<<

Tsunami Protection Height Prediction

Predicting Tsunamis

Level I Tsunami Protection Height 1. Coastal structures protect property or help the evacuation process 2. For frequent but low-level events (several decades to 150 years)

Level II Tsunami Evacuation Height 1. Soft measures (evacuation) to protect lives 2. For infrequent higher level events (1,000 years) Central Government Guidelines to Local Governments

Deciding Tsunami Design Height (Tsunami Protection Height), Level I 1. Research Historical Tsunamis 2. Plot the Data 3. Select Level I Tsunami Heights

4. Numerical Simulations to Calculate Tsunami Height 5. Map the Data 6. Decide the Level I Tsunami Protection Height 7. Considerations of Tsunami Barrier Height Japanese Old Documents: Oonikki

Kamakura Oonikki

(a Chronicle from 1180 to 1589)

In August 15, 1498, there was a big earthquake. A big flood attacked Kamakura . It ran up close to the first archway of the main shrine. The water came to the temple of the Great Buddha and destroyed the hall. There were more than 200 deaths by drowning.

Photo: Kamakura Oonikki Kokushokankokai Manuscript Local Government Analysis

Analysis for Kamakura, and Bay

Tokyo

Kanagawa

Chiba

Japan

Maps: Google Earth, Data SIO, NOAA, U.S. Navy. NGA, GEBCO, Data Hydrographic Association, © 2016 ZENRIN, Image Landsat Local Government Analysis

Analysis for Kamakura, Yokohama and

1. Numerical simulation results of past tsunamis:  Genroku Kanto Earthquake (1703)  Keicho Earthquake (1605)  Meiou Tokai Earthquake (1498) 2. Numerical tsunami simulation results for earthquake scenarios:  North Tokyo Bay Earthquake  Miura-Boso (Tokyo Bay Mouth) Earthquake

3. Recorded past tsunami heights (analysis of old documents)  Kamakura - Old Capital City

4. Bored (drilled) for samples of tsunami sediments Tsunami Height Evaluation

Kamakura, Zushi, and Hayama

Historical Record Numerical Simulation 11 11

10 10

9 9 8 Meio Taisho-Kanto 8 7 Earthquake Genroku Earthquake 7 Earthquake 6 6 5 5 4 4

3 3 Tsunami Height (m) Height Tsunami 2 (m) Height Tsunami 2 Ansei 1 Earthquake 1 0 0 1400 1500 1600 1700 1800 1900 2000 Year Tsunamis Source: Kanagawa Prefectural Government, 2012 Map: Google Earth, Data SIO, NOAA, U.S. Navy. NGA, GEBCO © 2016 ZENRIN Calculated Tsunami Flood Area: Kamakura, Meiou Earthquake (1498)

Kamakura City

Zushi City

Flood Depth ■ 0.01 ~ 0.3 (m) ■ 0.3 ~ 1.0 (m) ■ 1.0 ~ 2.0 (m) ■ 2.0 ~ 3.0 (m) ■ 3.0 ~ 4.0 (m) ■ 4.0 ~ 5.0 (m) ■ 5.0 ~ 10.0 (m) ■ 10.0 ~ 20.0 (m) ■ ~ 20.0 (m)

Source: Kanagawa Prefectural Government, 2012 Calculated Tsunami Flood Area: Yokohama, Keicho Earthquake (1605)

Yokohama Central Station

Minatomirai

Nishi-Ku

Flood Depth Naka-Ku ■ 0.01 ~ 0.3 (m) ■ 0.3 ~ 1.0 (m) ■ 1.0 ~ 2.0 (m) ■ 2.0 ~ 3.0 (m) ■ 3.0 ~ 4.0 (m) ■ 4.0 ~ 5.0 (m) ■ 5.0 ~ 10.0 (m) Minami-Ku ■ 10.0 ~ 20.0 (m) ■ ~ 20.0 (m)

Source: Kanagawa Prefectural Government, 2012 Application to Tohoku

Tsunami Propagation over the Ocean

Data used for Calculations

 Topography Data (Japanese Cabinet Office) → Grid size

A. 1350m B. 450m C. 150m

 Initial Profile of Tsunami Wave 450m 1350m

(Geospatial Information Authority of Japan) 150m → Model of Mansinha and Smylie (1971) Faults → Two different faults are given at the same time

 Solve the Non-linear Long Wave Equation

Source: Sekine and Shibayama, 2012 100 minutes

Source: Sekine and Shibayama, 2012 Measurement Comparison

Estimates are evaluated against NOWPHAS wave gauge observations.

