Experimental Studies of Actinides in Molten Salts

Total Page:16

File Type:pdf, Size:1020Kb

Experimental Studies of Actinides in Molten Salts LA-10340 UC-4 Issued: June 1985 LA—10340 DE85 015368 Experimental Studies of Actinides in Molten Salts James G. Reavis DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility fcr the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents 'hat its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- mendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Los Alamos National Laboratory Los Alamos, New Mexico 87545 !IT"ISUnOS OF THIS DOCUMENT IS ONLIMfTW t> EXPERIMENTAL STUDIES OF ACTINIDES IN MOLTEN SALTS by J. G. Reavis ABSTRACT This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen- containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of acticide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. I. INTRODUCTION portant differences. The actinides are radioactive, and work with them requires special health protection. A A. Perspective particular hazard of working with plutonium and en- riched uranium is that a critical mass may be assembled The importance of the actinides to society in the next inadvertently. 100 years can hardly be overemphasized. The com- Many of the techniques and examples discussed in munications media have publicized widely the potential this report apply equally well to work with nonactinides destmctiveness of energy release from actinides- Less and have been described elsewhere, but it is hoped thai widely known is that the useful energy derivable from there will be sufficient new material in this discussion to economically recoverable actinides (uranium and reward the reader. thorium) is 5 to 20 times as great as the energy derivable Although 15 elements (including actinium) are in the from all economically recoverable fossil fuels.1 This fact actinide series, only about 6 have been used in molten establishes the economic importance of developing effi- salt studies. The list of anions in molten salt studies is cient processes for preparing thorium, uranium, pluto- similarly limited. The combinations found in an ex- nium, and their compounds. Beyond that economic tensive compilation25 of phase diagrams is listed in importance, the study of the actinides is technically Table I as an example of the cation/anion combinations fascinating. The actinide series is analogous to the studied at high temperatures. In addition to the oxides, lanthanide series, with similarities and differences be- fluorides, and chlorides listed, !4 other phase diagrams tween homologs and interesting and unexplained were given for bromides, sulfates, oxychlorides, phos- changes in properties during progression through the phates, silicates, molybdates, and tungstates of the ac- respective series. tinides. These 14 other diagrams are included in the last The actinides are chemically active metals, only column of Table I. This distribution is typical of that of slightly less active than the alkaline-earth and rare-earth actinide-anior. combinations in other molten salt elements. Molten salt techniques in studies of actinide studies. Because oxides are not generally classified as compounds often resemble those used in studies of rare- salts, this report deals primarily with halides of the most earth and alkaline-earth compounds, but there are im- abundant actinides simply because other compounds isolated by 1950. The other five actinides were dis- TABLE I. Actinide/Anion Combinations Listed in a covered after 1950. Compilation of Phase Diagrams Actinide Oxide Fluoride Chloride Total Cm 1 0 0 1 C. Availability of Actinides Np 1 0 0 3 Pu 4 3 9 16 Chemical studies (including molten salt studies) of Th 36 11 0 53 the actinides are limited by the restricted availability of U 34 30 10 80 the elements. Besides govemmentally imposed regula- tions, there are certain physical problems, such as lim- ited rate of creation and isolation of the elements, coupled with short half-lives. Only microgram quan- tities of transcalifornium elements will exist in the have not been studied at high temperatures. One reason foreseeable future. Another problem is intense radiation for this lack is that the oxyanion compounds of actinides emitted by most actinides and their daughter elements, are often unstable. requiring shielding and containment Such facilities are available in oniy a few commercial and university labo- ratories outside the small number of government labo- B. Historical Perspective ratories built specifically for studies of actinides. Order- of-magnitude values of isolated and purified supplies of Only four actinides (actinium, protactinium, the most abundant actinides and naif-lives of their most thorium, and uranium) exist in nature in concentrations useful isotopes are listed in Table II. The actinides not detectable without the most sophisticated techniques. listed in Table II are available only in microgram or Actinium was discovered in 1899 by Devierne and, submicrogram quantities and probably will never be apparently, independently in 1902 by Geisel but was not studied extensively by molten salt techniques. Studies of isolated in pure form until 1947, when milligram quan- actinium, berkelium, and californium will be limited tities were separated from neutron-irradiated radium.6 because of unavailability and because of their intense Thorium, discovered by Berzelius in 1828, was used radioactivity. The radioactivity of americium and commercially before 1900. Protactinium was dis- curium discourages their study. Protactinium is unique covered in 1918 and was first isolated in milligram in that it is naturally occurring and has a long half-life amounts in 1927. Uranium, discovered in 1789, was but is very expensive to recover because the richest well known to scientists before 1900. The remaining mineral source contains only a few parts per million of the element. About 125 g of the element was isolated actinides are all synthetic and were unknown before 7 about 1940. Plutonium was first isolated in visibu. from about 60 tons of ore by workers in the UK. This quantities as an oxide in September 1942. Neptunium, quantity is sufficient for experimentation using ordinary amencium, curium, berkelium, and californium were techniques; however, its high cost dictates conservation. TABLE II. Availability and Half-Lives of the Most Abundant Ac- tinides Element Quantities Available Prevalent Isotope Half-Life, Yr Ac milligrams 227 22 Th megagrams 232 1.4 X 1010 Pa grams 231 3.2 XW U megagrams 238 43 X 10» Np kilograms 237 2.1 X 10* Pa megagrams 239 2.4 X104 Am grams* 241 458 Cm grams* 244 18 Bk milligrams 249 0.86 a milligrams 249 360 *It is planned that kilograms of compounds of ameridum and enrinm will be isolated, bat batch sizes of only 10 g or less are amenable to studies of molten salts without extensive radiation shielding. n. SPECIAL ENCLOSURES REQUIRED FOR AC- Selecting the enclosure to be used for an actinide TINIDES project is mostly left to the experimenter and his em- ployer. This is not to say that the experimenter has A. Health and Safety Standards much freedom in this matter. Managers of various laboratories apparently differ widely in interpreting re- Anyone wishing to conduct experiments with ac- gulations. The nature of the enclosure required is de- tinides or actinide compounds must face governmental termined in part by regulations, in part by the nature of regulation of their possession and use. The ex- the operation, and in part by the amount of actinide perimenter may have to deal with the International involved. Aqueous chemistry experiments involving Atomic Energy Agency, the United States Nuclear Regu- micrograms of even very highly active members of the latory Commission and Department of Energy, state series are performed in chemical hoods, whereas larger agencies, and local government agencies.8"10 Some of the quantities of the same element in powder form must be regulations limit mere possession of these elements, handled in an enclosure of much higher integrity. much less their use. The various regulatory agencies will Within certain guidelines the safety of each series of insist that certain guidelines be obeyed before operating experiments must be evaluated independently to deter- licenses are issued, and these guidelines will dictate mine the enclosure or hood requirements. tradeoffs between amounts of actinides to be used and the complexity of the facility that must be constructed to handle the material. These guidelines dictate irradiation C. Gloveboxes levels
Recommended publications
  • The Behaviour of Polytetrafluoroethylene at High Pressure
