Molecular Mechanisms Driving Prostate Cancer Neuroendocrine Differentiation

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Mechanisms Driving Prostate Cancer Neuroendocrine Differentiation Molecular mechanisms driving prostate cancer neuroendocrine differentiation Submitted by Joseph Edward Sutton Supervisory team: Dr Amy Poole (DoS) Dr Jennifer Fraser Dr Gary Hutchison A thesis submitted in partial fulfilment of the requirements of Edinburgh Napier University, for the award of Doctor of Philosophy. October 2019 School of Applied Sciences Edinburgh Napier University Edinburgh Declaration It is hereby declared that this thesis is the result of the author’s original research. It has been composed by the author and has not been previously submitted for examination which has led to the award of a degree. Signed: II Dedication This thesis is dedicated to my grandfather William ‘Harry’ Russell, who died of stomach cancer in 2014. Thank you for always encouraging me to achieve my ambitions, believing in me and for retaining your incredible positivity and sense of humour, even at the very end of your life. III Acknowledgements First of all, I would like to acknowledge my parents, who dedicated so much effort and energy into helping me to achieve my lifelong ambition of becoming a scientist. From taking me to the Natural History and Science Museums in London as a child, to tolerating my obsession with Jurassic Park and continuing to support me in both of your unique yet equally important ways, thank you. I would also like to thank my PhD supervisors Dr Amy Poole and Dr Jenny Fraser, not only for their excellent scientific guidance but also for their great banter and encouragement along the way. Thank you for seeing some potential in me, taking a chance on me and for helping me to continue my scientific journey. Thank you also to Dr Gary Hutchison and Dr Sharon Vass for their words of wisdom and encouragement. Thank you to my amazing friends at Edinburgh Napier who are too numerous to mention all by name, in particular Lee Curley, Dave Lawson, Liam Ralph and Alva Smith who are the best friends that anyone could ask for. Thank you all (you know who you are) for making these the best years of my life, I will always remember the impromptu barbecues on the meadows, the PGR conferences, the pub quiz victories and of course the times Lewis climbed the Christmas tree and Lee almost lost his hand. Thank you also to the amazing support staff at Napier, especially Tracy for always wishing us a good day and making sure there was always a hot haggis roll waiting on those freezing winter mornings, it makes a difference. I would also like to acknowledge Gareth Southgate for making us believe that one day, football is coming home. Thanks also to Thom, Jonny, Colin, Ed, Phil and Nigel for the company during long writing sessions and weekends in the lab. Finally, and most of all, thank you to Sasha Pereira for all of your love, support, patience and belief during these difficult and often uncertain times. IV Abstract Annually, 11,500 men in the UK die of prostate cancer (PCa). PCa tumours are initially dependent upon androgen receptor (AR) signalling and androgen deprivation therapy (ADT) is highly effective in restricting tumour growth. However, ADT resistance and progression to castrate-resistant prostate cancer (CRPC) is inevitable, usually occurring within three years. CRPC is considerably more aggressive, and metastatic CRPC remains incurable. One mechanism of ADT resistance is neuroendocrine differentiation (NED). NED is common in PCa tumours treated with ADT (30% of cases) and is associated with poorer survival. Prevalence of NED is rising and can be induced by other therapeutics including radiotherapy and chemotherapeutics. However, the precise molecular events underlying NED remain poorly understood. Therefore, an in-depth molecular investigation of NED was conducted using an in vitro system. The first objective was to establish a robust, in vitro model of ADT-induced NED using the PCa cell line, LNCaP. Extensive molecular analysis by qRT-PCR, Western blotting and confocal microscopy revealed the transcription factor, human achaete-scute homolog-1 (hASH1) as a potential key driver of NED. hASH1 localisation shifted from exclusively cytoplasmic to nuclear upon acquisition of NED morphology, concurrent