Fullerene and Fullerites. New Modern Materials Yu

Total Page:16

File Type:pdf, Size:1020Kb

Fullerene and Fullerites. New Modern Materials Yu Fullerene and fullerites. New modern materials Yu. Ossipyan To cite this version: Yu. Ossipyan. Fullerene and fullerites. New modern materials. Journal de Physique IV Proceedings, EDP Sciences, 1994, 04 (C9), pp.C9-51-C9-73. 10.1051/jp4:1994908. jpa-00253468 HAL Id: jpa-00253468 https://hal.archives-ouvertes.fr/jpa-00253468 Submitted on 1 Jan 1994 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE IV Colloque C9, supplkment au Journal de Physique HI, Volume 4, novembre 1994 Fullerene and fullerites. New modern materials Yu.A. Ossipyan Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow District, Russia I. Introduction The discovery of a new form of pure carbon - giant molecules called fullerenes and subsequelltly of a new crystalline form of carbon - fullerite crystals - has been a full-scale scientific boom over the past few years. Hundreds of laboratories all over the world are being engaged in synthesizing and studying fullerenes and fullerites and their derivatives, the number of publications amounts to two thousand, and the rate and scope of researches goes 011 growing. This report is not a scientific review and it- is not my aiin to cstablish scientific priorities. This is rather a scientific popular lecture that better fits in with the spirit of this session. In view of this, not to overburden my report, I shall not make individual references in the text and figures since, to be exact and consistent, the number of such references must be very large. At the end of rliy lecture I shall give references to several recent very good reviews devoted to individt~al problenis of fullerene pliysics and chemistry. 'l'he reatlei. will find tile necessary ~xhrenccsto originals in these reviews. 2. History The existence of giant niolecules of carbon, boron or silicon llas loi~gI)eeri hypothized. Individual quantum chemical calculations evidenced for thc possibility of stable AGO, and SO on clusters. 1 know about the results of such calculations made and published ill Moscow back in late 60s early 70s. Possibly, there wcrc Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jp4:1994908 JOURNAL DE PHYSIQUE IV other similar considerations and calculations, however, the ideas and models contained in them were hypothetical and based 011 general though quite sensible, from the stand point of quantum chemistry, assumptions. It was only in 1985 that Richard Smalley's group at Rice University, Texas in collaboration with Harry ICroto at the University of Sussex, England, reported the result of their experimental studies that vapors formed upon laser vaporization of graphite contained considerable amounts of carbon clusters CGO, which was recognized mass-spectrometrically. Concurrently, W.Kratschmer from the Max Planck Institute for Nuclear Physics, Heidelberg, Germany ant1 Donaltl I~luffman, University of Arizona, 'l'ucson and their students 1-.Lamb ancl I<.Fostiropoulos were conccrnctl wifh ~~roducinp, ocarbon smoke, by vaporizing a graphite electrode in an arc discharge in order lo model the carbon state in interstellar dust. Their spectroscopic efforts have shown that <carbon smokes contains CGO clusters which may well contribute to 1K spectrum of interstellar dust. But they asked for more . 