2021.02.06.430084V1.Full.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Topological Scoring of Protein Interaction Networks
bioRxiv preprint doi: https://doi.org/10.1101/438408; this version posted October 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Topological Scoring of Protein Interaction Networks Mihaela E. Sardiu1, Joshua M. Gilmore1,2, Brad D. Groppe1,3, Arnob Dutta1,4, Laurence Florens1, and Michael P. Washburn1,5‡ 1Stowers Institute for Medical Research, Kansas City, MO 64110 U.S.A. 2Current Address: Boehringer Ingelheim Vetmedica, St. Joseph, MO 64506 U.S.A. 3Current Address: Thermo Fisher Scientific, Waltham, MA 02451, U.S.A. 4Current Address: Department of Cell and Molecular Biology, University of Rhode Island, 287 CBLS, 120 Flagg Road, Kingston, RI 02881. 5 Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA ‡To whom correspondence should be addressed: Michael Washburn, Ph.D. Stowers Institute for Medical Research 1000 E. 50th St. Kansas City, MO 64110 Phone: 816-926-4457 E-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/438408; this version posted October 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract It remains a significant challenge to define individual protein associations within networks where an individual protein can directly interact with other proteins and/or be part of large complexes, which contain functional modules. Here we demonstrate the topological scoring (TopS) algorithm for the analysis of quantitative proteomic analyses of affinity purifications. -
Genetic Causes of Severe Childhood Obesity: a Remarkably High Prevalence in an Inbred Population of Pakistan
1424 Diabetes Volume 69, July 2020 Genetic Causes of Severe Childhood Obesity: A Remarkably High Prevalence in an Inbred Population of Pakistan Sadia Saeed,1,2 Muhammad Arslan,3 Jaida Manzoor,4 Sadia M. Din,5 Qasim M. Janjua,5,6 Hina Ayesha,7 Qura-tul Ain,5 Laraib Inam,3 Stephane Lobbens,1 Emmanuel Vaillant,1 Emmanuelle Durand,1 Mehdi Derhourhi,1 Souhila Amanzougarene,1 Alaa Badreddine,1 Lionel Berberian,1 Stefan Gaget,1 Waqas I. Khan,8 Taeed A. Butt,9 Amélie Bonnefond,1,2 and Philippe Froguel1,2 Diabetes 2020;69:1424–1438 | https://doi.org/10.2337/db19-1238 Monogenic forms of obesity have been identified in £10% material in the quest of new genes/variants influencing of severely obese European patients. However, the overall energy balance. spectrum of deleterious variants (point mutations and structural variants) responsible for childhood severe obe- sity remains elusive. In this study, we genetically screened The monogenic forms of obesity have defined the current 225 severely obese children from consanguineous Pakis- concepts of the central regulation of energy balance and have tani families through a combination of techniques, includ- opened new avenues for precision medicine (1,2). Monogenic ing an in-house–developed augmented whole-exome nonsyndromic obesity is due to pathogenic mutations in sequencing method (CoDE-seq) that enables simultaneous genes involved in leptin-melanocortin signaling, resulting in detection of whole-exome copy number variations (CNVs) extreme, early-onset obesity with an insatiable craving for fi and point mutations in coding regions. We identi ed food (2). In addition to excessive adiposity, syndromic obesity OBESITY STUDIES 110 (49%) probands carrying 55 different pathogenic point associates with other abnormalities such as dysmorphic fea- mutations and CNVs in 13 genes/loci responsible for non- tures, intellectual disability, and organ-specific anomalies (3). -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Distinguishing Pleiotropy from Linked QTL Between Milk Production Traits
Cai et al. Genet Sel Evol (2020) 52:19 https://doi.org/10.1186/s12711-020-00538-6 Genetics Selection Evolution RESEARCH ARTICLE Open Access Distinguishing pleiotropy from linked QTL between milk production traits and mastitis resistance in Nordic Holstein cattle Zexi Cai1*†, Magdalena Dusza2†, Bernt Guldbrandtsen1, Mogens Sandø Lund1 and Goutam Sahana1 Abstract Background: Production and health traits are central in cattle breeding. Advances in next-generation sequencing technologies and genotype imputation have increased the resolution of gene mapping based on genome-wide association studies (GWAS). Thus, numerous candidate genes that afect milk yield, milk composition, and mastitis resistance in dairy cattle are reported in the literature. Efect-bearing variants often afect multiple traits. Because the detection of overlapping quantitative trait loci (QTL) regions from single-trait GWAS is too inaccurate and subjective, multi-trait analysis is a better approach to detect pleiotropic efects of variants in candidate genes. However, large sample sizes are required to achieve sufcient power. Multi-trait meta-analysis is one approach to deal with this prob- lem. Thus, we performed two multi-trait meta-analyses, one for three milk production traits (milk yield, protein yield and fat yield), and one for milk yield and mastitis resistance. Results: For highly correlated traits, the power to detect pleiotropy was increased by multi-trait meta-analysis com- pared with the subjective assessment of overlapping of single-trait QTL confdence intervals. Pleiotropic efects of lead single nucleotide polymorphisms (SNPs) that were detected from the multi-trait meta-analysis were confrmed by bivariate association analysis. The previously reported pleiotropic efects of variants within the DGAT1 and MGST1 genes on three milk production traits, and pleiotropic efects of variants in GHR on milk yield and fat yield were con- frmed. -