with increased expression of the clinical biomarker neuron specific enolase (NSE) and decreased expression of prostate-specific antigen (PSA). Next, the effects of intermittent (I)ADT on the NED pathway were investigated. AD arrest resulted in reacquisition of epithelial morphology and resurgence of PSA expression. Interestingly, hASH1 was retained in the nucleus alongside NSE upregulation, indicating emergence of a potential ‘hybrid’ phenotype. After a second AD cycle, cells regained NED morphology and maintained hASH1 nuclear localisation. As hASH1 drives the development of GABAergic neurons and GABA has previously been implicated in PCa growth and invasion, a comprehensive characterisation of GABA receptor subunit expression in PCa cells was undertaken. Differential expression between androgen-sensitive and androgen resistant cells was discovered and indicated PCa GABAergic signalling may be modulated by androgen availability. V Abbreviations °C - Celsius AD - Androgen deprived AD1 - 1st AD cycle AD2 - 2nd AD cycle ADT - Androgen deprivation therapy ANOVA - Analysis of variance AR - Androgen Receptor ARE - Androgen response element ATCC - American type culture collection BLAST - Basic local alignment search tool BPH - Benign prostate hyperplasia BSA - Bovine serum albumin BZ - Benzodiazepine C - Control cAD - Constant AD CCC - Cation-chloride co-transporters cDNA - Complimentary DNA CgA - Chromogranin-A CREB - cAMP response element-binding protein CNS – Central nervous system CRPC - castrate-resistant prostate cancer CS-FBS - Charcoal stripped fetal bovine serum CSC - Cancer stem cell Ctrl - Control DEPC - diethylpyrocarbonate DHT - Dihydrotestosterone DMSO - dimethyl sulphide DNA - Deoxyribonucleic acid DRE - Digital rectal examination ECM - Extracellular matrix EDTA - Ethylenediaminetetraacetic acid EGF - Epidermal growth factor EGFR - Epidermal growth factor receptor VI ELISA - Enzyme-linked immunosorbent assay EMT - Epithelial to mesenchymal transition ER - Estrogen receptor FBS - Foetal bovine serum GABA - -aminobutyric acid GABA-T - GABA transaminase GABARs - GABA receptors GAD1 - Glutamate decarboxylase 1 GAD2 - Glutamate decarboxylase 2 GBP – Gabapentin GRP – Gastrin releasing peptide H&E - Haematoxylin and eosin H2O - Water hASH1 - Human achaete-scute homolog-1 IADT - Intermittent androgen deprivation IGF-1 - Insulin-like growth factor 1 IHC - Immunohistochemistry KCC - K+-Cl- co- transporters KDa - Kilodalton LSB - loading sample buffer mAb - monoclonal antibody MMP - Matrix metalloproteinase mRNA - messenger RNA MTT - 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MW - molecular weight NB - Neuroblastoma NE - Neuroendocrine NED - Neuroendocrine differentiation NEPC - Neuroendocrine Prostate Cancer NICE - National Institute for Health and Care Excellence NKCC - Na+-K+-2Cl- co-transporters NSE - Neuron specific enolase PBS - Phosphate buffered saline VII PBS-T - Phosphate buffered saline-Tween PCa - Prostate Cancer PCPT – Prostate Cancer Prevention Trial PDX - Patient Derived Xenograft PNS – Peripheral nervous system PSA - Prostate specific antigen PTEN - Phosphatase and tensin homolog PTOV1 - Prostate Tumour Overexpressed 1 qRT-PCR - Quantitative reverse transcription-polymerase chain reaction REST - RE1-silencing transcription factor RIN - RNA integrity number RNA - Ribonucleic Acid RNAi - Ribonucleic acid interference RPMI - Roswell park memorial institute SCLC - Small cell lung cancer SDS - Sodium Dodecyl Sulphate SDS-PAGE - Sodium Dodecyl Sulphate Polyacrylamide gel electrophoresis SRD5A2 - steroid-5α-reductase, α-polypeptide 2 TAPS - Total androgen program suppression TEMED - N,N,N′,N′-Tetramethyl-ethylenediamine TIMP – Tissue inhibitor of metalloproteinase UK – United Kingdom VFTD - Venus fly trap domain VGCCs - Voltage-gated calcium channels VIII CONTENTS Page No. 1. Introduction ................................................................................................... 1 1.1 Prostate cancer epidemiology ............................................................ 1 1.1.1 Endogenous and exogenous risk factors .............................. 2 1.1.2 Androgen steroidogenesis .................................................... 3 1.1.3 Anti-androgen therapeutic targets and total androgen blockade ................................................................................................... 