1-laving collected the graphite residue resultant from spark erosion at the arc discharge, tliey dissolved it in benzene and, after evaporation of the solution, they got tiny crystals of C60 ant1 C70 mixture, being first man made crystals of citcd works of late has opcnetl avenues for laboratory synthesis of macroscopic amounts of fullercnes crystals, stimulated extensive activity in this field in many laboratories all over the globe. It has opened the new era of various physical and chemical experiments with thcsc novel mk~lcrials. .l'od:~y :I standard technology for synthesizing fullerite crystals involvcs the following stages: graphite vaporization in an inert gas atmosl,licre, one of thc arc tlischargc clcctrotlcs being a graphite rod, collecting tlie vaporization products residue from tlic cha~nbcr walls, dissolving this residue in an organic sol\lent, chromatogral>liic colu1111i separation of solutions of various fractions from each other. Thc solutions are then dried to yield microcrystalline particles (powders) of various CN fractions and, finally, these particles are sublimed to yield CN crystals. It appeared that in the fullerene family CN may be very large -- more than 900, however, most stable and abundant are CGOand C70. The molecular structure of CGOis shown in fig.1. This beautifully symmetric molecule belongs to the icosahedral symmetry and is formed of 12 pentagons and 20 hexagons having the same edge dimensioil close to that of C-C bond in graphite. So, now we know three forms of solid carbon - diamond ifig.2), graphite (fig.3) and fullerite (fig.4). A special interest to studies of physical properties of fullerites was arousctl by pul)licatio~~of the sensational \\rork of the group from AT&T Bell Lab's, who reported an observation of high 'rc (=lot<) superconductivity in fullerite specimens treated in 1)otassiulil vapors. .1. his phenomenon was attributed to the process of potassiunl atoms intcscalatioli inlo lllr crystal lattice interstitial sites of fullcritc, likc it takes place with graphite. I'urtlicl. games with variation of the intercalant's type (of alkali ~netals) resultetl in an increase of .I' up to 301< whic:h, j)rcscntly, is scco~itl only to 'I', values of higll c temperature superco~lductorson the base of copper oxitles. It should be pointed out that the general idea of the niolecular structure of fullerenes, similar to that of aromatic matcrial.~,has suggested that fullcrc,ncs arid fullerites should be inert, chenlically illactive ~natcrials.'l'liis, however, is ~iotlllc case. It has been demonstratccl that f~~llcrcnescan ~)a~.ticil);~tcin ~luliierouscllcrl~ical reactions with the formation of various clicmical deri\!ativcs of fullercnes, 7'his gave birth to a new broad field of organic clicniistrv \\:hic.ll, untloul)tctlly, is ~c~1.y promising. , So, two approaches and, corresponclirlgl,v, t\vo tlit'fcrcnt scientific ficltls call I)(. distinguished in the fullerene a~iclfullerite science: first approacli is to regard fullcritcs 21s stable fornl;~tionsthat Ict atoms of JOURNAL DE PHYSIQUE IV small radius - mainly alkali atoms - intercalate into tlieir interstitial positions. In this case the chemical bonds remain intact in fullerene n~olecules.An investigation of the physical properties of such alkali-doped compounds may be called the fullerene physics of today; second approach concentrates on possible chemical reactions involving break- down of bonds inside the fullerene molecules and formation of derivatives. This province is the fullerene chemistry. Let us discuss these approaches at greater length and consider the principle results obtained. 3. Fullerite physics An important division of this science is structi~ralanalysis of fulleritc crystals. It has necessitated the development of special structural methods related to so-called Rietveld refinement. This method, used in powder diff'ractometry, is basctl on the acception, from rational considerations, of apriori structural motlel ant1 its s~rl)secluc~~~t correction so that tlie positions of all the diffractiorl lines \yere coincident wit11 those derived from model calculations. 'l'o dcfinc reliably structures of various phases of pure and intercalated fullercnes this rncthotl is coml)inecl with a ~nctliodof integral intensity measurements of different X-ray diffraction lines, with Lauc methods to study single crystals, with neutron diffraction and electron diffraction mcthotls. 