10 Estimation

Observation

5 Northern Iwate Prefecture 0

0 20 40 60 80 Wave height (m) height Wave -5 Time (min)

10 Estimation ) Observation 5 Southern 0 0 20 40 60 80 100 Iwate Prefecture -5

Wave height (m height Wave -10 Time (min)

Estimation

15 ) Observation 10 5 Central 0 Miyagi Prefecture -5 0 20 40 60 80 100 -10 Wave height (m height Wave -15 Time (min) Data: NOWPHAS, 2011. Observation Data of Tohoku Tsunami in 2011 [http://nowphas.mlit.go.jp/nowphasdata/static/sub311.htm] Source: Sekine and Shibayama, 2012 / Map: Google Earth, Data SIO, NOAA, U.S. Navy. NGA, GEBCO, Image Landsat Oshika Simulation Results Peninsula

15

47 min Natori ) 10 River 5

0 Wave Wave height (m 0 50 100 150 -5 Time (min)

15

) 10 Sendai Gulf 5

1.The first wave was Wave Wave height (m 0 0 50 100 150 reflected to the north of -5 Time (min) Oshika Peninsula 15

2.The reflected wave was ) 10 refracted and traveled into 5 the Sendai gulf.

0 Wave Wave height (m 0 50 100 150 -5 Time (min) Source: Sekine and Shibayama, 2012 Map: Google Earth, Data SIO, NOAA, U.S. Navy. NGA, GEBCO, Image Landsat Flood Calculation

 Topography Data (Japanese Cabinet Office) → Grid Size: 50m Roughness (Kotani et al., 1988)  Input Data Area Roughness  Inland water level is calculated High Density 0.080 using the offshore results for Residential Area shoreline boundary conditions. Middle Density 0.060 Residential Area  Front condition of incoming wave is Low Density 0.040 given as Aida (1977) Residential Area

Forest, Trees 0.030 qxorqy  C0H gH Paddy field 0.020 : 0.5 C0 q : Flow rate per unit width Ocean, River 0.025 H : Wave Height

Source: Sekine and Shibayama, 2012 180 minutes

Source: Sekine and Shibayama, 2012 / Map: © OpenStreetMap contributors Flood Simulation Results: Flood Area

Overestimated Area

Blue contour: Observation

Underestimated Area Red contour: Simulation

 There are still some inaccuracies in simulation results

Source: Sekine and Shibayama, 2012 Map: Google Earth, Data SIO, NOAA, U.S. Navy. NGA, GEBCO, Image © 2016 TerraMetrics Flood Simulation Results: Flood Area

According to the location, simulated inundation heights were overestimated or underestimated.

6 7 ) 5 6 5

4 POINT12

) 4 3 obs12 3 POINT1 2 2 obs1 1 1 0 Inundationheight (m 0 0 50 100 150 200 0 50 100 150 200

Time (min) Time (min)

Inundationheight (m

6 14

) ) 5 12 4 10 8 3 POINT6 6 POINT5 2 4 obs6 obs5

1 2 Inundationheight (m Inundationheight (m 0 0 0 50 100 150 200 0 50 100 150 200 Time (min) Time (min)

Source: Sekine and Shibayama, 2012 Map: Google Earth, Data SIO, NOAA, U.S. Navy. NGA, GEBCO, Image © 2016 TerraMetrics Flood Simulation Results: Flood Area

The second wave had a greater influence on inland areas than on coastal areas.