    THE BEHAVIOUR OF POLYTETRAFLUOROETHYLENE AT HIGH PRESSURE by Haroun Mahgerefteh A dissertation submitted to the University of London for the degree of Doctor of Philosophy Department of Chemical Engineering and Chemical Technology, Imperial College, London SW7 2BY. October 1984 If a man will begin with certainties, he shall end in doubts, but if he will be content to begin with doubts, he shall end in certainties. Robin Hyman TO MY PARENTS PREFACE This dissertation is a description of the work carried out in the Department of Chemical Engineering and Chemical Technology, Imperial College, London between October 1981 and October 1984. Except where acknowledged, the material presented is the original work of the author and includes nothing which is the outcome of work done in collaboration, and no part of it has been submitted for a degree at any other Univer­ sity. I am deeply indebted to Dr. Brian Briscoe for his excellent super­ vision during the course of my research. His help and guidance have been invaluable. It has been a pleasure to receive the help of many members of the Department, in particular Messrs. D. Wood and M. Dix of Electronics and Mr. B. Lucas of the Workshop. The help and support from all the members of my family especially my sister Deborah have been invaluable. I also thank Mrs. Joyce Burberry for patiently typing the manuscript. I gratefully acknowledge the support of the Science and Engineering Research Council and Imperial Chemical Industries PLC for the provision of a CASE studentship. Imperial College, H. Margerefteh
    [Show full text]
  • Laser Isotope Separation (LIS), Technical and Economic
    NASA TECHNICAL MEMORANDUM A STATUS OF PROGRESS FOR THL LASER lsofopE SEPARATION (11 SI PROCESS +tear 1976 NASA George C. Mdr~bdlSpace Flight Center Marshdl Space Fb$t Center, Alabama lLSFC - Form 3190 (Rev June 1971) REPORT STANDARD TITLE PACE I nEPMTn0. 3. RECIPIENT*$ CATILOC NO. NASA TM X-73345 10 TITLE UO SUTlTLt IS. REPORT DATE I September A st.tUaof for Iaser isotOpe &paratian lS76 I Progress the (LIS) 6 PERFWYIIIG WGUIZATIO* CQOE George C. M8ralmll!3gam Flight Center I 1. COUTRUT OR am yo. I MarW Flight Center, Alabama 35812 Tecbnid Memormdum National Aemutics and Space Administration Washingtan, D.C. 20546 I I Prepared by Systems Aaalysis and Integration Iaboratory, Science and Engineering An overview of the various categories of the LE3 methodology is given together with illustrations showing a simplified version of the LIS tecbnique, an example of the two-phoiin photoionization category, and a diagram depicting how the energy levels of various isdope influence the LIS process. A&icatlons have been proposed for the LIS system which, in addition to the use to enrich uranium, could in themselves develop into programs of tremendous scope and breadth. Such applications as treatment of radioac '--ewastes from light-water nKzlear reactors, enriching the deuterlum isotope to make heavv-water, and enrlchhg tik light isotopes of such 17 KEt WORDS 18. DISTRIBUTION STATEMENT 5ECUQlTY CLASSIF. Ff thh PI*) 21 NO. OF PAbFS 22 PRICE Unclassified Unclassified I 20 NTIS PREFACE Since the publication of t& first Techid hiemomxitun (TM X-64947) on the Laser hotope Separation (LE)process in May 1975 [l], there bbeen a virtual explosion of available information on this process.
    [Show full text]
  • Extensive Interest in Nuclear Fuel Cycle Technologies
    Institute for Science and International Security ISIS REPORT March 19, 2012 Department 70 and the Physics Research Center: Extensive Interest in Nuclear Fuel Cycle Technologies By David Albright, Paul Brannan, Mark Gorwitz, and Andrew Ortendahl On February 23, 2012, ISIS released the report, The Physics Research Center and Iran’s Parallel Military Nuclear Program, in which ISIS evaluated a set of 1,600 telexes outlining a set of departments or buying centers of the former Physics Research Center (PHRC). These departments appeared to be purchasing a variety of goods for specific nuclear technologies, including gas centrifuges, uranium conversion, uranium exploration and perhaps mining, and heavy water production. Figure 1 is a list of the purposes of these departments. The telexes are evaluated in more depth in the February 23, 2012 ISIS report and support that, contrary to Iran’s statements to the International Atomic Energy Agency (IAEA), the PHRC ran a parallel military nuclear program in the 1990s. In the telexes, ISIS identified a department called Department 70 that is linked to the PHRC. This department tried to procure or obtained technical publications and reports from a document center, relevant know-how from suppliers, catalogues from suppliers about particular goods, and a mini- computer from the Digital Equipment Corporation. Department 70 appears to have had personnel highly knowledgeable about the existing literature on a variety of fuel cycle technologies, particularly gas centrifuges. Orders to a British document center reveal many technical publications about gas centrifuges, atomic laser isotope enrichment, the production of uranium compounds including uranium tetrafluoride and uranium hexafluoride (and precursors such as hydrofluoric acid), nuclear grade graphite, and the production of heavy water.