1) Pure fullerite C60 At room temperature a pure C60 has a crystalline I:CC structure (fig./I), but herewith the niolccules are orientationally disorclcretl tluc 10 tlieir rapitl quasi averaged spinning. In the X-ray time scalc all tlie four molecules of the cubic cell arc structurally equivalent. The lattice parameter a=14,16E compriscs tlie value of the van der Waals molecular diameter I) = 101:. At cooling belo\\! 'I' = 245) - 260 I< the 111 phase transition to a simple cubic lattice (SC) is observed. This transition was documented by different structural methods - powder, on single crystals (X-ray), and, also, neutron and electron diffractions. Differential scanning calorimeter method confirms that the phase transition is a first order. Temperature dependence of C60 molecules spinning characteristics was studied in detail using the NMR on 13c isotope. It was shown that above 140K there was one more phase transitio~l,leading to narrowing of NMR lines (fig.5). Effect of pressure. As the hydrostatic pressure is increased, the self-absorption edge moves to the red spectrum side and the absorption edge shape changes (fig.6). The compressibility modulus of CGO wasdefined from the displacement of the X-ray diffraction lines position under pressure. 2.Intercalated fullerenes As it has been mentioned, an interest to these materials was essentially stimulated by observation of high-T superconductivity in C specimens annealed in C alkali-metal vapors (fig.7). Diffraction and nlorphology studies of C60 speci~ne~~s aged at elevated temperatures in alkali-metal vapors have shown that such treatmerlt gives rise to different phases in thc systenl AxCg. wherc A (Na,l<,Pl),Cs). The following isolated p1lasc.s have been clocnn~eotctl: A2C60 - insulating , A3C60 -- concluctiiig , A4C60 - insulating , A6C60 - insulating , Structural fragments of these phases are shown in fig.8 where large L)alls stand for fullerene CGO molecule and small ones for alkali-metal atoms.
Recommended publications
  • Carbon Nanostructures – from Molecules to Functionalised Materials
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1537 Carbon Nanostructures – from Molecules to Functionalised Materials Fullerene-Ferrocene Oligomers, Graphene Modification and Deposition MICHAEL NORDLUND ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-0019-1 UPPSALA urn:nbn:se:uu:diva-327189 2017 Dissertation presented at Uppsala University to be publicly examined in A1:107a, BMC, Husargatan 3, Uppsala, Friday, 22 September 2017 at 09:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Mogens Brøndsted Nielsen (Copenhagen University, Department of chemistry). Abstract Nordlund, M. 2017. Carbon Nanostructures – from Molecules to Functionalised Materials. Fullerene-Ferrocene Oligomers, Graphene Modification and Deposition. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1537. 64 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0019-1. The work described in this thesis concerns development, synthesis and characterisation of new molecular compounds and materials based on the carbon allotropes fullerene (C60) and graphene. A stepwise strategy to a symmetric ferrocene-linked dumbbell of fulleropyrrolidines was developed. The versatility of this approach was demonstrated in the synthesis of a non- symmetric fulleropyrrolidine-ferrocene-tryptophan triad. A new tethered bis-aldehyde, capable of regiospecific bis-pyrrolidination of a C60-fullerene in predominantly trans fashion, was designed, synthesised and reacted with glycine and C60 to yield the desired N-unfunctionalised bis(pyrrolidine)fullerene. A catenane dimer composed of two bis(pyrrolidine)fullerenes was obtained as a minor co-product. From the synthesis of the N-methyl analogue, the catenane dimer could be separated from the monomeric main product and fully characterised by NMR spectroscopy.