6 7 ) 5 6 5

4 POINT12

) 4 3 obs12 3 POINT1 2 2 obs1 1 1 0 Inundationheight (m 0 0 50 100 150 200 0 50 100 150 200

Time (min) Time (min)

Inundationheight (m

6 14

) ) 5 12 4 10 8 3 POINT6 6 POINT5 2 4 obs6 obs5

1 2 Inundationheight (m Inundationheight (m 0 0 0 50 100 150 200 0 50 100 150 200 Time (min) Time (min)

Source: Sekine and Shibayama, 2012 Map: Google Earth, Data SIO, NOAA, U.S. Navy. NGA, GEBCO, Image © 2016 TerraMetrics Effects of Global Warming

Components of a Storm Surge

Rapid Development: Yolanda (2013), Nemuro (2014) Route Change: Nargis (2008)

Typhoon, Cyclone, Hurricane

Wind

(1) Wave (Run-up) (2) Wind Driven Surge Coast levee or Dike (3) Pressure Surge (4) Tide 2. Wind Driven Surge with Wave Storm Surge Simulation Model Typhoon Simulation

WRF Weather Research and Forecasting (Skamarock et al., 2008)

TC-Bogus 1. Wind velocity (Hsiao et al., 2010) 2. Atmospheric pressure

1&2 1

Storm Surge Simulation

Unstructured Grid, Finite FVCOM Third-generation Volume Community Ocean SWAN wave model for Model (Chen et al., 2003) (Booji et al., 1999) coastal regions

WXtide (Flater, 1998)

Result of Storm Surge Future predictions

This simulation used the surface temperature from MIROC 5 (Watanabe et al., 2008) that was calculated under the RCP8.5 scenario.

Surface Temperature (K)

Surface temperature at 2:00, November 7, 2013 (PHT)

Surface temperature at 2:00, November 7, 2100 (PHT) (IPCC AR5 RCP8.5 scenario, MIROC5) Source: Oyama, 2014 2013

2100 Calculation of storm surge height in 2100

Calculations for 2013 and 2100 and measured storm surge height

Leyte Tacloban Samar

Surge Height Height (m) Surge

FVCOM + setup 2100 (m) FVCOM + setup (m) Measured (m)

FVCOM + wave setup 2100 (m)

FVCOM + wave setup (m)

Measured (m)

Source: Oyama, 2014 Effects of Global Warming Kanagawa Future Projections

To forecast 100 years later

PAST FORECAST PROJECTION Present

? 1958 … … … 08 09 10 2011 2 days … … 16 days later 100 yrs later

Past Future

Temporal axis Prediction of Future Cyclone

Future potential weather field and storm surge for the year 2100

IPCC Special Report on Emission Scenario A1B

 Integrated world, the economy and way of life will converge between regions  Increased socio-cultural interactions  Balanced emphasis on all energy sources

Future Scenario A1B  Atmospheric CO2 concentration will reach 720 ppm in the year 2100  Population growth, land use change are low  GDP growth and energy use is very high  Medium resource availability  New and efficient technologies are rapidly introduced

Calculation condition for the year 2100  Sea surface temperature will increase, e.g. around the Bay of Bengal by +2.2ºC  Sea level will rise by 0.35m Source: IPCC AR4 Summary for Policy makers, 2007 Forecast: 100 years later

IPCC A1B

In Tokyo Bay Typhoon Fitow (2007) in 2100 Sea Surface Temperature (SST) Sea Level Rise (SRL (cm))

A1B A1B

[+20]

Sep 6 00:00 – Sep 7 18:00 SST (°/ 100y) Sea Level (cm / 100y)

Maps and Source: Japan Meteorological Agency website, 2013 [http://www.data.jma.go.jp/cpdinfo/GWP/Vol7/pdf/811.pdf] Results: Comparison between 2007 and 2100

5.0 5.1 5.2 3.7 4.9 4.9 3.4 3.6 5.1 3.4 3.4 4.6 3.6 3.2 a. c. e. 4.7 b. d. f. 3.2 g.

h. a. Shibaura b. Haneda c. Edogawa d. Yokohama SLR: Sea Level Rise e. f. Surge: Wind driven surge and Pressure surge g. Futtsu h. Tateyama Source: Ohira et al., 2012 Conclusions for Future Calculation of Storm Surges

In the future, due to climate change, we can expect:

WARMER  Increase of surface temperature

HIGHER  Higher waves caused by typhoons

STRONGER  Stronger typhoon wind speed Effects of the Rise in Sea Level and the Increase in Typhoon Intensity on Coastal Structures in Tokyo Bay

5 6 7

4 Tokyo Bay 3 2 8

9 1

Small Area (Grid size=1km)

Connecting Boundary

Large Area (Grid size=3km)

Source: Hoshino et al., 2016 Map: Google Earth, Data SIO, NOAA, U.S. Navy. NGA, GEBCO, Data Japan Hydrographic Association, Image Landsat Outline of Effects