    [Show full text]
  • An Alternate Graphical Representation of Periodic Table of Chemical Elements Mohd Abubakr1, Microsoft India (R&D) Pvt
    An Alternate Graphical Representation of Periodic table of Chemical Elements Mohd Abubakr1, Microsoft India (R&D) Pvt. Ltd, Hyderabad, India. [email protected] Abstract Periodic table of chemical elements symbolizes an elegant graphical representation of symmetry at atomic level and provides an overview on arrangement of electrons. It started merely as tabular representation of chemical elements, later got strengthened with quantum mechanical description of atomic structure and recent studies have revealed that periodic table can be formulated using SO(4,2) SU(2) group. IUPAC, the governing body in Chemistry, doesn‟t approve any periodic table as a standard periodic table. The only specific recommendation provided by IUPAC is that the periodic table should follow the 1 to 18 group numbering. In this technical paper, we describe a new graphical representation of periodic table, referred as „Circular form of Periodic table‟. The advantages of circular form of periodic table over other representations are discussed along with a brief discussion on history of periodic tables. 1. Introduction The profoundness of inherent symmetry in nature can be seen at different depths of atomic scales. Periodic table symbolizes one such elegant symmetry existing within the atomic structure of chemical elements. This so called „symmetry‟ within the atomic structures has been widely studied from different prospects and over the last hundreds years more than 700 different graphical representations of Periodic tables have emerged [1]. Each graphical representation of chemical elements attempted to portray certain symmetries in form of columns, rows, spirals, dimensions etc. Out of all the graphical representations, the rectangular form of periodic table (also referred as Long form of periodic table or Modern periodic table) has gained wide acceptance.
    [Show full text]
  • R Epor T Resumes
    R EPOR TRESUMES ED 010 991 SE 000 019 BIOLOGICAL EDUCATION IN AMERICAN SECONDARY SCHOOLS 1890-1960. BY- HURD, PAUL DEHART AMERICAN INST. OF BIOLOGICAL SCIENCES REPORT NUMBER BSCS BULLI PUB DATE 1 FEB 61 EDRS PRICEMF S0.45 HC$10.76 269P. DESCRIPTORS *BIOLOGY, *SCIENCE EDUCATION, *SECONDARY SCHOOL SCIENCE, CURRICULUM, COURSE CONTENT, EDUCATIONAL OBJECTIVES, HISTORY, TEACHING METHODS, TEXTBOOKS, BIOLOGICAL SCIENCES CURRICULUM STUDY, NATIONAL SCIENCE FOUNDATION, AMERICAN INSTITUTE OF BIOLOGICAL SCIENCES, DISTRICT OF COLUMBIA CHANGES IN AMERICAN SECONDARY SCHOOL BIOLOGICAL EDUCATION CURING THE PERIOD 1890-1960 ARE DESCRIBED. INFORMATION FROM THE REPORTS OF IMPORTANT COMMITTEES SUMMARIZES CHANGES IN BIOLOGICAL EDUCATION CURING EACH DECADE OF THE PERIOD COVERED BY THE STUDY. CHANGES IN COURSE CONTENT, TEACHING METHODOLOGY, AND RATIONALE ARE RELATED TO CORRESPONDING CHANGES IN SOCIAL STRUCTURE, EDUCATIONAL PHILOSOPHY, AND EXISTING KNOWLEDGE OF LEARNING THEORY. TOPICAL AREeeS ANALYZED INCLUDE (1) COURSE OBJECTIVES, (2) CRITERIA FOR THE SELECTION CF COURSE CONTENT, (3) TEXTBOOKS, (4) THE LEARNING CF BIOLOGY, AND (5) INSTRUCTIONAL RESOURCES. UNRESOLVED PROBLEMS IN BIOLOGICAL EDUCATION AND PROBLEMS AND ISSUES IN TEACHING BIOLOGY ARE DISCUSSED. (AG) op- lb" A II1111 It -41111thz- ,...11100t'. BIOLOGICAL SCIENCES CURRICULUM STUDY BULLETIN NO. 1 BIOLOGICAL ir(kryi( EDUCATION IN AMERICAN SECONDARY SCHOOLS 1890-1960 By Paul DeHart Hurd Education Consultant Ilielogical Sciences Curriculum Study On leave, School of Education Stanford University U.S. DEMMER Of RAM, MOON a WEIFAR ma Of MANN 11115 DEMI HAS Ka REPEONCEN UAW AS NaiveIRON Mt PERSON OR 01111111ATION OMANI IT.POINTS Of MEW OR OPINIONS STAND 00 NOT NECESSARY MUER OffKIAL OffKE OfEDUCATION POSITION 01 POUCY. American Institute of liological Sciences 2000 P Street, N.W.