    [Show full text]
  • Synthesis of Novel Fullerene Architectures with Mixed Octahedral Addition Pattern Synthese Neuartiger Fulleren Architekturen
    Synthesis of Novel Fullerene Architectures with Mixed Octahedral Addition Pattern Synthese neuartiger Fulleren Architekturen mit gemischtem oktaedrischen Additionsmuster Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr. rer. nat. vorgelegt von Ekaterini Vlassiadi aus Nürnberg Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 24.07.2017 Vorsitzender der Promotionskommission: Prof. Dr. Georg Kreimer Gutachter: Prof. Dr. Andreas Hirsch Prof. Dr. Jürgen Schatz Mein besonderer Dank gilt meinem Doktorvater Prof. Dr. Andreas Hirsch für die Bereitstellung des interessanten und herausfordernden Themas, seine Förderung, die fachliche Unterstützung und das Interesse am Fortgang meiner Forschungsarbeit. Die vorliegende Arbeit entstand in der Zeit von November 2012 bis Dezember 2016 am Lehrstuhl für Organische Chemie II des Departments für Chemie und Pharmazie der Friedrich-Alexander-Universität Erlangen-Nürnberg. Table of Contents 1. Introduction 1 1.1. Discovery of Fullerenes 1 1.2. Structure of C60 2 1.3. Physical and Spectroscopic Properties of C60 3 1.3.1. Solubility 3 1.3.2. Mass Spectrometry 4 1.3.3. NMR Spectroscopy 4 1.3.4. UV/Vis Spectroscopy 6 1.4. Electronic Properties and Chemical Reactivity of [60] Fullerene 7 1.5. Chemical reactivity of Fullerenes 10 1.5.1. Endohedral Functionalization of C60 10 1.5.2. Fulleride Salts 11 1.5.3. Heterofullerenes 12 1.5.4. Open-Shell Fullerene Fragments 12 1.5.5. Exohedral Functionalization of C60 13 1.5.5.1 Addition of Nucleophiles 13 1.5.5.2. Cycloaddition reactions 15 1.6. Multiple Exohedral Functionalization 18 1.6.1 Introduction to the Nomenclature of Multiple-Adducts 18 1.6.2.
    [Show full text]
  • An Overview of Fullerene Chemistry
    Bull. Mater. So., Vol. 20, No. 2, April 1997, pp. 141-230. © Printed in India. An overview of fullerene chemistry S SAMAL* and S K SAHOO Department of Chemistry, gavenshawCollege, Cuttack 753 003, India MS received 4 April 1996; revised 3 October 1996 Abstract. Fullerenes which were thought to be 'superaromatics' are actually 'super- alkenes'. Reactions in fuUerenesare varied, ranging from the addition of simple molecules like H 2 to large moleculeslike dendrimers.The synthesis,structure, characterization,along with simple reactions like halogenation, oxygenation, metalation,cydoaddition, polymeri- zation and dendrimer addition are discussed. Keywards. Fullerenes;C6o; C7o; characterization;reactions. 1. Introduction Fullerenes and their derivatives possess a number of potentially useful physical, biological and chemical properties. Our interest in the chemistry of fullerenes led us to present this review in which we have attempted to furnish an overall picture of the properties of these novel molecules. The scope of the review is however limited. The conclusion of the authors contributing to this rapidly growing field of research are accepted and presented in a concise manner highlighting the salient features of the original work. The technique developed by Kr/itschmer et al (1990) for preparing and isolating macroscopic quantities of C6o, 'a new form of carbon', opened the way for exploring the molecular and bulk properties of these novel species. Kroto et al (1985) reported the nature and chemical reactivity of C6o species produced during the nucleation of carbon plasma. C6o , which was found to be stable, was named buckminsterfullerene after Buckminster Fuller, American architect, engineer and constructor of geodesic dome.
    [Show full text]
  • Self-Assembled Fullerene Nanostructures Lok Kumar Shrestha1* , Rekha Goswami Shrestha2, Jonathan P
    Journal of Oleo Science Copyright ©2013 by Japan Oil Chemists’ Society J. Oleo Sci. 62, (8) 541-553 (2013) REVIEW Self-Assembled Fullerene Nanostructures Lok Kumar Shrestha1* , Rekha Goswami Shrestha2, Jonathan P. Hill1 and Katsuhiko Ariga1, 3 1 World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 JAPAN 2 ‌Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science 2641 Yamazaki, Noda, Chiba 278- 8510, JAPAN 3 PRESTO & CREST, JST, 1-1 Namiki, Tsukuba 305-0044 JAPAN Abstract: This review briefly summarizes recent developments in fabrication techniques of shape-controlled nanostructures of fullerene crystals across different length scales and the self-assembled mesostructures of functionalized fullerenes both in solutions and solid substrates. Key words: ‌fullerene, self-assembly, nanostructures, liquid-liquid interfacial precipitation, nanowhiskers, nanotubes, nanosheets 1 INTRODUCTION compose an icosohedra(l Ih)symmetric closed cage struc- Design of nanostructured materials whose properties ture of the C60 molecule(diameter~0.8 nm). In C60, each can be tailored across different length scales so that they carbon atom is bonded to three other carbon atoms can be utilized in different functional systems and nanode- through sp2 hybridized bonds with the tendency for double vices fabrication is a current topic of great interest in the bonds not to be present at the pentagonal rings resulting in field of materials nanoarchitectonics. Self-assembly is one poor electron delocalization, i.e. C60 is not a superaromatic of the special techniques applied for the organization of molecule. As a result, it behaves as an electron deficient functional molecules such as fullerenes, amphiphiles, pro- molecule.
