Harry Kroto ( General Info (Http
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hemistry N E W S L E T T E R
University of Michigan Chemistry N E W S L E T T E R Letter from the Chair I am pleased to send greetings and to fullerene, was a very engaging keynote Contents highlight the activities of the Chemistry speaker for this event. Before his talk, the Department this past year. The Depart- Department was awarded a 2006 Citation Letter from the Chair ........................ 1 ment is continuing to make enormous for Chemical Breakthroughs from the Di- New Faculty ..................................... 3 strides towards accomplishing its goal of vision of the History of Chemistry of the becoming one of the top Chemistry De- American Chemical Society in recognition Faculty News.................................... 4 partments in the nation. The most recent of work by Moses Gomberg. Additionally, I 150th Birthday ...................................4 US News and World Report ranking of have enjoyed meeting departmental alumni Graduate Program News Chemistry Departments listed Michigan and alumnae as well as prospective faculty as 16th in the nation; the analytical cluster candidates at the University of Michigan Graduate Awards .......................... 7 was ranked 9th, biochemistry 13th, organic reception that is held at every American Graduate Degrees........................ 10 th th 13 , and inorganic 15 . These are the Chemical Society National meeting. Please GS Council News .........................12 highest rankings for these clusters in many plan on attending this reception at the next years. We anticipate that our standing in ACS meeting. Undergraduate Program News the community will continue to rise, in REU Program ...............................12 Over the past year the department has view of the tremendous success that we recruited Dr. Anne McNeil, an outstand- Undergraduate Awards ............... -
Fullerenes Finally Score As Nobel Committee Honours Chemists
NEWS Fullerenes finally score as Nobel committee honours chemists London. The Nobel committee last week regarded as the conceptual beginning of C6 might well have stayed the curiosity it gave the answer to a favourite topic of spec fullercne science.) remained for the next five years if physicists ulation at chemistry conferences for several In contrast, Robert Haddon, one of the Wolfgang Kratschmer, Don Huffman and years: when would the chemistry prize be team at Bell Laboratories in New Jersey their respective students Kosta Fostiropou awarded for the discovery that carbon who discovered superconducting C60 com los and Lowell Lamb had not found a way to atoms can assemble into the C60 carbon pounds in 1991, feels that the prize "could make the compound in gram quantities in cages of buckminsterfullerene - and who have been awarded by the end of 1991, when 1990. It was this discovery that allowed would win it? it was clear that fullerenes would change fullerene science to blossom. Both questions have now been answered, organic chemistry and materials science". There is no question that fullerenes have the second with the decision to award the The question of 'who' was the hardest, as provided entertainment for scientists and prize to Sir Harry Kroto of the UK Univer the route from discovery to worldwide non-scientists alike. But how important are sity of Sussex (bottom right), and Robert impact has involved many significant contri they? Kroto feels that the Nobel committee Curl and Richard Smalley of Rice Univer butions. But no award would have made have taken "a gamble that fullerenes will be sity in Houston, Texas (right). -
Graduation 2013. Wednesday 17 July 2013 the University of Sheffield