The Evolutionarily Conserved Kruppel-Associated Box Domain
Proc. Natl. Acad. Sci. USA Vol. 88, pp. 3608-3612, May 1991 Biochemistry The evolutionarily conserved Kruppel-associated box domain defines a subfamily of eukaryotic multifingered proteins (DNA-binding proteins/sequence conservation/ceil differentiation) ERIC J. BELLEFROID, DOMINIQUE A. PONCELET, PIERRE J. LECOCQ, OLIVIER REVELANT, AND JOSEPH A. MARTIAL Laboratoire de Biologie Moldculaire et de Genie G6ndtique, Universit6 de Liege, Institut de Chimie B6, B-4000 Sart Tilman, Belgium Communicated by William J. Rutter, January 2, 1991 ABSTRACT We have previously shown that the human number of finger proteins (20-23), is highly conserved in genome includes hundreds of genes coding for putative factors evolution and appears always associated with finger repeats. related to the Krfippel zinc-ringer protein, which regulates Drosophila segmentation. We report herein that about one- third of these genes code for proteins that share a very MATERIALS AND METHODS conserved region of about 75 amino acids in their N-terminal cDNA Library Screening. A human AgtlO cDNA library nonfinger portion. Homologous regions are found in a number from undifferentiated NT2D1 cells (24) was screened with a of previously described finger proteins, including mouse Zfp-l 546-base-pair EcoRI-EcoRI fragment corresponding to the 5' and Xenopus Xfin. We named this region the Kruppel- nonfinger portion of the coding region of HPF4 (where HPF associated box (KRAB). This domain has the potential to form is human placental finger) (19). The DNA probes were two amphipathic a-helices. Southern blot analysis of "zoo" labeled with a multiprimed labeling kit (Boehringer Mann- blots suggests that the Krfippel-associated box is highly con- heim) to a specific activity of5 x 101 cpm/pug. -
Cellular and Molecular Signatures in the Disease Tissue of Early
Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A. -
Characterization and Mapping of Human Genes Encoding Zinc Finger Proteins (Transcription/Chromosome/Sequence-Tagged Site) P
Proc. Nati. Acad. Sci. USA Vol. 88, pp. 9563-9567, November 1991 Biochemistry Characterization and mapping of human genes encoding zinc finger proteins (transcription/chromosome/sequence-tagged site) P. BRAY*, P. LICHTERtt, H.-J. THIESEN§, D. C. WARDt, AND I. B. DAWID* *Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; tDepartment of Genetics, Yale School of Medicine, New Haven, CT 06520; *Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-6900 Heidelberg, Federal Republic of Germany; §Basel Institute for Immunology, Grenzacherstrasse 487, CH-4005 Basel, Switzerland Contributed by I. B. Dawid, August 2, 1991 ABSTRACT The zinc finger motif, exemplified by a segment finger genes cloned by binding of known regulatory nucleo- of the Drosophila gap gene Krfippel, is a nudeic add-binding tide sequences, zinc finger clones isolated by sequence domain present in many transcription factors. To investigate the homology often contain many fingers and highly conserved gene family encoding this motifin the human genome, a placental H/C link regions. Among multifinger cDNAs at least two genomic library was screened at moderate stringency with a associated motifs of unknown function have been identified degenerate oligodeoxynucleotide probe designed to hybridize to and named FAX (finger-associated box; ref. 14) and KRAB the His/Cys (H/C) link region between adjoining zinc fingers. (Kirppel-associated box; ref. 15). Over 200 phage clones were obtained and are being sorted into With the aim to survey the number and chromosomal groups by partial sequencing, cross-hybridization with oligode- distribution of zinc finger genes in the human genome, we oxynucleotide probes, and PCR amplifion. -
Table SII. Significantly Differentially Expressed Mrnas of GSE23558 Data Series with the Criteria of Adjusted P<0.05 And