    [Show full text]
  • Synthesis of Modified Fullerenes for Oxygen Reduction Reactions
    Journal of Materials Chemistry A View Article Online PAPER View Journal | View Issue Synthesis of modified fullerenes for oxygen reduction reactions† Cite this: J. Mater. Chem. A,2016,4, 14284 a a bc a Rosa Mar´ıa Giron,´ Juan Marco-Mart´ınez, Sebastiano Bellani, Alberto Insuasty, Hansel Comas Rojas,bd Gabriele Tullii,b Maria Rosa Antognazza,*b a ae Salvatore Filippone* and Nazario Mart´ın* The oxygen reduction reaction (ORR) is a key process common in several energy converting systems or electro-chemical technologies such as fuel cells, metal–air batteries, oxygen sensors, etc., which is based on the use of expensive and scarcely available platinum metal. In the search for carbon-based catalysts for ORRs, two different classes of new fullerene hybrids and metal-free fullerene derivatives endowed with suitable active sites have been prepared by highly selective metal- and organo-catalyzed synthetic methodologies. Along with their classical behavior as electron acceptors in polymer-based Received 1st August 2016 photo-electrochemical cells, the new fullerene derivatives are able to efficiently catalyze ORRs by using Accepted 15th August 2016 no metals or very low amounts of metals. Remarkably, the activity of metal-free fullerenes has proved to Creative Commons Attribution-NonCommercial 3.0 Unported Licence. DOI: 10.1039/c6ta06573b be as high as that observed for metallofullerenes bearing noble metals, and up to ten-fold higher than www.rsc.org/MaterialsA that of PCBM. 1 Introduction capability led to their extended use as suitable n-type
    [Show full text]
  • Discrete Fulleride Anions and Fullerenium Cations
    UC Riverside UC Riverside Previously Published Works Title Discrete fulleride anions and fullerenium cations. Permalink https://escholarship.org/uc/item/60b5m71z Journal Chemical reviews, 100(3) ISSN 0009-2665 Authors Reed, CA Bolskar, RD Publication Date 2000-03-01 DOI 10.1021/cr980017o Peer reviewed eScholarship.org Powered by the California Digital Library University of California Chem. Rev. 2000, 100, 1075−1120 1075 Discrete Fulleride Anions and Fullerenium Cations Christopher A. Reed* and Robert D. Bolskar Department of Chemistry, University of CaliforniasRiverside, Riverside, California 92521-0403 Received June 22, 1999 Contents iii. Anisotropy 1100 iv. Problem of the Sharp Signals 1101 I. Introduction, Scope, and Nomenclature 1075 v. Origins of Sharp Signals 1102 II. Electrochemistry 1078 vi. The C O Impurity Postulate 1103 A. Reductive Voltammetry 1078 120 vii. The Dimer Postulate 1104 B. Oxidative Voltammetry 1079 2- C. Features of the C60 EPR Spectrum 1106 III. Synthesis 1079 3- D. Features of the C60 EPR Spectrum 1107 A. Chemical Reduction of Fullerenes to 1079 4- 5- Fullerides E. Features of C60 and C60 EPR Spectra 1107 i. Metals as Reducing Agents 1080 F. EPR Spectra of Higher Fullerides 1107 ii. Coordination and Organometallic 1080 G. EPR Spectra of Fullerenium Cations 1108 Compounds as Reducing Agents X. Chemical Reactivity 1108 iii. Organic/Other Reducing Agents 1081 A. Introduction 1108 B. Electrosynthesis of Fullerides 1081 B. Fulleride Basicity 1109 C. Chemical Oxidation of Fullerenes to 1081 C. Fulleride Nucleophilicity/Electron Transfer 1109 Fullerenium Cations D. Fullerides as Intermediates 1110 IV. Electronic (NIR) Spectroscopy 1082 E. Fullerides as Catalysts 1111 A. Introduction 1082 F.