    [Show full text]
  • Environmental Health Criteria 126 Partially Halogenated Chlorofluorocarbons
    Environmental Health Criteria 126 Partially halogenated chlorofluorocarbons ( methane derivatives) Please note that the layout and pagination of this web version are not identical with the printed version. Chlorofluorocarbons, partially halogenated (methane derivatives) (EHC 126, 1991) INTERNATIONAL PROGRAMME ON CHEMICAL SAFETY ENVIRONMENTAL HEALTH CRITERIA 126 PARTIALLY HALOGENATED CHLOROFLUROCARBONS (METHANE DERIVATIVES) This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organisation, or the World Health Organization. Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization Draft prepared by Professor D. Beritic-Stahuljak and Professor F. Valic, University of Zagreb, Yugoslavia, using texts made available by Dr. D.S. Mayer, Hoechst AG, Frankfurt am Main, Germany and by Dr. I.C. Peterson and Dr. G.D. Wade, ICI Central Toxicological Laboratory, Macclesfield, United Kingdom World Health Organization Geneva, 1991 The International Programme on Chemical Safety (IPCS) is a joint venture of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization. The main objective of the IPCS is to carry out and disseminate evaluations of the effects of chemicals on human health and the quality of the environment. Supporting activities include the development of epidemiological, experimental laboratory, and risk-assessment methods that could produce internationally comparable results, and the development of manpower in the field of toxicology. Other activities carried out by the IPCS include the development of know-how for coping with chemical accidents, coordination of laboratory testing and epidemiological studies, and promotion of research on the mechanisms of the biological action of chemicals.
    [Show full text]
  • 25 WORDS CHLORINE Chlorine, Cl, Is a Very Poisonous Green Gas That's
    25 WORDS CHLORINE Chlorine, Cl, is a very poisonous green gas that's extremely reactive. It's used for sanitizing, purifying, and was used as a weapon during World War I by the Germans. But in chemistry, it is an oxidizer. Chlorine, Cl, is a green gaseous element with an atomic number of 17. This halogen is a powerful oxidant and used to produce many things, such as cleaning products. Chlorine; it's chemical symbol is Cl. Chloride is abundant in nature and necessary for life but a large amount can cause choking and and poisoning. It's mainly used for water purification but has other uses. Chlorine is a halogen and to test if it has a halogen, we use the Beilstein Copper Wire Test. It is also used to produce safe drinking water. Chlorine, atomic number seventeen, is a halogen that is found in table salt, NaCl, making it essential to life. However, pure chlorine, Cl2, is a poisonous gas, detectable at even 1 ppm. Chlorine, (Symbol Cl), belongs to the halogen family of elements, found in group 17 on the periodic table. Chlorine has an atomic number of 17 and atomic weight of 35.453. Chlorine is the 17th element on the periodic table, and is in the "Halogens" group, which has a tendency to gain one electron to form anions. Its anion can be found commonly in table salt Chlorine (symbolized Cl) is the chemical element with atomic number 17. Clorine is a powerful oxidant and is used in bleaching and disinfectants. It is a pale yellow-green gas that has a specific strong smell.