Graduation 2013. Wednesday 17 July 2013 The University of Sheffield Your graduation day is a special day for you and your family, a day for celebrating your achievements and looking forward to a bright future. As a graduate of the University of Sheffield you have every reason to be proud. You are joining a long tradition of excellence stretching back more than 100 years. The University of Sheffield was founded with the amalgamation of the School of Medicine, Sheffield Technical School and Firth College. In 1905, we received a Royal Charter and Firth Court was officially opened by King Edward VII and Queen Alexandra. At that time, there were 363 students reading for degrees in arts, pure science, medicine and applied science. By the time of our centenary, there were over 25,000 students from more than 100 countries, across 70 academic departments. Today, a degree from Sheffield is recognised all over the world as a hallmark of academic excellence. We are proud of our graduates and we are confident that you will make a difference wherever you choose to build your future. With every generation of graduates, our university goes from strength to strength. This is the original fundraising poster from 1904/1905 which helped raise donations for the University of Sheffield. Over £50,000 (worth more than £15 million today) was donated by steelworkers, coal miners, factory workers and the people of Sheffield in penny donations to help found the University. A century on, the University is now rated as one of the top world universities – according to the Shanghai Jiao Tong Academic Ranking of World Universities. -
INGUA Ff.. Ga. , Arahumarkvis"
ails.- archiro n the ice, cont,1: ic and cis th,u -war or ,- INGUA ff.. ga. , ARAHUMARkvis" - 1 , ,,.,••• -• rlildrri riP trIr': ri-/_rrP (‘Y• 7 C. i A r• -Nb) itz it.. — BY THE NUMBERS A LOOK AT THE RICE UNIVERSITY CLASS OF 2000 1996 APPLICATIONS PEATURE UNDER G TOTAL APPLICATIONS 7054 At Rice., forefront OFFERS OF ADMISSION 1731 FRESHMEN (INCL. TRANSFERS) 675 LINGUA A Rice 1 can ton! 1996 ADMISSIONS FROM TEXAS 316 THINicit NANOS FROM OTHER STATES 331 The cc( ence ar society INTERNATIONAL 28 TOTAL 675 WyporF.A1.t1996 EATURES UN DERGRADUATE RESEARCH AT RICE 14 At Rice, undergraduate students often find themselves in the forefront of major research. LINRAU LINGUA TARAHUMARA 22 A Rice linguist's study of an almost unknown Native Ameri- can tongue has made him almost one of the family. —DAVID D. MEDINA THINKING SMALL/THINKING BIG: THE FUTURE OF NA NOSCALE SCIENCE AND TECHNOLOGY 30 The economic and commercial implications of nanoscale sci- ence and technology promise to reverberate throughout our A P t V C N T society for decades to come. —MALCOLM GILLIS RETURN ADDRESSED THROUGH THE SALLYPORT 5 WHO'S WHO 36 GIFTS AND GIVING 36 ON THE BOOKSHELF 38 SEs & ACADEMs 40 SCOREBOARD 42 ALUMNI GAZETTE 45 CLASSNOTES 48 YESTERYEAR 73 FALL '96 1 FOREWORD THINKING Sallyport FALL 1996, VOL. 53, NO. 1 FORWARD AFFIF .Published hv the I)ItIsluttoI I s crsIty Athancement I am tempted to tell you that the time has again come for change, but the truth ' The la< EDITOR is, as has often been stated,that change is the only constant and is always here with ments Christopher Do, us. -
Carbon Nanostructures – from Molecules to Functionalised Materials
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1537 Carbon Nanostructures – from Molecules to Functionalised Materials Fullerene-Ferrocene Oligomers, Graphene Modification and Deposition MICHAEL NORDLUND ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-0019-1 UPPSALA urn:nbn:se:uu:diva-327189 2017 Dissertation presented at Uppsala University to be publicly examined in A1:107a, BMC, Husargatan 3, Uppsala, Friday, 22 September 2017 at 09:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Mogens Brøndsted Nielsen (Copenhagen University, Department of chemistry). Abstract Nordlund, M. 2017. Carbon Nanostructures – from Molecules to Functionalised Materials. Fullerene-Ferrocene Oligomers, Graphene Modification and Deposition. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1537. 64 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0019-1. The work described in this thesis concerns development, synthesis and characterisation of new molecular compounds and materials based on the carbon allotropes fullerene (C60) and graphene. A stepwise strategy to a symmetric ferrocene-linked dumbbell of fulleropyrrolidines was developed. The versatility of this approach was demonstrated in the synthesis of a non- symmetric fulleropyrrolidine-ferrocene-tryptophan triad. A new tethered bis-aldehyde, capable of regiospecific bis-pyrrolidination of a C60-fullerene in predominantly trans fashion, was designed, synthesised and reacted with glycine and C60 to yield the desired N-unfunctionalised bis(pyrrolidine)fullerene. A catenane dimer composed of two bis(pyrrolidine)fullerenes was obtained as a minor co-product. From the synthesis of the N-methyl analogue, the catenane dimer could be separated from the monomeric main product and fully characterised by NMR spectroscopy. -