    [Show full text]
  • Thermally Metastable Fullerenes
    THERMALLY METASTABLE FULLERENES IN FLAMES BY TAPESH KUMAR YADAV Subnutted to the Department of Cherical Engineering in partial fulfillment of the requirements for the degree of DOCTOR OF PHELOSOPHY at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 1994 1994 Massachusetts Institute of Technology All rights reserved Signature of Author j;/ I,- -, I I - IV - , I-4)eMl --------t of Chemical- Engineering March 10, 1994 Certified by Jack B. Howard I---- Thesis Supervisor Accepted by !;dence RobertETohen "" Department Committee for Graduate Students JUN 6 994 Thermally Metastable Fullerenes in Flames by Tapesh Yadav Submitted to the Department of Chemical Engineering on March 10, 1994 in partial fulfillment of the requirements for the Degree of Philosophy in Chemical Engineering. ABSTRACT Fullerenes are closed caged molecules of pure carbon. These carbon molecules are produced in abundant quantities by certain sooting processes. In particular, fullerenes are observed in large quantities in the soot produced by low pressure (100 Torr), inert environment, vaporization of pure carbon and in the soot produced by low pressure 40 Torr) laminar combustion of premixed benzene/oxygen/inert vapors. Along with the observation of large quantities of fullerenes, many more observations can be made from the soot of the two processes. One particularly significant observation is the presence of many thermally metastable fullerenes in the soot produced by flames. This thesis focuses on an experimental and modeling study of one of the many thermally metastable fullerenes. Specifically, this thesis establishes the true identity of one of the thermally metastable ftillerene produced in flames; the thesis investigates where in the flame the thermally metastable fullerene forms; the thesis reports thermochernical.
    [Show full text]
  • Advances in Molecular and Supramolecular Fullerene Chemistry
    thermal treatment of 1,6-fullerenynes (1) affords cyclobutene adducts (3) without the presence of a catalyst; in a reaction this is the first example of a thermal [2+2] cyclization involving a fullerene double bond as the alkene moiety of the reactive 1,6-enyne7 (Fig. 1). A recent example of an unknown chemical reactivity has been found in fulleropyrrolidines, which are among the most studied fullerene derivatives used for many applications in materials science as well as in the search for biological properties.8 In contrast to Advances in Molecular other labile fullerene cycloadducts such as those prepared from Diels-Alder or Bingel reactions,1 fulleropyrrolidines and Supramolecular have been considered to be stable fullerene derivatives. However, the Fullerene Chemistry thermal quantitative retro-cycloaddition of fulleropyrrolidines to obtain the by Nazario Martín, Nathalie Solladié, and Jean-François Nierengarten pristine fullerene together with its typical magenta color in solution (Fig. 2) n 1996 Sir Harold W. Kroto, Robert discipline, a wide variety of important has been reported only recently.9 This F. Curl, and the late Richard E. reactions involving alkenes and alkynes reaction reveals that the understanding I Smalley received the Nobel Prize for have not been studied previously on of the reactivity of fullerene derivatives the discovery of the fullerenes. After the fullerene surface. One example is still far from the level where it is a decade, these round-shaped carbon of the most successful reactions in possible to predict
    [Show full text]
  • Harry Kroto ( General Info (Http
