Zootaxa: Description of the Immature Stages Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CT DEEP Family-Level Identification Guide for Riffle-Dwelling Macroinvertebrates of Connecticut
CT DEEP Family-Level Identification Guide for Riffle-Dwelling Macroinvertebrates of Connecticut Seventh Edition Spring 2013 Authors and Acknowledgements Michael Beauchene produced the First Edition and revised the Second and Third Editions. Christopher Sullivan revised the Fourth and Fifth Editions. Erin McCollum developed the Sixth Edition with editorial assistance from Michael Beauchene. The First through Sixth Editions were developed and revised for use with Project SEARCH, a program formerly coordinated by CTDEEP but presently inactive. This Seventh Edition has been slightly modified for use by Connecticut high school students participating in the Connecticut Envirothon Aquatic Ecology workshop. Original drawings provided by Michael Beauchene and by the Volunteer Stream Monitoring Partnership at the University of Minnesota’s Water Resources Center. This page intentionally left blank. About the Key Scope of the Key This key is intended to assist Connecticut Envirothon students in the identification of aquatic benthic macroinvertebrates. As such, it is targeted toward organisms that are most commonly found in the riffle microhabitats of Connecticut streams. When conducting an actual field study of riffle dwelling macroinvertebrates, there may be an organism collected at a site in Connecticut that will not be found in this key. In this case, you should utilize another reference guide to identify the organism. Several useful guides are listed below. AQUATIC ENTOMOLOGY by Patrick McCafferty A GUIDE TO COMMON FRESHWATER INVERTEBRATES OF NORTH AMERICA by J. Reese Voshell, Jr. AN INTRODUCTION TO THE AQUATIC INSECTS OF NORTH AMERICA by R.W. Merritt and K.W. Cummins Most organisms will be keyed to the family level, however several will not be identified beyond the Kingdom Animalia phylum, class, or order. -
Redalyc.Trophic Analysis of Three Species of Marilia (Trichoptera
Revista de Biología Tropical ISSN: 0034-7744 [email protected] Universidad de Costa Rica Costa Rica Reynag, María Celina; Rueda Martín, Paola Alejandra Trophic analysis of three species of Marilia (Trichoptera: Odontoceridae) from the neotropics Revista de Biología Tropical, vol. 62, núm. 2, junio-, 2014, pp. 543-550 Universidad de Costa Rica San Pedro de Montes de Oca, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=44931383011 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Trophic analysis of three species of Marilia (Trichoptera: Odontoceridae) from the neotropics María Celina Reynaga & Paola Alejandra Rueda Martín CONICET, Instituto de Biodiversidad Neotropical (IBN), Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Tucumán, Argentina; [email protected], [email protected] Received 05-VI-2013. Corrected 10-X-2013. Accepted 15-XI-2013. Abstract: The trophic ecology of the aquatic insect fauna has been widely studied for the Northern temperate zone. However, the taxa originally classified within a given particular trophic group in temperate ecosystems, do not necessarily exhibit the same dietary profile beyond its geographic limits. Since, the trophic ecology of caddisfly larvae is largely incomplete in the Neotropical Region, the present work aims to describe feed- ing habits inferred from quantitative analysis of data taxonomically resolved at the species level. For this, the feeding habits of three Trichoptera species Marilia cinerea, M. -
(Trichoptera: Polycentropodidae, Psychomyiidae, Hydropsychidae, Odontoceridae) from Khao Nan and Tai Rom Yen National Parks, Southern Thailand