    [Show full text]
  • Molten-Salt Reactor Chemistry
    MOLTEN-SALT REACTOR CHEMISTRY W. R. GRIMES Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 KEYWORDS: fused salt fuel, chemical reactions, reactors, beryllium fluorides, zirconium fluorides, Ii th i um fluorides, Received August 4, 1969 uranium hexafluoride, repro­ Revised October 7, 1969 cessing, protactinium, seporo­ tion pro c es s es, breeding, fission products, MSRE aggressive toward some otherwise suitable ma­ terial of construction and toward some suitable This document summarizes the large program of chemical research and development which led moderator material. The fuel must be stable to selection of fuel and coolant compositions for toward reactor radiation, must be able to survive the Molten-Salt Reactor Experiment (MSRE) and fission of the uranium (or other fissionable ma­ for subsequent reactors of this type. Chemical terial} and must tolerate fission product accumu­ lation without serious deterioration of its useful behavior of the LiF-BeFrZrFrUF4 fuel mixture and behavior of fission products during power op­ properties. We must also be assured of a gen­ uinely low fuel-cycle cost; this presupposes a eration of MSRE are presented. A discussion of low-cost fuel associated with inexpensive turn­ the chemical reactions which show promise for around of the unburned fissile material, and recovery of bred 233Pa and for removal of fission effective and economical schemes for recovery of product poisons from a molten-salt breeder reac­ tor is included. bred fissile material and for removal of fission­ product poisons from the fuel. A suitable secondary coolant must be provided to link the fuel circuit with the steam-generating equipment. The demands imposed upon this cool­ ant fluid differ in obvious ways from those im­ INTRODUCTION posed upon the fuel system.
    [Show full text]
  • Depleted Uranium Technical Brief
    Disclaimer - For assistance accessing this document or additional information,please contact [email protected]. Depleted Uranium Technical Brief United States Office of Air and Radiation EPA-402-R-06-011 Environmental Protection Agency Washington, DC 20460 December 2006 Depleted Uranium Technical Brief EPA 402-R-06-011 December 2006 Project Officer Brian Littleton U.S. Environmental Protection Agency Office of Radiation and Indoor Air Radiation Protection Division ii iii FOREWARD The Depleted Uranium Technical Brief is designed to convey available information and knowledge about depleted uranium to EPA Remedial Project Managers, On-Scene Coordinators, contractors, and other Agency managers involved with the remediation of sites contaminated with this material. It addresses relative questions regarding the chemical and radiological health concerns involved with depleted uranium in the environment. This technical brief was developed to address the common misconception that depleted uranium represents only a radiological health hazard. It provides accepted data and references to additional sources for both the radiological and chemical characteristics, health risk as well as references for both the monitoring and measurement and applicable treatment techniques for depleted uranium. Please Note: This document has been changed from the original publication dated December 2006. This version corrects references in Appendix 1 that improperly identified the content of Appendix 3 and Appendix 4. The document also clarifies the content of Appendix 4. iv Acknowledgments This technical bulletin is based, in part, on an engineering bulletin that was prepared by the U.S. Environmental Protection Agency, Office of Radiation and Indoor Air (ORIA), with the assistance of Trinity Engineering Associates, Inc.
    [Show full text]
  • Development of a Solvent Extraction Process for Group Actinide Recovery from Used Nuclear Fuel
    THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Development of a Solvent Extraction Process for Group Actinide Recovery from Used Nuclear Fuel EMMA H. K. ANEHEIM Department of Chemical and Biological Engineering CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden, 2012 Development of a Solvent Extraction Process for Group Actinide Recovery from Used Nuclear Fuel EMMA H. K. ANEHEIM ISBN 978-91-7385-751-2 © EMMA H. K. ANEHEIM, 2012. Doktorsavhandlingar vid Chalmers tekniska högskola Ny serie Nr 3432 ISSN 0346-718X Department of Chemical and Biological Engineering Chalmers University of Technology SE-412 96 Gothenburg Sweden Telephone + 46 (0)31-772 1000 Cover: Radiotoxicity as a function of time for the once through fuel cycle (left) compared to one P&T cycle using the GANEX process (right) (efficiencies: partitioning from Table 5.5.4, transmutation: 99.9%). Calculations performed using RadTox [HOL12]. Chalmers Reproservice Gothenburg, Sweden 2012 Development of a Solvent Extraction Process for Group Actinide Recovery from Used Nuclear Fuel EMMA H. K. ANEHEIM Department of Chemical and Biological Engineering Chalmers University of Technology Abstract When uranium is used as fuel in nuclear reactors it both undergoes neutron induced fission as well as neutron capture. Through successive neutron capture and beta decay transuranic elements such as neptunium, plutonium, americium and curium are produced in substantial amounts. These radioactive elements are mostly long-lived and contribute to a large portion of the long term radiotoxicity of the used nuclear fuel. This radiotoxicity is what makes it necessary to isolate the used fuel for more than 100,000 years in a final repository in order to avoid harm to the biosphere.