3 1.1.4 Prostate anatomy and physiology ......................................... 4 1.1.5 Androgen dependent growth of healthy prostate .................. 6 1.1.6 Neuroendocrine cells in benign and malignant prostate ....... 7 1.1.7 Prognostic factors and diagnostic tools ................................ 8 1.1.8 Current treatment strategies ............................................... 10 1.2 Progression to castrate-resistant prostate cancer ........................... 15 1.2.1 Molecular mechanisms of castrate-resistant prostate cancer ............................................................................................................... 15 1.2.1.1 Androgen receptor ............................................... 15 1.2.1.2 Hypersensitive pathway ........................................ 16 1.2.1.3 Promiscuous pathway .......................................... 16 1.2.1.4 Outlaw pathway ................................................... 17 1.2.1.5 Endogenous androgen synthesis .........................
Recommended publications
  • Cognition and Steroidogenesis in the Rhesus Macaque
    Cognition and Steroidogenesis in the Rhesus Macaque Krystina G Sorwell A DISSERTATION Presented to the Department of Behavioral Neuroscience and the Oregon Health & Science University School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2013 School of Medicine Oregon Health & Science University CERTIFICATE OF APPROVAL This is to certify that the PhD dissertation of Krystina Gerette Sorwell has been approved Henryk Urbanski Mentor/Advisor Steven Kohama Member Kathleen Grant Member Cynthia Bethea Member Deb Finn Member 1 For Lily 2 TABLE OF CONTENTS Acknowledgments ......................................................................................................................................................... 4 List of Figures and Tables ............................................................................................................................................. 7 List of Abbreviations ................................................................................................................................................... 10 Abstract........................................................................................................................................................................ 13 Introduction ................................................................................................................................................................. 15 Part A: Central steroidogenesis and cognition ............................................................................................................
    [Show full text]
  • Editing Modifies the GABAA Receptor Subunit A3
    Downloaded from rnajournal.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press REPORT Editing modifies the GABAA receptor subunit a3 JOHAN OHLSON,1 JAKOB SKOU PEDERSEN,2 DAVID HAUSSLER,2,3 and MARIE O¨ HMAN1 1Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden 2Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA 3Howard Hughes Medical Institute, University of California at Santa Cruz, Santa Cruz, California 95064, USA ABSTRACT Adenosine to inosine (A-to-I) pre-mRNA editing by the ADAR enzyme family has the potential to increase the variety of the proteome. This editing by adenosine deamination is essential in mammals for a functional brain. To detect novel substrates for A-to-I editing we have used an experimental method to find selectively edited sites and combined it with bioinformatic techniques that find stem–loop structures suitable for editing. We present here the first verified editing candidate detected by this screening procedure. We show that Gabra-3, which codes for the a3 subunit of the GABAA receptor, is a substrate for editing by both ADAR1 and ADAR2. Editing of the Gabra-3 mRNA recodes an isoleucine to a methionine. The extent of editing is low at birth but increases with age, reaching close to 100% in the adult brain. We therefore propose that editing of the Gabra-3 mRNA is important for normal brain development. Keywords: RNA editing; adenosine deaminase; ADAR; GABA receptor; Gabra-3 INTRODUCTION At this site a CAG, coding for glutamine, is modified to CIG, which is read as an arginine codon (CGG).