Zootaxa 4801 (3): 577–583 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4801.3.10 http://zoobank.org/urn:lsid:zoobank.org:pub:2F87D690-70BF-4C6E-AEBB-50820C22DBAF Four new species of caddisflies (Trichoptera: Polycentropodidae, Psychomyiidae, Hydropsychidae, Odontoceridae) from Khao Nan and Tai Rom Yen National Parks, southern Thailand NANNAPHAT SUWANNARAT1,2, HANS MALICKY4,5 & PONGSAK LAUDEE1,3* 1Department of Fishery and Coastal Resources, Faculty of Science and Industrial Technology, Prince of Songkla University, Surat Thani Campus, Muang District, Surat Thani Province, Thailand 84100. 2 �[email protected]; https://orcid.org/0000-0002-5109-1825 3 �[email protected]; https://orcid.org/0000-0003-3819-7980 4 �[email protected]; https://orcid.org/0000-0003-1305-8378 5Sonnengasse 13, A-3293 Lunz am See, Austria *Corresponding author Abstract Males of four new species of caddisflies, Polyplectropus hofmaierae n. sp. (Polycentropodidae), Eoneureclipsis chinachotiae n. sp. (Psychomyiidae), Hydropsyche khaonanensis n. sp. (Hydropsychidae), and Lannapsyche tairomyenensis n. sp. (Odontoceridae) are described and illustrated. Polyplectropus hofmaierae n. sp. is distinguished from other species by the shape of the apical end of its inferior appendages and its sharp intermediate appendages. The posterior edges of their inferior appendages run slanting to the ventrodistal point and are densely covered by short and stiff bristles. Eoneureclipsis chinachotiae n. sp. is differentiated by characters of its phallus, as the first two thirds of its length are slender and slightly curved. The distal part has a dorsal hump with a very slender thread on its caudal edge and is slightly bent downward and dilated. -
Zootaxa, Canoptila (Trichoptera: Glossosomatidae)
CORE Metadata, citation and similar papers at core.ac.uk Provided by University of Minnesota Digital Conservancy Zootaxa 1272: 45–59 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1272 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) The Neotropical caddisfly genus Canoptila (Trichoptera: Glossosomatidae) DESIREE R. ROBERTSON1 & RALPH W. HOLZENTHAL2 University of Minnesota, Department of Entomology, 1980 Folwell Ave., Room 219, St. Paul, Minnesota 55108, U.S.A. E-mail: [email protected]; [email protected] ABSTRACT The caddisfly genus Canoptila Mosely (Glossosomatidae: Protoptilinae), endemic to southeastern Brazil, is diagnosed and discussed in the context of other protoptiline genera, and a brief summary of its taxonomic history is provided. A new species, Canoptila williami, is described and illustrated, including a female, the first known for the genus. Additionally, the type species, Canoptila bifida Mosely, is redescribed and illustrated. There are three possible synapomorphies supporting the monophyly of Canoptila: 1) the presence of long spine-like posterolateral processes on tergum X; 2) the highly membranous digitate parameres on the endotheca; and 3) the unique combination of both forewing and hind wing venational characters. Key words: Trichoptera, Glossosomatidae, Protoptilinae, Canoptila, new species, caddisfly, male genitalia, female genitalia, Neotropics, Atlantic Forest, southeastern Brazil INTRODUCTION The Atlantic Forest of southeastern Brazil is well known for its highly endemic flora and fauna, and has been designated a biodiversity hotspot (da Fonseca 1985; Myers et al. 2000). The forest, consisting of tropical evergreen and semideciduous mesophytic broadleaf species, originally covered most of the slopes of the coastal mountains and extended from well inland to the coastline (Fig. -
Diversity and Ecosystem Services of Trichoptera
