non- coding regions. -
Arsenite Exposure Inhibits Histone Acetyltransferase P300 For
!!!!!! "#$%&'(%!%)*+$,#%!'&-'.'($!-'$(+&%!"/%(01(#"&$2%#"$%!*344!2+#! "((%&,"('&5!-3678"/!"(!%&-"&/%#$!'&!1+9:;+$%!%)*+$%;!<+,$%! %<.#0+&'/!2'.#+.1"$(!/%11$! ! ! ! =>! ! 0?@!ABC! ! "!DEFFGHI?IEJ@!FC=KEIIGD!IJ!LJB@F!-JMNE@F!,@EOGHFEI>!E@!PJ@QJHKEI>!REIB!IBG! HGSCEHGKG@IF!QJH!IBG!DGTHGG!JQ!<?FIGH!JQ!$PEG@PG! ! .?UIEKJHGV!<?H>U?@D! ! "MHEUV!74WX! Y!0?@!ABC!74WX! ! "UU!#ETBIF!#GFGHOGD! ! ! !"#$%&'$( .JIB!GMEDGKEJUJTEP?U!E@OGFIET?IEJ@F!?@D!?@EK?U!FICDEGF!B?OG!UE@NGD!?HFG@EP! PJ@I?KE@?IGD!R?IGH!IJ!P?@PGHFZ!.GFEDGF!TG@JIJ[EPEI>V!?HFG@EP!G[MJFCHG:HGU?IGD! M?IBJTG@GFEF!JQ!DEFG?FG!EF!REDGU>!PJ@FEDGHGD!IBHJCTB!GMETG@GIEP!KGPB?@EFKF\! BJRGOGHV!IBG!C@DGHU>E@T!KGPB?@EFK!HGK?E@F!IJ!=G!DGIGHKE@GDZ!-GHGE@!RG!G[MUJHG! IBG!E@EIE?U!GMETG@GIEP!PB?@TGF!OE?!?PCIG!UJR:DJFG!?HFG@EIG!G[MJFCHGF!JQ!KJCFG! GK=H>J@EP!QE=HJ=U?FI!]<%2^!PGUUF!?@D!BEFIJ@G!-368_!KGIB>UIH?@FQGH?FG!;+(W1! N@JPNJCI!<%2!];JIW1:`:^!PGUUFZ! 2EHFIV!RG!DGPEDGD!IBG!G[MJFCHG!PJ@PG@IH?IEJ@!?@D!IEKG!JQ!FJDECK!?HFG@EIG! ?PPJHDE@T!IJ!IBG!G[MHGFFEJ@!JQ!&HQ7Z!9G!FI?HIGD!JCH!G[MJFCHG!G[MGHEKG@IF!REIB!IRJ! IEKG!MJE@IF!]a!?@D!7b!B^!?@D!QJCH!PJ@PG@IH?IEJ@F!]4V!7V!cV!?@D!W4!d<^Z!"QIGH!a!B! IHG?IKG@IV!IBG!?KJC@I!JQ!&HQ7!FBJRGD!DJFG:GQQGPI!HGU?IEJ@FBEMF!REIB!IBG! PJ@PG@IH?IEJ@F!JQ!FJDECK!?HFG@EIG!E@!=JIB!PGUU!UE@GF!?@D!IBGHG!RGHG!FET@EQEP?@I! DEQQGHG@PG!=GIRGG@!7!d<!?@D!c!d<!THJCMFZ!(BG!?KJC@I!JQ!&HQ7!?QIGH!7b!B!G[MJFCHG! ?UFJ!FBJRGD!DJFG:GQQGPI!HGU?IEJ@FBEMF!REIB!IBG!PJ@PG@IH?IEJ@F!JQ!FJDECK!?HFG@EIGZ! -JRGOGHV!PJKM?HGD!REIB!a!B!THJCMFV!7b!B!THJCMF!FBJRGD!DEQQGHG@I!M?IIGH@!JQ!&HQ7! ii G[MHGFFEJ@!=GIRGG@!IRJ!PGUU!UE@GFV!RBEPB!KETBI!=G!P?CFGD!=>!;JIW1!U?PNE@TZ! -
Histone Methylation Regulation in Neurodegenerative Disorders
International Journal of Molecular Sciences Review Histone Methylation Regulation in Neurodegenerative Disorders Balapal S. Basavarajappa 1,2,3,4,* and Shivakumar Subbanna 1 1 Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; [email protected] 2 New York State Psychiatric Institute, New York, NY 10032, USA 3 Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA 4 New York University Langone Medical Center, Department of Psychiatry, New York, NY 10016, USA * Correspondence: [email protected]; Tel.: +1-845-398-3234; Fax: +1-845-398-5451 Abstract: Advances achieved with molecular biology and genomics technologies have permitted investigators to discover epigenetic mechanisms, such as DNA methylation and histone posttransla- tional modifications, which are critical for gene expression in almost all tissues and in brain health and disease. These advances have influenced much interest in understanding the dysregulation of epigenetic mechanisms in neurodegenerative disorders. Although these disorders diverge in their fundamental causes and pathophysiology, several involve the dysregulation of histone methylation- mediated gene expression. Interestingly, epigenetic remodeling via histone methylation in specific brain regions has been suggested to play a critical function in the neurobiology of psychiatric disor- ders, including that related to neurodegenerative diseases. Prominently, epigenetic dysregulation currently brings considerable interest as an essential player in neurodegenerative disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), Amyotrophic lateral sclerosis (ALS) and drugs of abuse, including alcohol abuse disorder, where it may facilitate connections between genetic and environmental risk factors or directly influence disease-specific Citation: Basavarajappa, B.S.; Subbanna, S. -
Global Histone Modifications in Breast Cancer Correlate with Tumor Phenotypes, Prognostic Factors, and Patient Outcome