    [Show full text]
  • Rare GABRA3 Variants Are Associated with Epileptic Seizures, Encephalopathy and Dysmorphic Features
    doi:10.1093/brain/awx236 BRAIN 2017: 140; 2879–2894 | 2879 Rare GABRA3 variants are associated with epileptic seizures, encephalopathy and dysmorphic features Cristina Elena Niturad,1,* Dorit Lev,2,3,4,* Vera M. Kalscheuer,5,6,* Agnieszka Charzewska,7 Julian Schubert,1,8 Tally Lerman-Sagie,3,4,9 Hester Y. Kroes,10 Renske Oegema,10 Monica Traverso,11 Nicola Specchio,12 Maria Lassota,13 Jamel Chelly,14 Odeya Bennett-Back,15 Nirit Carmi,3,4,10 Tal Koffler-Brill,16 Michele Iacomino,11 Marina Trivisano,12 Giuseppe Capovilla,17 Pasquale Striano,18 Magdalena Nawara,7 Sylwia Rzon´ca,7 Ute Fischer,5,6 Melanie Bienek,5 Corinna Jensen,5,z Hao Hu,5,§ Holger Thiele,19 Janine Altmu¨ller,19,20 Roland Krause,8 Patrick May,8 Felicitas Becker,1 EuroEPINOMICS Consortium, Rudi Balling,8 Saskia Biskup,21 Stefan A. Haas,22 Peter Nu¨rnberg,19 Koen L. I. van Gassen,10 Holger Lerche,1 Federico Zara,11,* Snezana Maljevic1,*,f and Esther Leshinsky-Silver2,3,16,*,† *These authors contributed equally to this work. †Deceased. Genetic epilepsies are caused by mutations in a range of different genes, many of them encoding ion channels, receptors or transporters. While the number of detected variants and genes increased dramatically in the recent years, pleiotropic effects have also been recognized, revealing that clinical syndromes with various degrees of severity arise from a single gene, a single mutation, or from different mutations showing similar functional defects. Accordingly, several genes coding for GABAA receptor subunits have been linked to a spectrum of benign to severe epileptic disorders and it was shown that a loss of function presents the major correlated pathomechanism.
    [Show full text]
  • Neonatal Clonazepam Administration Induced Long-Lasting Changes in GABAA and GABAB Receptors
    International Journal of Molecular Sciences Article Neonatal Clonazepam Administration Induced Long-Lasting Changes in GABAA and GABAB Receptors Hana Kubová 1,* , Zde ˇnkaBendová 2,3 , Simona Moravcová 2,3 , Dominika Paˇcesová 2,3, Luisa Rocha 4 and Pavel Mareš 1 1 Institute of Physiology, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic; [email protected] 2 Faculty of Science, Charles University, 12800 Prague, Czech Republic; [email protected] (Z.B.); [email protected] (S.M.); [email protected] (D.P.) 3 National Institute of Mental Health, 25067 Klecany, Czech Republic 4 Pharmacobiology Department, Center of Research and Advanced Studies, Mexico City 14330, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +420-2-4106-2565 Received: 31 March 2020; Accepted: 28 April 2020; Published: 30 April 2020 Abstract: Benzodiazepines (BZDs) are widely used in patients of all ages. Unlike adults, neonatal animals treated with BZDs exhibit a variety of behavioral deficits later in life; however, the mechanisms underlying these deficits are poorly understood. This study aims to examine whether administration of clonazepam (CZP; 1 mg/kg/day) in 7–11-day-old rats affects Gama aminobutyric acid (GABA)ergic receptors in both the short and long terms. Using RT-PCR and quantitative autoradiography, we examined the expression of the selected GABAA receptor subunits (α1, α2, α4, γ2, and δ) and the GABAB B2 subunit, and GABAA, benzodiazepine, and GABAB receptor binding 48 h, 1 week, and 2 months after treatment discontinuation. Within one week after CZP cessation, the expression of the α2 subunit was upregulated, whereas that of the δ subunit was downregulated in both the hippocampus and cortex.