Rise in Change in Change in Global seawater typhoon storm surge warming temperature behavior height

What will happen to Tokyo Bay? Global Ocean and Land Temperature

Global Land Temperature Global Ocean Temperature

Data: NASA, 2010 Effect of Global Warming: Previous Study

 Typhoon’s radius of maximum sustained wind based on Yasuda et al., 2010

895 hPa 900 hPa 910 hPa

920 hPa 930 hPa 940 hPa

 Central pressure shift under global warming based on Knutson and Tuleya, 2004

25

) % 20

15

10 ■ Present現在の大気条件 Climate Condition ■ Future Climate Condition (high CO2 concentration) CO2増加後の大気条件 5

0

Occurrence probability ( probability Occurrence 870 880 890 900 910 920 930 940 950 960 970 Central Pressure (hPa) Target Area

The simulation uses a 5 6 7 nesting approach 4 Tokyo Bay 3 2 8 No Place Prefecture 1 9 1 Sagami Bay 2 Yokohama Kanagawa 3 Kawasaki

Small Area 4 Shinagawa (Grid size=1km) 5 Shibaura Tokyo

Connecting Boundary 6 Toyosu 7 Funabashi

Large Area 8 Chiba (Grid size=3km) 9 Futtsu Source:(Google Hoshino et al., 2016 Map:) Google Earth, Data SIO, NOAA, U.S. Navy. NGA, GEBCO, Data Japan Hydrographic Association, Image Landsat Target Typhoon Taisho 6th year (1917) typhoon 30th September - 1st October

Typhoon Route: Ministry of Land, Infrastructure, Transport and Tourism, 2000 Map: Google Earth, Data SIO, NOAA, U.S. Navy. NGA, GEBCO, Image Landsat Taisho 6th Year (1917)

Typhoon Damage Dead or Missing 1,324

Flooded and hard-hit areas by the Wounded 2,022 Taisho typhoon Completely 36,459 destroyed houses

Half destroyed 21,274 houses Shinjuku Houses washed 2,442 Muko-jima away Kami-hirai Flooded houses 302,917

Naka-gawa Flooded area 215km² (in Tokyo) River Sumida River

Flooded area Observed storm surge at Komatsugawa Hard-hit area

Haneda Tama River

Source: Miyazaki, 2003 Taisho 6th Year (1917) Typhoon

Typhoon Course

The lowest pressure of the typhoon was reported to be 952.7 hPa according to Miyazaki (2003)

Recorded course Collinear approximation

Source: Hoshino et al., 2016 / Data: Ministry of Land, Infrastructure, Transport and Tourism, 2000 Maps (left and center): Google Earth, Data SIO, NOAA, U.S. Navy. NGA, GEBCO, Image Landsat Change in Typhoon: Central Pressure

Central Pressure (Yasuda et al., 2010)

 Using the Stochastic Typhoon Model (STM)

 Data of 1468 observed typhoons from 1951 to 2005 Change in Typhoon: Cumulative Distribution

Central pressure

4.00E-02

3.00E-02 Future 2.00E-02

1.00E-02 Present Probability

0.00E+00 890 910 930 950 970 990 1010 1030 1050 Pressure (hPa)

Cumulative distribution function 1

0.8

0.6 Future 0.4

Probability Present

0.2

0 890 910 930 950 970 990 1010 1030 1050 Pressure (hPa)

Based on: Yasuda et al., 2010 Change in Typhoon: Calculations for Tokyo Bay

Conversion Table Taisho Typhoon

Present 940 950 960 970 980 Present 952.7

Future 915 930 945 960 975 Future 933.9

Source: Hoshino et al., 2016 Change in Typhoon: Radius of Maximum Wind Speed Yasuda et al., (2010)

895 hPa 900 hPa 910 hPa

920 hPa 930 hPa 940 hPa

Based on: Yasuda et al., 2010 Change in Typhoon: Example

If the central pressure is less than 895 (hPa), the radius of typhoon will be 30 (km) with 11 (%) probability.