Published OnlineFirst April 14, 2009; DOI: 10.1158/0008-5472.CAN-08-3907 Research Article Global Histone Modifications in Breast Cancer Correlate with Tumor Phenotypes, Prognostic Factors, and Patient Outcome Somaia E. Elsheikh,1,7 Andrew R. Green,1 Emad A. Rakha,1 Des G. Powe,1 Rabab A. Ahmed,1,8 Hilary M. Collins,2 Daniele Soria,3 Jonathan M. Garibaldi,3 Claire E. Paish,1 Amr A. Ammar,7 Matthew J. Grainge,4 Graham R. Ball,6 Magdy K. Abdelghany,2,9 Luisa Martinez-Pomares,5 David M. Heery,2 and Ian O. Ellis1 1Department of Histopathology, School of Molecular Medical Sciences, University of Nottingham and Nottingham Universities Hospital Trust, Schools of 2Pharmacy and 3Computer Science, 4Division of Epidemiology and Public Health, and 5School of Molecular Medical Sciences, Institute of Infection, Immunity and Inflammation, University of Nottingham; 6Division of Life Sciences, Nottingham Trent University, Nottingham, United Kingdom; 7Department of Pathology, Faculty of Medicine, Menoufyia University, Menoufyia, Egypt; 8Department of Pathology, Faculty of Medicine, Asuit University, Asuit, Egypt; and 9Department of Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt Abstract Introduction Post-translational histone modifications are known to be Breast cancer is a heterogeneous disease ranging from altered in cancer cells, and loss of selected histone acetylation premalignant hyperproliferation to invasive and metastatic carci- and methylation marks has recently been shown to predict nomas (1). Disease progression is poorly understood but is likely patient outcome in human carcinoma. Immunohistochemistry due to the accumulation of genetic mutations leading to was used to detect a series of histone lysine acetylation widespread changes in gene expression and, in particular, affecting (H3K9ac, H3K18ac, H4K12ac, and H4K16ac), lysine methyla- the expression of tumor suppressors and oncogenes (2). -
H3r17me2(Asym)K18ac Polyclonal Antibody
H3R17me2(asym)K18ac polyclonal antibody Cat. No. C15410171 Specificity: Human, mouse, wide range expected Type: Polyclonal Purity: Affinity purified polyclonal antibody in PBS containing ChIP-grade / ChIP-seq-grade 0.05% azide and 0.05% ProClin 300. Source: Rabbit Storage: Store at -20°C; for long storage, store at -80°C. Lot #: A1922-001P Avoid multiple freeze-thaw cycles. Size: 50 µg/ 53 µl Precautions: This product is for research use only. Not for use in diagnostic or therapeutic procedures. Concentration: 0.94 µg/µl Description: Polyclonal antibody raised in rabbit against the region of histone H3 containing the asymmetrically dimethylated R17 and the acetylated lysine 18 (H3R17me2(asym)K18ac), using a KLH-conjugated synthetic peptide. Applications Suggested dilution Results ChIP* 1 µg per IP Fig 1, 2 ELISA 1:1,000 Fig 3 Dot blotting 1:20,000 Fig 4 Western blotting 1:1,000 Fig 5 IF 1:500 Fig 6 * Please note that the optimal antibody amount per ChIP should be determined by the end-user. We recommend testing 1-5 µg per IP. Target description Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. -
The Role of the Arginine Methyltransferase CARM1 in Global Transcriptional Regulation
Western University Scholarship@Western Electronic Thesis and Dissertation Repository 4-23-2014 12:00 AM The role of the arginine methyltransferase CARM1 in global transcriptional regulation. Niamh Coughlan The University of Western Ontario Supervisor Dr. Joseph Torchia The University of Western Ontario Graduate Program in Biochemistry A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Niamh Coughlan 2014 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Biochemistry Commons Recommended Citation Coughlan, Niamh, "The role of the arginine methyltransferase CARM1 in global transcriptional regulation." (2014). Electronic Thesis and Dissertation Repository. 2013. https://ir.lib.uwo.ca/etd/2013 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. THE ROLE OF THE ARGININE METHYLTRANSFERASE CARM1 IN GLOBAL TRANSCRIPTIONAL REGULATION (Thesis format: Integrated Article) by Niamh Coughlan Graduate Program in Biochemistry A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © Niamh Coughlan 2014 Abstract Arginine methylation is a prevalent post-translational modification that is found on many nuclear and cytoplasmic proteins, and has been implicated in the regulation of gene expression. CARM1 is a member of the protein arginine methyltransferase (PRMT) family of proteins, and is a key protein responsible for arginine methylation of a subset of proteins involved in transcription. -