Review Diversity and Ecosystem Services of Trichoptera John C. Morse 1,*, Paul B. Frandsen 2,3, Wolfram Graf 4 and Jessica A. Thomas 5 1 Department of Plant & Environmental Sciences, Clemson University, E-143 Poole Agricultural Center, Clemson, SC 29634-0310, USA; [email protected] 2 Department of Plant & Wildlife Sciences, Brigham Young University, 701 E University Parkway Drive, Provo, UT 84602, USA; [email protected] 3 Data Science Lab, Smithsonian Institution, 600 Maryland Ave SW, Washington, D.C. 20024, USA 4 BOKU, Institute of Hydrobiology and Aquatic Ecology Management, University of Natural Resources and Life Sciences, Gregor Mendelstr. 33, A-1180 Vienna, Austria; [email protected] 5 Department of Biology, University of York, Wentworth Way, York Y010 5DD, UK; [email protected] * Correspondence: [email protected]; Tel.: +1-864-656-5049 Received: 2 February 2019; Accepted: 12 April 2019; Published: 1 May 2019 Abstract: The holometabolous insect order Trichoptera (caddisflies) includes more known species than all of the other primarily aquatic orders of insects combined. They are distributed unevenly; with the greatest number and density occurring in the Oriental Biogeographic Region and the smallest in the East Palearctic. Ecosystem services provided by Trichoptera are also very diverse and include their essential roles in food webs, in biological monitoring of water quality, as food for fish and other predators (many of which are of human concern), and as engineers that stabilize gravel bed sediment. They are especially important in capturing and using a wide variety of nutrients in many forms, transforming them for use by other organisms in freshwaters and surrounding riparian areas. -
Full Issue for TGLE Vol. 53 Nos. 1 & 2
The Great Lakes Entomologist Volume 53 Numbers 1 & 2 - Spring/Summer 2020 Numbers Article 1 1 & 2 - Spring/Summer 2020 Full issue for TGLE Vol. 53 Nos. 1 & 2 Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation . "Full issue for TGLE Vol. 53 Nos. 1 & 2," The Great Lakes Entomologist, vol 53 (1) Available at: https://scholar.valpo.edu/tgle/vol53/iss1/1 This Full Issue is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. et al.: Full issue for TGLE Vol. 53 Nos. 1 & 2 Vol. 53, Nos. 1 & 2 Spring/Summer 2020 THE GREAT LAKES ENTOMOLOGIST PUBLISHED BY THE MICHIGAN ENTOMOLOGICAL SOCIETY Published by ValpoScholar, 1 The Great Lakes Entomologist, Vol. 53, No. 1 [], Art. 1 THE MICHIGAN ENTOMOLOGICAL SOCIETY 2019–20 OFFICERS President Elly Maxwell President Elect Duke Elsner Immediate Pate President David Houghton Secretary Adrienne O’Brien Treasurer Angie Pytel Member-at-Large Thomas E. Moore Member-at-Large Martin Andree Member-at-Large James Dunn Member-at-Large Ralph Gorton Lead Journal Scientific Editor Kristi Bugajski Lead Journal Production Editor Alicia Bray Associate Journal Editor Anthony Cognato Associate Journal Editor Julie Craves Associate Journal Editor David Houghton Associate Journal Editor Ronald Priest Associate Journal Editor William Ruesink Associate Journal Editor William Scharf Associate Journal Editor Daniel Swanson Newsletter Editor Crystal Daileay and Duke Elsner Webmaster Mark O’Brien The Michigan Entomological Society traces its origins to the old Detroit Entomological Society and was organized on 4 November 1954 to “. -
Microsoft Outlook
Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA). -
The Trichoptera of North Carolina
Families and genera within Trichoptera in North Carolina Spicipalpia (closed-cocoon makers) Integripalpia (portable-case makers) RHYACOPHILIDAE .................................................60 PHRYGANEIDAE .....................................................78 Rhyacophila (Agrypnia) HYDROPTILIDAE ...................................................62 (Banksiola) Oligostomis (Agraylea) (Phryganea) Dibusa Ptilostomis Hydroptila Leucotrichia BRACHYCENTRIDAE .............................................79 Mayatrichia Brachycentrus Neotrichia Micrasema Ochrotrichia LEPIDOSTOMATIDAE ............................................81 Orthotrichia Lepidostoma Oxyethira (Theliopsyche) Palaeagapetus LIMNEPHILIDAE .....................................................81 Stactobiella (Anabolia) GLOSSOSOMATIDAE ..............................................65 (Frenesia) Agapetus Hydatophylax Culoptila Ironoquia Glossosoma (Limnephilus) Matrioptila Platycentropus Protoptila Pseudostenophylax Pycnopsyche APATANIIDAE ..........................................................85 (fixed-retreat makers) Apatania Annulipalpia (Manophylax) PHILOPOTAMIDAE .................................................67 UENOIDAE .................................................................86 Chimarra Neophylax Dolophilodes GOERIDAE .................................................................87 (Fumanta) Goera (Sisko) (Goerita) Wormaldia LEPTOCERIDAE .......................................................88 PSYCHOMYIIDAE ....................................................68 -