Central Radius pressure Probability (km) 895 hPa (hPa) 15 0.03 20 0.05 25 0.09 30 0.11 35 0.11 ~895 40 0.11 45 0.22 50 0.08 55 0.08 60 0.11 Source: Hoshino et al., 2016 Typhoon and Sea Level Rise Scenario

Historical Central Pressure (hPa) 952.7

Climate-Change Modified Central Pressure (hPa) 933.9

• Probability distribution function according to Radius of Maximum Yasuda et al., 2010 Wind Speed • 10 computations for each scenario below

Sea Level Rise : 0 cm / : 28 cm / : 59 cm / :190 cm

Vermeer scenario B1 scenario A1FI and Rahmstorf, of the IPCC of the IPCC 2009

Source: Hoshino et al., 2016 Calculation Example

(SLR Scenario: 0 cm)

Probability Storm surge Storm surge Radius(km) Probability(%) (%) (m) (m) 30 12.5 1.6 1.5 0.3 0.3 45 24.9 1.8 1.6 12.5+1.5+0.8 14.8 60 24.1 1.8 1.7 3.1 3.1 75 14.8 1.9 1.8 24.9+24.1+10.9+7 67 90 10.9 1.8 1.9 14.8 14.8

105 7 1.8 80

120 3.1 1.7 60 135 1.5 1.6 40 150 0.8 1.6 20

0 Probability(%) 165 0.3 1.5 1.5 1.6 1.7 1.8 1.9 Storm surge(m)

Source: Hoshino et al., 2016 Result Example

Breakwater Ⅰ A: the probability a storm surge will Scenario A 95% 0.4 reach at least 50cm below the top Ⅱ

Scenario 0.3 of the flood defense

0.2 5% B7%

0.1 B: the probability a storm surge will

Frequency Probability 0 overflow the flood defense Scenario0.4 0.5 Ⅲ0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 Storm surge(m) OverflowB 50c A Storm m surge

Flood defense

Tide level

Bottom of the sea Source: Hoshino et al., 2016 Target Area

5 6 7

4 Tokyo Bay No Place Prefecture 3 2 1 Yokosuka 8 2 Yokohama Kanagawa

9 3 Kawasaki 1 Sagami Bay 4 Shinagawa

Small Area 5 Shibaura Tokyo (Grid size=1km) 6 Toyosu

7 Funabashi Connecting Boundary 8 Sodegaura Chiba

9 Futtsu Large Area (Grid size=3km)

Source:(Google Hoshino et al., 2016 Map:) Google Earth, Data SIO, NOAA, U.S. Navy. NGA, GEBCO, Data Japan Hydrographic Association, Image Landsat Sea Level Rise 0cm Overflow Consider global Sea level rise 0 ~ -50 cm Taisho 6th warming 0cm < -50 cm

1. Yokosuka 2. Yokohama 3. Kawasaki 0.4 0.8 0.8

0.3 0.6 0.6

0.2 0.4 0.4 KANAGAWA 0.1 0.2 0.2

0 0 0 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 0.5 0.7 0.9 1.1 1.3 1.5 1.7 0.6 0.8 1 1.2 1.4 1.6 1.8 4. Shinagawa 5. Shibaura 6. Toyosu 0.8 0.8 0.8

0.6 0.6 0.6 TOKYO 0.4 0.4 0.4 0.2 0.2 0.2

0 0 0 0.6 0.9 1.2 1.5 1.8 2.1 2.4 1.1 1.4 1.7 2 2.3 2.6 2.9 1.3 1.6 1.9 2.2 2.5 2.8 7. Funabashi 9. Sodegaura 10. Futtsu 0.5 0.5 0.4

0.4 0.4 0.3 0.3 0.3 0.2 CHIBA 0.2 0.2 0.1 0.1 0.1 0 0 0 1.4 1.7 2 2.3 2.6 2.9 3.2 3.5 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Source: Hoshino et al., 2016 Sea Level Rise 28cm Overflow Consider global Sea level rise 0 ~ -50 cm Taisho 6th warming 28cm < -50 cm

1. Yokosuka 2. Yokohama 3. Kawasaki 0.4 0.8 0.8

0.3 0.6 0.6

0.2 0.4 0.4 KANAGAWA 0.1 0.2 0.2

0 0 0 0.4 0.6 0.8 1 1.2 1.4 1.6 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 4. Shinagawa 5. Shibaura 6. Toyosu 0.8 0.8 0.5