Table SII. Significantly differentially expressed mRNAs of GSE23558 data series with the criteria of adjusted P<0.05 and logFC>1.5. Probe ID Adjusted P-value logFC Gene symbol Gene title A_23_P157793 1.52x10-5 6.91 CA9 carbonic anhydrase 9 A_23_P161698 1.14x10-4 5.86 MMP3 matrix metallopeptidase 3 A_23_P25150 1.49x10-9 5.67 HOXC9 homeobox C9 A_23_P13094 3.26x10-4 5.56 MMP10 matrix metallopeptidase 10 A_23_P48570 2.36x10-5 5.48 DHRS2 dehydrogenase A_23_P125278 3.03x10-3 5.40 CXCL11 C-X-C motif chemokine ligand 11 A_23_P321501 1.63x10-5 5.38 DHRS2 dehydrogenase A_23_P431388 2.27x10-6 5.33 SPOCD1 SPOC domain containing 1 A_24_P20607 5.13x10-4 5.32 CXCL11 C-X-C motif chemokine ligand 11 A_24_P11061 3.70x10-3 5.30 CSAG1 chondrosarcoma associated gene 1 A_23_P87700 1.03x10-4 5.25 MFAP5 microfibrillar associated protein 5 A_23_P150979 1.81x10-2 5.25 MUCL1 mucin like 1 A_23_P1691 2.71x10-8 5.12 MMP1 matrix metallopeptidase 1 A_23_P350005 2.53x10-4 5.12 TRIML2 tripartite motif family like 2 A_24_P303091 1.23x10-3 4.99 CXCL10 C-X-C motif chemokine ligand 10 A_24_P923612 1.60x10-5 4.95 PTHLH parathyroid hormone like hormone A_23_P7313 6.03x10-5 4.94 SPP1 secreted phosphoprotein 1 A_23_P122924 2.45x10-8 4.93 INHBA inhibin A subunit A_32_P155460 6.56x10-3 4.91 PICSAR P38 inhibited cutaneous squamous cell carcinoma associated lincRNA A_24_P686965 8.75x10-7 4.82 SH2D5 SH2 domain containing 5 A_23_P105475 7.74x10-3 4.70 SLCO1B3 solute carrier organic anion transporter family member 1B3 A_24_P85099 4.82x10-5 4.67 HMGA2 high mobility group AT-hook 2 A_24_P101651 -
“Deciphering the Genetic Architecture of Prolificacy Related Traits in an Experimental Iberian X Meishan F2 Intercross”
UNIVERSITAT AUTÒNOMA DE BARCELONA Departament de Ciència Animal i dels Aliments Facultat de Veterinària “Deciphering the genetic architecture of prolificacy related traits in an experimental Iberian x Meishan F2 intercross” Ingrid Balcells Ortega PhD Thesis June, 2012 Supervisors: Armand Sánchez and Anna Tomás El Dr. Armand Sánchez Bonastre, catedràtic del Departament de Ciència Animal i dels Aliments de la Universitat Autònoma de Barcelona i la Dra. Anna Tomás Sangenís, investigadora en la Fundació d'Investigació Sanitària de les Illes Balears de Mallorca CERTIFIQUEN: Que l’Ingrid Balcells Ortega ha realitzat sota la seva direcció el treball de recerca “Deciphering the genetic architecture of prolificacy related traits in an experimental Iberian x Meishan F2 intercross” per a obtenir el grau de doctora per la Universitat Autònoma de Barcelona. Que aquest treball s’ha dut a terme al Departament de Ciència Animal i dels Aliments de la Facultat de Veterinària de la Universitat Autònoma de Barcelona. Bellaterra, 11 de Maig de 2012 Dr. Armand Sánchez Bonastre Dra. Anna Tomás Sangenís ACKNOWLEDGEMENTS Durant la realització d’aquesta tesi, han sigut moltes les persones que m’han acompanyat, tan a nivell professional com personal. Totes elles han aportat el seu granet de sorra per a que aquest projecte hagi tirat endavant i han fet que pugui recordar aquesta etapa amb un gran somriure a la cara. Als meus directors de tesi, el doctor Armand Sánchez i la doctora Anna Tomás. Per tota la confiança que heu dipositat en mi, per tots els coneixements que m’heu transmès, per donar-me copets a l’esquena en els moments de més desànim (sobretot en aquests últims mesos) i per mil coses més. -
MCM2–7-Dependent Cohesin Loading During S Phase Promotes Sister-Chromatid Cohesion Ge Zheng1, Mohammed Kanchwala2, Chao Xing2,3,4, Hongtao Yu1*
RESEARCH ARTICLE MCM2–7-dependent cohesin loading during S phase promotes sister-chromatid cohesion Ge Zheng1, Mohammed Kanchwala2, Chao Xing2,3,4, Hongtao Yu1* 1Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States; 2Bioinformatics Lab, Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, United States; 3Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, United States; 4Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, United States Abstract DNA replication transforms cohesin rings dynamically associated with chromatin into the cohesive form to establish sister-chromatid cohesion. Here, we show that, in human cells, cohesin loading onto chromosomes during early S phase requires the replicative helicase MCM2–7 and the kinase DDK. Cohesin and its loader SCC2/4 (NIPBL/MAU2 in humans) associate with DDK and phosphorylated MCM2–7. This binding does not require MCM2–7 activation by CDC45 and GINS, but its persistence on activated MCM2–7 requires fork-stabilizing replisome components. Inactivation of these replisome components impairs cohesin loading and causes interphase cohesion defects. Interfering with Okazaki fragment processing or nucleosome assembly does not impact cohesion. Therefore, MCM2–7-coupled cohesin loading promotes cohesion establishment, which occurs without Okazaki fragment maturation. We propose that the cohesin–loader complex bound to MCM2–7 is mobilized upon helicase activation, transiently held by the replisome, and deposited behind the replication fork to encircle sister chromatids and establish cohesion. *For correspondence: DOI: https://doi.org/10.7554/eLife.33920.001 [email protected] Competing interests: The authors declare that no Introduction competing interests exist.