Of the Korean Peninsula
Journal288 of Species Research 9(3):288-323, 2020JOURNAL OF SPECIES RESEARCH Vol. 9, No. 3 A checklist of Trichoptera (Insecta) of the Korean Peninsula Sun-Jin Park and Dongsoo Kong* Department of Life Science, Kyonggi University, Suwon 16227, Republic of Korea *Correspondent: [email protected] A revised checklist of Korean Trichoptera is provided for the species recorded from the Korean Peninsula, including both North and South Korea. The checklist includes bibliographic research as well as results after reexamination of some specimens. For each species, we provide the taxonomic literature that examined Korean Trichoptera materials or mentioned significant taxonomic treatments regarding to Korean species. We also provide the records of unnamed species based on larval identification for further study. Based on taxonomic considerations, 20 species among the previously known nominal species in Korea are deleted or synonymized, and three species omitted from the previous lists, Hydropsyche athene Malicky and Chantaramongkol, 2000, H. simulata Mosely, 1942 and Helicopsyche coreana Mey, 1991 are newly added to the checklist. Hydropsyche formosana Ulmer, 1911 is recorded from the Korean Peninsula for the first time by the identification of Hydropsyche KD. In addition, we recognized 14 species of larvae separated with only tentative alphabetic designations. As a result, this new Korean Trichoptera checklist includes 218 currently recognized species in 66 genera and 25 families from the Korean Peninsula. Keywords: caddisflies, catalogue, history, North Korea, South Korea Ⓒ 2020 National Institute of Biological Resources DOI:10.12651/JSR.2020.9.3.288 INTRODUCTION Democratic Republic (North Korea). Since the mid 1970s, several scientists within the Republic of Korea (South Trichoptera is the seventh-largest order among Insecta, Korea) have studied Trichoptera. -
Animal-Mediated Organic Matter Transformation: Aquatic Insects As a Source of Microbially Bioavailable Organic Nutrients and Energy
Received: 11 June 2018 ( Accepted: 30 October 2018 DOI: 10.1111/1365-2435.13242 !"#"$!%&'$!()%*" !"#$%&'$()#%*()+,-.%"#/+$%**(-+*-%"01,-$%*#,"2+!34%*#/+ #"0(/*0+%0+%+0,4-/(+,1+$#/-,5#%&&6+5#,%7%#&%5&(+,-.%"#/+"4*-#("*0+ %")+("(-.6 Thomas B. Parr8 ( Krista A. Capps9:; ( Shreeram P. Inamdar8 ( Kari A. Metcalf< #Q*>,-16*310540R:,310,390D52:0 D.2*3.*B0S32T*-+2180540Q*:,U,-*B0V*U,-=B0 !50*-%/* Q*:,U,-* 1. Animal communities are essential drivers of energy and elemental flow in ecosys< ! Odum School of Ecology, University of 1*6+'0X5U*T*-B04*U0+1792*+0/,T*023T*+12;,1*901/*0473.1253,:0-5:*0540,326,:+0,+0 Georgia, Athens, Georgia sources of dissolved organic matter (DOM) and the subsequent utilization of that 3Savannah River Ecology Laboratory, Aiken, D571/0W,-5:23, DOM by the microbial community. CTetra Tech Inc, Portland, Maine 2. In a small forested headwater stream, we tested the effects of taxonomy, feeding Correspondence traits, and body size on the quality and quantity of dissolved organic carbon (DOC) J/56,+0N'0R,-- and dissolved organic nitrogen (DON) excreted by aquatic insects. In addition, we Email: [email protected] .5397.1*90+1*,98<+1,1*0+5:71*0,9921253+0150*+126,1*023+1-*,609*6,39045-0:,?2:*0W0 Present Address ,390.56>,-*902101501/*0W0*M.-*1*90?8023T*-1*?-,1*+' J/56,+0N'0R,--B0Q*>,-16*310540N25:5;8B0 Oklahoma Biological Survey, University of 3. Individual excretion rates and excretion composition varied with body size, tax< Oklahoma, Norman, Oklahoma 535680,3904**923;0;72:9'0J/*0*+126,1*90,T*-,;*0.566732180*M.-*12530-,1*0U,+0 −1 −1 −1 <# 1.31 μg DOC· per mg insect dry weight (DW) 0/- and 0.33 μg DON·mg DW 0/- B0 =4")#".+#"1,-$%*#," + University of Delaware, Grant/Award and individuals excreted DON at nearly twice the rate of NH4 . -