    Harry Kroto (http://www.kroto.info) General info (http://www.kroto.info/general-info/) Curriculum Vitae Professor Sir Harold Kroto FRS http://en.wikipedia.org/wiki/Harry_Kroto (http://en.wikipedia.org/wiki/Harry_Kroto) https://en.wiki2.org/wiki/Harry_Kroto (https://en.wiki2.org/wiki/Harry_Kroto) http://www.wikiwand.com/en/Harry_Kroto (http://www.wikiwand.com/en/Harry_Kroto) Overview In 1996 knighted for contributions to chemistry and later that year, together with Robert Curl and Richard Smalley (of Rice University, Houston, Texas), received the Nobel Prize for Chemistry for the discovery of C60 Buckminsterfullerene a new form of carbon. Fellow of the Royal Society (1990), Foreign Associate of the National Academy of Sciences (US), President of the Royal Society of Chemistry (2002-2004). Longstaff Medal of the Royal Society of Chemistry (1993), Faraday Lecturer 2001 (Royal Society), Copley Medal of the Royal Society (2002), Erasmus Medal of Academia Europaea, Freeman of the City of Torino, 29 Hon Degrees. Chronology 1939 1947 – 58 Born: Wisbech, Cambridgeshire Bolton School – Bolton Lancashire 1958 – 61 University of Sheffield – BSc (First class honours degree Chemistry) 1961 – 64 University of Sheffield – PhD (Molecular Spectroscopy, 1964) 1964 – 66 National Research Council (Ottawa, Canada) Postdoc 1966 – 67 Bell Telephone Laboratories (Murray Hill, NJ USA) 1967 – 04 University of Sussex (Brighton): Tutorial Fellow, Lecturer 1968, Reader 1977 Professor 1985-2005 – Royal Society Research Professor (1991-2001) 2004 – Florida State University, Francis Eppes Professor of Chemistry / Research fields cover several major topics: (see also Main contributions (http://www.kroto.info/main-contributions/)) 1961 – 1970 Electronic spectroscopy of free radicals and unstable intermediates in the gas phase, ii) Raman spectroscopy of intermolecular interactions in the liquid phase and iii) Theoretical studies of electronic properties ground and excited states of small molecules and free radicals.
    [Show full text]
  • New Studies in Fullerene Chemistry SOME RUSSIAN PLATINUM METALS FULLERENES RESEARCH by Viatcheslav I
    New Studies in Fullerene Chemistry SOME RUSSIAN PLATINUM METALS FULLERENES RESEARCH By Viatcheslav I. Sokolov and Vasily V. Bashilov Institute of Organoelement Compounds, Russian Acadrmy of Sc*irnc*rs.Moscow. Russia Studies on fullerene chemistry carried out in the Laboratory of Organometallic Stereochemistry ai ZNEOS,Moscow, are briefly reported. These include work with platinum metals complexes, in particular, on novel methods of prepar- ing fifdlerene (Gand C,) complexes ofplatinum, palladium, rhodium and iridium. A new appmach is the use of mercury-platinum bimetallic compounds, R-Hg-PtLyX, as a source of the PtL, moiety to be transferred onto a (65) double bond in fullerenes. Bis(aryl)platinum( 11) complexes can react similarly Other products of this reaction are discussed. Thefirst optically active organometallic fullerenes of the type C.M(+) DZOE where n = 60 or 70, have ulso been prepared and the circular dichroism spectra investigated. In addirion, the molecular structuresfor CN,Pd(PPh,)? and C~.tPt(+)DIOPhave been solved. Higher catal-ytic activity for the hydrogenation ofu triple to u double bond has been observed with C,#,Pd(PPh,)l adsorbpd on porous carbon than with palladiumlporous carbon. The stability of the giant carbon cluster C,,,, such they have attracted a lot of attention in was first predicted by quantum chemical cal- terms of their general reactivity - in particular culations in the 1970s (1,2), but the actual exis- as ligands for transition metals. tence of both C,,, and C7,,in carbon vapour was This latter field of study was initiated by the not discovered until 1985, when it was detected work of Fagan, Calabrese and Malone who by mass spectrometry (3), and resulted in the described the first platinum q2-bonded C,,, com- award of the Nobel Prize for Chemistry in 1996 plex (5).