Interview Apr 2008 28-31
ISSUE SIX APRIL 2008 €5.00 / £3.50 ISSN 1757-2517 THE MAGAZINE FOR SMALL SCIENCE MMIIRRAACCLLEE MCMarboAAn nTTanoEEtubRRes IIAALL Nobel conversation The future for Sir Harry Kroto Smart Yarns Spinning next generation materials Plumbing on the nanoscale Welding nanotubes together for smart circuits Credit crunch How market changes will impact nanotech Investing in the future Japan on a mission to stay top in technology What’s New in Nano Keep up with the latest news PLUS: A TRICK OF THE LIGHT? METAMATERIALS BENDING LIGHT BACKWARDS EW VI R TE IN Nobel conversation OTTILIA SAXL INTERVIEWS SIR HARRY KROTO, WHO RECEIVED THE NOBEL PRIZE FOR CHEMISTRY, IN 1996, ALONG WITH ROBERT CURL AND RICHARD SMALLEY FOR THE DISCOVERY OF CARBON C60, AN ENTIRELY NEW FORM OF CARBON WITH MANY INTRIGUING PROPERTIES. SIR HARRY IS CONVINCED THAT THE WORLD OF CIVIL ENGINEERING WILL CHANGE AS DEFECT-FREE STRUCTURES ARE CREATED ONCE LONG LENGTHS OF CARBON NANOTUBES HAVING A CONSISTENT DIAMETER CAN BE ROUTINELY SYNTHESIZED.. part from his research and other future in these as a career. My father, who got involved in athletics and worked on the interests, Sir Harry has been active had been a refugee, ran a small family student magazine. I did so many things Ain enabling leading scientists to business, and was keen for me to join him. there that I wanted to stay on, and did so by communicate with the public through the But both my chemistry teacher and my art taking a PhD in Spectroscopy. Essentially, Vega Trust, and has more recently set up a teacher were very supportive of me University for me was a place I could do all new website, GeoSet, which offers a forum continuing my studies, and it was my the things I was interested in, so I gave it a try for young scientists to share their ideas and chemistry teacher, Harry Heaney, who for 5 years. -
Prezentacja Programu Powerpoint
1 Sprawy organizacyjne Zajęcia laboratoryjne: CHEMIA: piątki, 14:15 – 18:00 TECHNOLOGIA CHEMICZNA: środy, 10:15 – 14:00 Miejsce zajęć (zgodnie z podanym planem): Katedra Fizyki Molekularnej (dr Izabela Bobowska) Międzyresortowy Instytut Techniki Radiacyjnej (sala 213) (dr Sławomir Kadłubowski, dr Radosław Wach, dr hab. Piotr Ulański – pok. 224 MITR) 2 Sprawy organizacyjne Zajęcia laboratoryjne: 30 godzin, każdy student wykonuje 5 ćwiczeń po 4 h Podział na grupy pięcioosobowe A1, A2, A3; B1, B2, B3; C1, C2, C3; D1, D2, D3 Grafik będzie podany Sprawozdanie składa grupa Na końcu wszyscy zdają dwuczęściowe kolokwium Zasady określone w regulaminie (link będzie podany) Regulamin TRZEBA przeczytać Instrukcje (MITR) są na stronie (samoobsługa) 3 Sprawy organizacyjne 4 Sprawy organizacyjne 5 ”There is plenty of room at the bottom …” 6 Richard Feynman (laureat nagrody Nobla z fizyki) Products - Nano The Nobel Prize in Chemistry 2016: NANOMOTORS Jean-Pierre Sauvage, Sir J. F. Stoddart, Bernard Feringa „For the design and synthesis of molecular machines". The Nobel Prize in Chemistry 2014: TO SEE AT NANOSCALE Eric Betzig, Stefan W. Hell and William E. Moerner „For the development of super-resolved fluorescence microscopy". 7 Nano-słownik Nano = 10-9 (jedna miliardowa część) Z greckiego νᾶνος (nanos) - karzeł Nanosekunda = 1 10-9 s Bardzo szybkie reakcje chemiczne W ciągu 1 ns światło przebywa drogę 30 cm, a dźwięk w powietrzu 0,00033 mm (0,33 mikrona) Nanogram = 1 10-9 g (obiekty o wymiarach ok. 10 mikronów, około 1/300 masy ziarenka maku) Nanometr -
The Birth of Fullerene Chemistry: Harold W. Kroto Discusses New Lines of Buckyball Research in a Science Watchm Interview