Anti-H3r8me2(Asym) Antibody
FOR RESEARCH USE ONLY! 01/20 Anti-H3R8me2(asym) Antibody CATALOG NO.: A2047-100 (100 µl) BACKGROUND DESCRIPTION: Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Nucleosomes consist of approximately 146 bp of DNA wrapped around a histone octamer composed of pairs of each of the four core histones (H2A, H2B, H3, and H4). The chromatin fiber is further compacted through the interaction of a linker histone, H1, with the DNA between the nucleosomes to form higher order chromatin structures. This gene is intronless and encodes a replication-dependent histone that is a member of the histone H3 family. Transcripts from this gene lack poly A tails; instead, they contain a palindromic termination element. This gene is located separately from the other H3 genes that are in the histone gene cluster on chromosome 6p22-p21.3. H3.4; H3/g; H3FT; H3t; HIST3H3; Histone H3; HIST1H3A ALTERNATE NAMES: ANTIBODY TYPE: Polyclonal HOST/ISOTYPE: Rabbit / IgG IMMUNOGEN: A synthetic methylated peptide targeting residues around Arginine 8 of human histone H3 MOLECULAR WEIGHT: 18 kDa PURIFICATION: Affinity purified FORM: Liquid FORMULATION: In PBS with 0.02% sodium azide, 50% glycerol, pH7.3 SPECIES REACTIVITY: Human, Mouse, Rat STORAGE CONDITIONS: Store at -20ºC. Avoid freeze / thaw cycles APPLICATIONS AND USAGE: WB 1:500 - 1:2000, IF 1:50 - 1:200 Note: This information is only intended as a guide. The optimal dilutions must be determined by the user Western blot analysis of H3R8me2(asym) expression in Dot-blot analysis of methylation peptides using Anti- HeLa cells and H3 protein. -
BREAST CANCER & Ptms
MARC ANDRÉS PARÉS Degree in Genetics Universitat Autònoma de Barcelona - Spain The AIMS approached were 1. Histone PTMs as biomarkers for breast cancer? 2.Gene specific pattern of histone PTMs? 3.Use of histone PTMs in anti-cancer therapy ? INTRODUCTION HISTONE PTMs HISTONE PTMs & CANCER Functional groups added covalently onto residues at histone terminal tails. PTMs can be miswritten, misinterpreted and miserased, which leads to PTM imbalance CANCER. They regulate chromatin state, altering gene expression. Enzymatic activity: Figure 1. Enzymes having opposing activities maintain steady-state levels of histone marks. HATs and HMTs use acetyl CoA and SAM , respectively, as donors in their reactions. Cancerous cells have a generally low level of PTMs. There are two histone PTMs modifications considered as hallmarks for cancer: loss of H4K16ac and H4K20me3. Some modifications are associated with transcriptional states (H3K9ac or H3K4me3 active; H3K9me2 or H4K20me3 repression) or with specific tumours. BREAST CANCER & PTMs 18% of all female tumours MOST COMMON & 2nd MOST LETHAL CANCER Correlation between histone PTMs, tumour phenotype and clinical outcome: - High level of ac and me favourable prognosis ; low level poor prognosis. Tumour ER exp. PR exp. HER2 exp. Prognosis - Common specific PTMs: H3K9ac, H3K18ac, H4K12ac, H4K16ac, H3K4me2, H3K9me3*, H3K27me*, H4K20me3*and H4R3me2. luminal a +/- +/- - Favourable - H4K20me3: reduced. More invasive fashion, thus worse prognosis. - H3K9me3: increased. Transcriptional repression migration and invasion. luminal b +/- +/- + Favourable - H3K27me: increased. More aggressive cells. Clinico-pathological factors are associated with triple negative - - - Poor specific histone modification patterns: Low levels of: H4R3me2, H3K9ac and H4K16ac HER2+ - - + Poor LARGER TUMOUR SIZES. High levels of H3K9ac and H4R3me2 LOW Table 1.