    [Show full text]
  • The Regulation of Neuronal Excitability and Nociception by Tonic Gabaergic Inhibition
    THE REGULATION OF NEURONAL EXCITABILITY AND NOCICEPTION BY TONIC GABAERGIC INHIBITION by Robert Paul Bonin A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Physiology University of Toronto © Copyright by Robert P. Bonin 2011 The Regulation of Neuronal Excitability and Nociception by Tonic GABAergic Inhibition Robert Paul Bonin Doctor of Philosophy Department of Physiology University of Toronto 2011 Abstract The mammalian central nervous system maintains a delicate balance between neuronal excitation and inhibition. Conventional synaptic inhibition is mediated through the transient activity of postsynaptic γ-aminobutyric acid (GABA) at type A GABA (GABAA) receptors. A subset of GABAA receptors is also located outside of inhibitory synapses. These extrasynaptic receptors generate a tonic inhibitory conductance in response to low concentrations of extracellular GABA. Tonic inhibition broadly suppresses neuronal activity and regulates many vital processes such as sleep, consciousness and memory formation. This thesis examines the physiological effects of tonic inhibition at the cellular level and in the behaving animal. This thesis also explores whether gabapentin, a commonly used sedative, anxiolytic, and analgesic drug, enhances tonic GABAergic inhibition. I hypothesize that: (1) tonic GABAA receptor activity reduces the intrinsic excitability of neurons; (2) the activity of tonically active GABAA receptors in spinal pain pathways attenuates nociception; and (3) tonic inhibition can be upregulated by gabapentin. ii The results show that a tonic inhibitory current generated by α5 subunit-containing GABAA (α5GABAA) receptors reduces the excitability of hippocampal pyramidal neurons excitability by increasing the rheobase, but does not change the gain of action potential firing.
    [Show full text]
  • Gabaergic Signaling Linked to Autophagy Enhances Host Protection Against Intracellular Bacterial Infections
    ARTICLE DOI: 10.1038/s41467-018-06487-5 OPEN GABAergic signaling linked to autophagy enhances host protection against intracellular bacterial infections Jin Kyung Kim1,2,3, Yi Sak Kim1,2,3, Hye-Mi Lee1,3, Hyo Sun Jin4, Chiranjivi Neupane 2,5, Sup Kim1,2,3, Sang-Hee Lee6, Jung-Joon Min7, Miwa Sasai8, Jae-Ho Jeong 9,10, Seong-Kyu Choe11, Jin-Man Kim12, Masahiro Yamamoto8, Hyon E. Choy 9,10, Jin Bong Park 2,5 & Eun-Kyeong Jo1,2,3 1234567890():,; Gamma-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the brain; however, the roles of GABA in antimicrobial host defenses are largely unknown. Here we demonstrate that GABAergic activation enhances antimicrobial responses against intracel- lular bacterial infection. Intracellular bacterial infection decreases GABA levels in vitro in macrophages and in vivo in sera. Treatment of macrophages with GABA or GABAergic drugs promotes autophagy activation, enhances phagosomal maturation and antimicrobial responses against mycobacterial infection. In macrophages, the GABAergic defense is mediated via macrophage type A GABA receptor (GABAAR), intracellular calcium release, and the GABA type A receptor-associated protein-like 1 (GABARAPL1; an Atg8 homolog). Finally, GABAergic inhibition increases bacterial loads in mice and zebrafish in vivo, sug- gesting that the GABAergic defense plays an essential function in metazoan host defenses. Our study identified a previously unappreciated role for GABAergic signaling in linking antibacterial autophagy to enhance host innate defense against intracellular bacterial infection. 1 Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea. 2 Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
    [Show full text]
  • Cross-Tissue Analysis of Gene and Protein Expression in Normal and Cancer Tissues Received: 20 January 2016 Idit Kosti, Nishant Jain, Dvir Aran, Atul J
    www.nature.com/scientificreports OPEN Cross-tissue Analysis of Gene and Protein Expression in Normal and Cancer Tissues Received: 20 January 2016 Idit Kosti, Nishant Jain, Dvir Aran, Atul J. Butte & Marina Sirota Accepted: 30 March 2016 The central dogma of molecular biology describes the translation of genetic information from mRNA Published: 04 May 2016 to protein, but does not specify the quantitation or timing of this process across the genome. We have analyzed protein and gene expression in a diverse set of human tissues. To study concordance and discordance of gene and protein expression, we integrated mass spectrometry data from the Human Proteome Map project and RNA-Seq measurements