Current Comments@ EUGENE GARFIELD INSTITUTE FOB SCIENTIFIC !NFORMATION@ I 3501 MARKET ST, PHILADELPHIA, PA I W04 The Birth of Fullerene Chemistry: Harold W. Kroto Discusses New Lines of Buckyball Research in a Science Watchm Interview Number 37 September 13, 1993 A Star Is Born: Discovering the Third Not surprisingly, buckyballs and the new Form of Carbon field of fullerene chemistry have attracted Last week in the engineering and phys- much attention in the press, For example, ics/chemi stry editions of Currenr Contents@ Science selected the buckyball as its Mol- (C@), we published a Citufion Classic@ ecule of the Year in 1991,6 and the Econo- commentary by Harold W. Kroto, Univer- misf called it (be Renaissance Molecule in sity of Sussex, Brighton, EngIand, on the 1992,7 It was first featured in CC in a 1988 1985 Nature paper describing the discov- essay on the most-cited 1985 chemistry pa- ery of buckminsterfullerene, IZ Working pers.~ with a team of colleagues at Rice Univer- h addition, Kroto was interviewed in sity, Houston, led by Richard E, Smalley, Science WaKh@, ISI@’s newsletter ihat Kroto was interested in learning more about &acks quantitative trends in researches The the interstellar formation of long carbon 1992 interview, reprinted below, focused chains in red giant stars. An unexpected on new directions in fullerene research and result of their effort was the serendipitous its applications in various fields. It is a discovery of a third natural form of car- useful companion piece to Kroto’s Cita- bon—the stable Cm molecule named after tion Classic commentary, ] because both R. -
Synthesis of Novel Fullerene Architectures with Mixed Octahedral Addition Pattern Synthese Neuartiger Fulleren Architekturen
Synthesis of Novel Fullerene Architectures with Mixed Octahedral Addition Pattern Synthese neuartiger Fulleren Architekturen mit gemischtem oktaedrischen Additionsmuster Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr. rer. nat. vorgelegt von Ekaterini Vlassiadi aus Nürnberg Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 24.07.2017 Vorsitzender der Promotionskommission: Prof. Dr. Georg Kreimer Gutachter: Prof. Dr. Andreas Hirsch Prof. Dr. Jürgen Schatz Mein besonderer Dank gilt meinem Doktorvater Prof. Dr. Andreas Hirsch für die Bereitstellung des interessanten und herausfordernden Themas, seine Förderung, die fachliche Unterstützung und das Interesse am Fortgang meiner Forschungsarbeit. Die vorliegende Arbeit entstand in der Zeit von November 2012 bis Dezember 2016 am Lehrstuhl für Organische Chemie II des Departments für Chemie und Pharmazie der Friedrich-Alexander-Universität Erlangen-Nürnberg. Table of Contents 1. Introduction 1 1.1. Discovery of Fullerenes 1 1.2. Structure of C60 2 1.3. Physical and Spectroscopic Properties of C60 3 1.3.1. Solubility 3 1.3.2. Mass Spectrometry 4 1.3.3. NMR Spectroscopy 4 1.3.4. UV/Vis Spectroscopy 6 1.4. Electronic Properties and Chemical Reactivity of [60] Fullerene 7 1.5. Chemical reactivity of Fullerenes 10 1.5.1. Endohedral Functionalization of C60 10 1.5.2. Fulleride Salts 11 1.5.3. Heterofullerenes 12 1.5.4. Open-Shell Fullerene Fragments 12 1.5.5. Exohedral Functionalization of C60 13 1.5.5.1 Addition of Nucleophiles 13 1.5.5.2. Cycloaddition reactions 15 1.6. Multiple Exohedral Functionalization 18 1.6.1 Introduction to the Nomenclature of Multiple-Adducts 18 1.6.2. -
An Overview of Fullerene Chemistry
Bull. Mater. So., Vol. 20, No. 2, April 1997, pp. 141-230. © Printed in India. An overview of fullerene chemistry S SAMAL* and S K SAHOO Department of Chemistry, gavenshawCollege, Cuttack 753 003, India MS received 4 April 1996; revised 3 October 1996 Abstract. Fullerenes which were thought to be 'superaromatics' are actually 'super- alkenes'. Reactions in fuUerenesare varied, ranging from the addition of simple molecules like H 2 to large moleculeslike dendrimers.The synthesis,structure, characterization,along with simple reactions like halogenation, oxygenation, metalation,cydoaddition, polymeri- zation and dendrimer addition are discussed. Keywards. Fullerenes;C6o; C7o; characterization;reactions. 