    [Show full text]
  • Fullerenes Revisited
    GENERAL ¨ ARTICLE Fullerenes Revisited Materials Chemistry and Applications of C60 Molecules Pradeep P Shanbogh and Nalini G Sundaram The serendipitous discovery of C60 fullerene, which resulted in the prestigious Nobel Prize in Chemistry in 1996, spurred the finding of other fullerenes possessing carbon atoms rang- ing from 16 to hundreds. In this article, we offer a bird’s eye view of the synthesis, properties and recent applications of this class of carbon allotropes with special emphasis on C (left) Pradeep P Shanbogh 60 is a PhD student in PPISR, molecules. The versatility of the molecule and its applications Bangalore. His research interlinking the various interdisciplinary areas of science are work is on synthesis, solid described. state chemistry and structural aspects of History of the Fullerene photocatalytic and photoluminescent Fullerenes are the carbon allotropes composed entirely of carbon nanomaterials, and on organic and inorganic and exist in the form of a hollow sphere (buckyballs), ellipsoid or reactions involving various tube(buckytubes or carbonnanotubes). The existenceof fullerenes novel materials. was first predicted by Eiji Osawa of Toyohashi University of (right) Nalini G Sundaram Technology in 1970 and was discovered experimentally for the is a faculty at PPISR, first time in September 1985. It was detected in the time-of-flight Bangalore. She teaches mass spectrometer from the product of laser vaporization of crystallography and materials science. Her graphite. Fullerene C60, the most abundant molecule, was first research interests are in the synthesized in 1990 by Kramster et al,byanelectricarcresistive synthesis of novel functional heating of graphite rods [1]. nanomaterials, structural elucidation of novel Interestingly, the first fullerene discovered, known as the photocatalytic and Buckminster fullerene, is also called the Bucky ball [2].
    [Show full text]
  • JCE0397 P311 Extraction, Isolation, And
    In the Laboratory edited by filtrates & residues James O. Schreck University of Northern Colorado Greeley, CO 80639 Extraction, Isolation, and Characterization of Fullerene C60 A Safe and Reliable Separation Experiment Steven P. West,* Thomas Poon, Jamey L. Anderson, Michele A. West, and Christopher S. Foote Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90024 The recent discovery (1) and characterization (2, 3) of min is needed to achieve sufficient recovery of the filtrate, the pure-carbon, soccer ball–shaped molecule buckminster- a wine-red solution characteristic of a predominantly C60 fullerene-C60 has spawned intensive research (4). Now a fa- and C70 mixture. An alternative approach if aspiration is vorite study topic of physical and organic chemists, not available is to allow self-filtration of the original shaken fullerene chemistry has instilled in scientists a variety of mixture for at least 4 hours. Extraction occurs during the application hopes. Although development is slow, many en- filtration process. vision a future of fullerene superconductors, large-scale in- Chromatography Column Preparation and C Separation dustrial catalysts, and perhaps even antiviral agents (5). 60 This academic interest and enthusiasm in fullerene science A small plug of household cotton (the size of a pea) is has prompted us to develop a safe, inexpensive, and practi- inserted into a short-tip Pasteur pipet and lightly forced to the bottom. A uniformly distributed mixture of 0.5 g of acti- cal undergraduate activity for the study of C60, the most popular member of the fullerene family. vated charcoal (Norit SG) and 5 g of reagent-grade silica Appropriate for an advanced high school or introduc- gel (Baker analyzed, 60–200 mesh) is poured from a creased tory college chemistry laboratory, the experiment described weighing paper into the Pasteur pipet column to a level 2 here allows students to safely perform organic chemistry cm above the cotton plug (Fig.
    [Show full text]