from the Genotype-Tissue Expression project. We analyzed 16,561 genes and the corresponding proteins in 14 tissue types across nearly 200 samples. A comprehensive tissue- and gene-specific analysis revealed that across the 14 tissues, correlation between mRNA and protein expression was positive and ranged from 0.36 to 0.5. We also identified 1,012 genes whose RNA and protein expression was correlated across all the tissues and examined genes and proteins that were concordantly and discordantly expressed for each tissue of interest. We extended our analysis to look for genes and proteins that were differentially correlated in cancer compared to normal tissues, showing higher levels of correlation in normal tissues. Finally, we explored the implications of these findings in the context of biomarker and drug target discovery. In recent years, techniques used to conduct tissue-wide analysis of gene expression, such as microarrays and RNA sequencing technologies (RNA-Seq), have become widely used1,2.
    [Show full text]
  • Characterisation of GABAA Receptors and Cation-Chloride Cotransporters in the Uterus and Their Role in Pre-Term Labour
    Characterisation of GABAA receptors and cation-chloride cotransporters in the uterus and their role in pre-term labour Melissa Linda Sutherland December 2017 Supervisors: Dr. Amy V. Poole, Dr. Jennifer A. Fraser, Dr. Claire Garden. A thesis submitted in partial fulfilment of the requirements of Edinburgh Napier University, for the award of Master by Research Declaration It is hereby declared that this thesis is the result of the author’s original research. It has been composed by the author and has not been previously submitted for examination, which has led to the award of a degree or professional qualification. Signed: Date: Contents page Abbreviations .............................................................................................. 1 Acknowledgements ................................................................................... 3 Abstract ......................................................................................................... 4 CHAPTER 1. Introduction ......................................................................... 5 1.1-aminobutyric acid (GABA) .............................................................. 5 1.2 GABA receptor structure and function .......................................... 5 Figure 1.1 Schematic diagram of the GABAA subunit and receptor ......................................................................................................... 6 1.3 GABAARs role in development central nervous system ..........................................................................................................
    [Show full text]
  • Ion Channels
    UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.
    [Show full text]
  • Design, Synthesis, and Evaluation of Novel Gram-Positive Antibiotics Part 2
    University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations 12-1-2016 Part 1: Design, Synthesis, and Evaluation of Novel Gram-positive Antibiotics Part 2: Synthesis of Dihydrobenzofurans Via a New Transition Metal Catalyzed Reaction Part 3: Design, Synthesis, and Evaluation of Bz/gabaa Α6 Positive Allosteric Modulators Christopher Michael Witzigmann University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Organic Chemistry Commons Recommended Citation Witzigmann, Christopher Michael, "Part 1: Design, Synthesis, and Evaluation of Novel Gram-positive Antibiotics Part 2: Synthesis of Dihydrobenzofurans Via a New Transition Metal Catalyzed Reaction Part 3: Design, Synthesis, and Evaluation of Bz/gabaa Α6 Positive Allosteric Modulators" (2016). Theses and Dissertations. 1429. https://dc.uwm.edu/etd/1429 This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. PART 1: DESIGN, SYNTHESIS, AND EVALUATION OF NOVEL GRAM-POSITIVE ANTIBIOTICS PART 2: SYNTHESIS OF DIHYDROBENZOFURANS VIA A NEW TRANSITION METAL CATALYZED REACTION PART 3: DESIGN, SYNTHESIS, AND EVALUATION OF BZ/GABAA α6 POSITIVE ALLOSTERIC MODULATORS by Christopher Michael Witzigmann A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemistry at The University of Wisconsin-Milwaukee December 2016 ABSTRACT PART 1: DESIGN, SYNTHESIS, AND EVALUATION OF NOVEL GRAM-POSITIVE ANTIBIOTICS PART 2: SYNTHESIS OF DIHYDROBENZOFURANS VIA A NEW TRANSITION METAL CATALYZED REACTION PART 3: DESIGN, SYNTHESIS, AND EVALUATION OF BZ/GABAA α6 POSITIVE ALLOSTERIC MODULATORS by Christopher Michael Witzigmann The University of Wisconsin-Milwaukee, 2016 Under the Supervision of Distinguished Professor James M.