    [Show full text]
  • ORGANOMETAT,T,TC CHEMISTRY of URANIUM a Thesis Submitted By
    ORGANOMETAT,T,TC CHEMISTRY OF URANIUM A thesis submitted by R1TN R. SIGURDSON, B.Sc. for the DEGREE of DOCTOR of PHILOSOPHY of the UNIVERSITY of LONDON Royal College of Science Imperial College of Science and Technology London, SW7 ?AY August 1976 TO MY PARENTS 3 ACKNOWLEDGEMENTS I would like to express my gratitude to Professor Geoffrey Wilkinson, F.R.S. for his guidance and enthusiastic support throughout the course of this work. Many thanks are also extended to Drs. Dick Andersen, Ernesto Carmona-Guzman and David Cole-Hamilton for their suggestionS, encouragement and advice, and to Dr. Kostas Mertis for his patient help during the first months. I am indebted to the Canadian Research Council of Canada for financial support during the past three years. 4 CONTENTS ABSTRACT 6 INTRODUCTION I. The Chemistry of Uranium(IV) 8 .II. The Chemistry of Uranium(V) 15 III. The Chemistry of Uranium(VI) 16 CHAPTER I. DILITHIUMHEXAALKYLURANATE(IV) COMPLEXES I. Introduction 19 II. Results and Discussion 27 III. Experimental 35 CHAPTER II. TRILITHIUMOCTAALKYLURANATE(V) COMPLEXES I. Introduction 54 II. Results and Discussion 55 III. Experimental 60 CHAPTER III. ADDITION COMPOUNDS OF URANIUM(VI) HEXAISO-PROPDXIDE WITH LITHIUM, MAGNESIUM AND ALUMINIUM ALKYLS I. Introduction 70 II. Results and Discussion 71 III. Experimental 77 CHAPTER IV. ORGANOMETALLIC CHEMISTRY OF ADAMANTANE I. Introduction 84 II. Results and Discussion 85 III. Experimental 87 REFERENCES 92 5 ABBREVIATIONS Me - methyl Et - ethyl Prn- normal-propyl Pri- iso-propyl Bun- normal-butyl But- iso-butyl But- tertiary-butyl Ph - phenyl CP cyclopentadienyl DME - dimethoxyethane tmed - N,N,NI,N'-tetramethylethylenediamine pmdt - N,N,Nt,N",N"-pentamethyldiethylenetriamine g.l.c.
    [Show full text]
  • By Government, Particularly in Administrative Positions, and Exert an Increasing Demand and Suggest Future Action for Trained Pu
    DOCUMENT RESUME ED 025 220 24 HE 000 314 By-Mosher, Frederick C. Professional Education and the Public Service; An Exploratory Study. Final Report. California Univ., Berkeley. Center for Research and Development in Higher Education. Spons Agency-Office of Education (DHEW), Washington, D.C. Bureau of Research Bureau No- BR-5-0248 Pub Date Apr 68 Contract- OEC- 6- 10- 106 Note-170p. EDRS Price MF-$0.75 HC-$8.60 Descriptors- Administrative Personnel, *Government (Administrative Body), Governmental Structure, *Government Emplo_yees, *Higher Education, Professional Education, Professional Occupations,Professional Personnel, Public Administration Education, Public Officials, *Public Policy Professional and technical fields are the fastest growing occupational sectors in the US. More than one-third of all professional and technical workers are employed by government, particularlyinadministrative positions, and exert an increasing influence on public policy. But, with the exception of city managers, many of these employees regard themselves as members of the disciplines in which they weretrained rather than primarily as public administrators. The field of public administrationhas not influenced public policy as much as other fields have, possibly because: it is not a specialized profession; practitioners do not agree on what its core knowledge,skills and orientation should be; and there is little incentive for students to pursue studies in the field since most administrative positions are held by otherspecialists. Althou9h more attention in colleges is now being paid toadministrative and management fields, courses are usually based onorganizational theories of private business models, with little emphasis on the unique problems of government administration.Professional schools suffer from a general bias against teaching the kinds of subjects thatmight be useful in government jobs.
    [Show full text]