0.6 0.6 0.4 0.3 0.4 0.4 TOKYO 0.2 0.2 0.2 0.1 0 0 0 0.4 0.8 1.2 1.6 2 2.4 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 7. Funabashi 9. Sodegaura 10. Futtsu 0.5 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.2 CHIBA 0.2 0.2 0.1 0.1 0.1 0 0 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 0.4 0.8 1.2 1.6 2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Source: Hoshino et al., 2016 Sea Level Rise 59cm Overflow Consider global Sea level rise 0 ~ -50 cm Taisho 6th warming 59cm < -50 cm

1. Yokosuka 2. Yokohama 3. Kawasaki 0.4 0.8 0.8

0.3 0.6 0.6

0.2 0.4 0.4 KANAGAWA 0.1 0.2 0.2

0 0 0 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 6. Toyosu 4. Shinagawa 0.8 5. Shibaura 0.8 0.8 0.6 0.6 0.6 TOKYO 0.4 0.4 0.4 0.2 0.2 0.2 0 0 0 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 7. Funabashi 9. Sodegaura 10. Futtsu 0.5 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.2 CHIBA 0.2 0.2 0.1 0.1 0.1 0 0 0 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 1 1.2 1.4 1.6 1.8 2 2.2 1 1.2 1.4 1.6 1.8 2 2.2 2.4 Source: Hoshino et al., 2016 Sea Level Rise 190cm Overflow Consider global Sea level rise 0 ~ -50 cm Taisho 6th warming 190cm < -50 cm

1. Yokosuka 2. Yokohama 3. Kawasaki 0.4 0.8 0.8

0.3 0.6 0.6

0.2 0.4 0.4 KANAGAWA 0.1 0.2 0.2

0 0 0 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 1.7 1.9 2.1 2.3 2.5 2.7 2.9 1.8 2 2.2 2.4 2.6 2.8 3 6. Toyosu 0.8 4. Shinagawa 5. Shibaura 0.8 0.8 0.6 0.6 0.6 TOKYO 0.4 0.4 0.4 0.2 0.2 0.2 0 0 0 2 2.2 2.4 2.6 2.8 3 3.2 2.7 2.9 3.1 3.3 3.5 3.7 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 7. Funabashi 9. Sodegaura 10. Futtsu 0.5 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.2 CHIBA 0.2 0.2 0.1 0.1 0.1 0 0 0 3 3.2 3.4 3.6 3.8 4 4.2 2 2.2 2.4 2.6 2.8 3 3.2 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 Source: Hoshino et al., 2016 Storm Surge Height Probability

Probability (%) that storm surge height will be higher than A or B defenses

Sea level rise 0cm 28cm 59cm 190cm

Level of Storm Surge A B A B A B A B Height (0 ~ -50cm) (overflow) (0 ~ -50cm) (overflow) (0 ~ -50cm) (overflow) (0 ~ -50cm) (overflow)

1. Yokosuka 12 0 95 0 100 64 100 100 2. Yokohama 0 0 58 0 100 0 100 100 3. Kawasaki 0 0 64 0 100 0 100 100 4. Shinagawa 0 0 0 0 0 0 100 100 5. Shibaura 0 0 0 0 0 0 100 100 6. Toyosu 0 0 0 0 0 0 100 100 7. Funabashi 0 0 0 0 0 0 100 81 8. Sodagaura 0 0 0 0 64 0 100 100 9. Futtsu 0 0 81 0 100 64 100 100 Source: Hoshino et al., 2016 Population Density

Living Population per 1km square 10000~ 4500~10000 1200~4500 300~1200 20~300

Source: Hoshino et al., 2016 Population Density: Elevation Height

The elevation of storm surge height considering 59(cm) sea level rise

The elevation of storm surge height considering 2.5m 190(cm) sea level rise

2.2m

B. Tokyo B

2.7m A C 1.8m 1.4m 3.1m

A. Kanagawa C. Chiba

Source: Hoshino et al., 2016 Conclusion

Wave Height Shibaura and Toyosu in Tokyo All points in Kanagawa Funabashi in Chiba Sodegaura and Futtsu in Chiba

Overflow Risk All points in Kanagawa All points in Tokyo Futtsu in Chiba Funabashi in Chiba

It is necessary to increase flood defense heights by 0.5m or more at these locations.

Population Density All points in All points in Chiba Tokyo and Kanagawa

Elevation All points in All points in Tokyo Kanagawa and Chiba