    [Show full text]
  • The Role of Δ Subunit-Containing Γ-Aminobutyric Acid Type a Receptors
    THE ROLE OF δ SUBUNIT-CONTAINING γ-AMINOBUTYRIC ACID TYPE A RECEPTORS IN MEMORY AND SYNAPTIC PLASTICITY by Paul David Whissell A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Institute of Medical Science University of Toronto © Copyright by Paul Whissell, 2014 Paul Whissell The role of δ subunit-containing γ-aminobutyric acid type A receptors in memory and synaptic plasticity Doctor of Philosophy, Institute of Medical Science, University of Toronto, 2014 Abstract Background: Extrasynaptic γ-aminobutyric acid type A receptors that contain the δ subunit (δGABAA receptors) are highly expressed in the dentate gyrus (DG) of the hippocampus, where they generate a tonic conductance that regulates activity. GABAA receptor-dependent signaling regulates memory and neurogenesis in the adult DG; however, the role of δGABAA receptors in these processes is unclear. Accordingly, it was postulated that δGABAA receptors regulate memory and neurogenesis in the DG. Methods: A combination of genetic and pharmacologic techniques was employed. Memory in wild-type (WT) and δ subunit null (Gabrd–/–) mice was assessed using object-place recognition, novel object recognition, contextual discrimination, fear conditioning, fear extinction and water maze tasks. Long-term potentiation, a molecular correlate of memory, was examined using the in vitro hippocampal slice preparation. To ascertain the effects of enhanced δGABAA receptor activity, the receptor-preferring agonist 4,5,6,7- tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP; 4 mg/kg) was applied either as a pre-treatment (2 weeks prior to testing) or an acute treatment (30 min prior to testing). Results: Gabrd–/– mice exhibited impaired object-place recognition, novel object recognition and contextual discrimination relative to WT mice.
    [Show full text]
  • A Network Integration Approach for Drug-Target Interaction Prediction and Computational Drug Repositioning from Heterogeneous Information
    bioRxiv preprint doi: https://doi.org/10.1101/100305; this version posted January 13, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A Network Integration Approach for Drug-Target Interaction Prediction and Computational Drug Repositioning from Heterogeneous Information Yunan Luo1,3,y, Xinbin Zhao2,y, Jingtian Zhou2,y, Jinling Yang1, Yanqing Zhang1, Wenhua Kuang2, Jian Peng3,*, Ligong Chen2,*, and Jianyang Zeng1,* 1Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China 2School of Pharmaceutical Sciences, Tsinghua University, Beijing, China 3Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA yThese authors contributed equally to this work *Corresponding authors: [email protected], [email protected] and [email protected] Abstract The emergence of large-scale genomic, chemical and pharmacological data provides new opportunities for drug discovery and repositioning. Systematic integration of these heterogeneous data not only serves as a promising tool for identifying new drug-target interactions (DTIs), which is an important step in drug development, but also provides a more complete understanding of the molecular mechanisms of drug action. In this work, we integrate diverse drug-related information, including drugs, proteins, diseases and side-effects, together with their interactions, associations or similarities, to construct a heterogeneous network with 12,015 nodes and 1,895,445 edges. We then develop a new computational pipeline, called DTINet, to predict novel drug-target interactions from the constructed heterogeneous network.
    [Show full text]