1. Introduction Fullerenes and their derivatives possess a number of potentially useful physical, biological and chemical properties. Our interest in the chemistry of fullerenes led us to present this review in which we have attempted to furnish an overall picture of the properties of these novel molecules. The scope of the review is however limited. The conclusion of the authors contributing to this rapidly growing field of research are accepted and presented in a concise manner highlighting the salient features of the original work. The technique developed by Kr/itschmer et al (1990) for preparing and isolating macroscopic quantities of C6o, 'a new form of carbon', opened the way for exploring the molecular and bulk properties of these novel species. Kroto et al (1985) reported the nature and chemical reactivity of C6o species produced during the nucleation of carbon plasma. C6o , which was found to be stable, was named buckminsterfullerene after Buckminster Fuller, American architect, engineer and constructor of geodesic dome. -
Nobel Special Issue of Chemical Physics Letters
Accepted Manuscript Editorial Nobel Special Issue of Chemical Physics Letters David Clary, Mitchio Okumura, Villy Sundstrom PII: S0009-2614(13)01325-0 DOI: http://dx.doi.org/10.1016/j.cplett.2013.10.045 Reference: CPLETT 31683 To appear in: Chemical Physics Letters Please cite this article as: D. Clary, M. Okumura, V. Sundstrom, Nobel Special Issue of Chemical Physics Letters, Chemical Physics Letters (2013), doi: http://dx.doi.org/10.1016/j.cplett.2013.10.045 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Nobel Special Issue of Chemical Physics Letters Editorial The hallmark of Chemical Physics Letters is the fast publication of urgent communications of the highest quality. It has not escaped our notice that this policy has allowed several of the breakthrough papers in chemistry to be published in our journal. Indeed, looking through Chemical Physics Letters over the last 42 years we found papers published by as many as 15 authors who went on subsequently to win the Nobel Prize in Chemistry for work linked to their articles. Furthermore, several of these papers were referenced in the Nobel citations. We thought our readers would find it of interest to see a collection of these papers brought together and introduced with summaries explaining their significance and written by the Nobelists themselves, close colleagues or editors of the journal. -
Nobel Laureates Meet International Top Talents
Nobel Laureates Meet International Top Talents Evaluation Report of the Interdisciplinary Lindau Meeting of Nobel Laureates 2005 Council for the Lindau Nobel Laureate Meetings Foundation Lindau Nobelprizewinners Meetings at Lake Constance Nobel Laureates Meet International Top Talents Evaluation Report of the Interdisciplinary Lindau Meeting of Nobel Laureates 2005 Council for the Lindau Nobel Laureate Meetings Foundation Lindau Nobelprizewinners Meetings at Lake Constance I M PR I N T Published by: Council for the Lindau Nobel Laureate Meetings, Ludwigstr. 68, 88131 Lindau, Germany Foundation Lindau Nobelprizewinners Meetings at Lake Constance, Mainau Castle, 78465 Insel Mainau, Germany Idea and Realisation: Thomas Ellerbeck, Member of the Council for the Lindau Nobel Laureate Meetings and of the Board of Foundation Lindau Nobelprizewinners Meetings at Lake Constance, Alter Weg 100, 32760 Detmold, Germany Science&Media, Büro für Wissenschafts- und Technikkommunikation, Betastr. 9a, 85774 Unterföhring, Germany Texts: Professor Dr. Jürgen Uhlenbusch and Dr. Ulrich Stoll Layout and Production: Vasco Kintzel, Loitersdorf 20a, 85617 Assling, Germany Photos: Peter Badge/typos I, Wrangelstr. 8, 10997 Berlin, Germany Printed by: Druckerei Hermann Brägger, Bankgasse 8, 9001 St. Gallen, Switzerland 2 The Interdisciplinary Lindau Meeting of Nobel Laureates 2005 marked a decisive step for the annual Lindau Meeting in becoming a unique and significant international forum for excellence, fostering the vision of its Spiritus Rector, Count Lennart Bernadotte. It brought together, in the heart of Europe, the world’s current and prospective scientific leaders, the minds that shape the future drive for innovation. As a distinct learning experience, the Meeting stimulated personal dialogue on new discoveries, new methodologies and new issues, as well as on cutting-edge research matters.