Taxonomic Catalog of the Brazilian Fauna: Order Trichoptera (Insecta), Diversity and Distribution
ZOOLOGIA 37: e46392 ISSN 1984-4689 (online) zoologia.pensoft.net RESEARCH ARTICLE Taxonomic Catalog of the Brazilian Fauna: order Trichoptera (Insecta), diversity and distribution Allan P.M. Santos 1, Leandro L. Dumas 2, Ana L. Henriques-Oliveira 2, W. Rafael M. Souza 2, Lucas M. Camargos 3, Adolfo R. Calor 4, Ana M.O. Pes 5 1Laboratório de Sistemática de Insetos, Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Estado do Rio de Janeiro. Avenida Pasteur 458, 22290-250 Rio de Janeiro, RJ, Brazil. 2Laboratório de Entomologia, Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro. Avenida Carlos Chagas Filho 373, 21941-971 Rio de Janeiro, RJ, Brazil. 3Department of Entomology, University of Minnesota. 1980 Folwell Avenue, 219 Hodson Hall. St. Paul, MN 55108, USA. 4Laboratório de Entomologia Aquática, Departamento de Zoologia, Instituto de Biologia, Universidade Federal da Bahia. Rua Barão Geremoabo 147, 40170-115 Salvador, BA, Brazil. 5Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia. Avenida André Araújo 2936, 69067-375 Manaus, AM, Brazil. Corresponding author: Allan P.M. Santos ([email protected]) http://zoobank.org/1212AFDC-779B-4476-8953-436524AAF3EC ABSTRACT. Caddisflies are a highly diverse group of aquatic insects, particularly in the Neotropical region where there is a high number of endemic taxa. Based on taxonomic contributions published until August 2019, a total of 796 caddisfly spe- cies have been recorded from Brazil. Taxonomic data about Brazilian caddisflies are currently open access at the “Catálogo Taxonômico da Fauna do Brasil” website (CTFB), an on-line database with taxonomic information on the animal species occurring in Brazil. -
DBR Y W OREGON STATE
The Distribution and Biology of the A. 15 Oregon Trichoptera PEE .1l(-.", DBR Y w OREGON STATE Technical Bulletin 134 AGRICULTURAL 11 EXPERIMENTI STATION Oregon State University Corvallis, Oregon INovember 1976 FOREWORD There are four major groups of insectswhoseimmature stages are almost all aquatic: the caddisflies (Trichoptera), the dragonflies and damselflies (Odonata), the mayflies (Ephemeroptera), and the stoneflies (Plecoptera). These groups are conspicuous and important elements in most freshwater habitats. There are about 7,000 described species of caddisflies known from the world, and about 1,200 of these are found in America north of Mexico. All play a significant ro'e in various aquatic ecosystems, some as carnivores and others as consumers of plant tissues. The latter group of species is an important converter of plant to animal biomass. Both groups provide food for fish, not only in larval but in pupal and adult stages as well. Experienced fishermen have long imitated these larvae and adults with a wide variety of flies and other artificial lures. It is not surprising, then, that the caddisflies have been studied in detail in many parts of the world, and Oregon, with its wide variety of aquatic habitats, is no exception. Any significant accumulation of these insects, including their various develop- mental stages (egg, larva, pupa, adult) requires the combined efforts of many people. Some collect, some describe new species or various life stages, and others concentrate on studying and describing the habits of one or more species. Gradually, a body of information accumulates about a group of insects for a particular region, but this information is often widely scattered and much effort is required to synthesize and collate the knowledge.