Carotenoid Nostoxanthin Production by Sphingomonas Sp. SG73 Isolated from Deep Sea Sediment

Total Page:16

File Type:pdf, Size:1020Kb

Carotenoid Nostoxanthin Production by Sphingomonas Sp. SG73 Isolated from Deep Sea Sediment marine drugs Article Carotenoid Nostoxanthin Production by Sphingomonas sp. SG73 Isolated from Deep Sea Sediment Hiroshi Kikukawa 1,2 , Takuma Okaya 1, Takashi Maoka 3, Masayuki Miyazaki 4 , Keita Murofushi 2,5, Takanari Kato 6, Yoko Hirono-Hara 1, Masahiro Katsumata 6, Shoichi Miyahara 5 and Kiyotaka Y. Hara 1,2,* 1 Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; [email protected] (H.K.); [email protected] (T.O.); [email protected] (Y.H.-H.) 2 Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; [email protected] 3 Research Institute for Production Development, 15 Shimogamo-Morimotocho, Sakyo-ku, Kyoto 606-0805, Japan; [email protected] 4 Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan; [email protected] 5 Industrial Research Institute of Shizuoka Prefecture, 2078 Makigaya, Aoi-ku, Shizuoka 421-1298, Japan; [email protected] 6 Hagoromo Foods Corporation, 151 Shimazaki-cho, Shimizu-ku, Shizuoka 424-0823, Japan; [email protected] (T.K.); [email protected] (M.K.) * Correspondence: [email protected] Citation: Kikukawa, H.; Okaya, T.; Abstract: Carotenoids are used commercially for dietary supplements, cosmetics, and pharmaceu- Maoka, T.; Miyazaki, M.; Murofushi, ticals because of their antioxidant activity. In this study, colored microorganisms were isolated K.; Kato, T.; Hirono-Hara, Y.; from deep sea sediment that had been collected from Suruga Bay, Shizuoka, Japan. One strain was Katsumata, M.; Miyahara, S.; Hara, found to be a pure yellow carotenoid producer, and the strain was identified as Sphingomonas sp. K.Y. Carotenoid Nostoxanthin (Proteobacteria) by 16S rRNA gene sequence analysis; members of this genus are commonly isolated Production by Sphingomonas sp. SG73 from air, the human body, and marine environments. The carotenoid was identified as nostoxanthin Isolated from Deep Sea Sediment. ((2,3,20,30)-β,β-carotene-2,3,20,30-tetrol) by mass spectrometry (MS), MS/MS, and ultraviolet-visible Mar. Drugs 2021, 19, 274. https:// absorption spectroscopy (UV-Vis). Nostoxanthin is a poly-hydroxy yellow carotenoid isolated from doi.org/10.3390/md19050274 some photosynthetic bacteria, including some species of Cyanobacteria. The strain Sphingomonas sp. Academic Editor: Bill J. Baker SG73 produced highly pure nostoxanthin of approximately 97% (area%) of the total carotenoid pro- duction, and the strain was halophilic and tolerant to 1.5-fold higher salt concentration as compared Received: 8 April 2021 with seawater. When grown in 1.8% artificial sea salt, nostoxanthin production increased by 2.5-fold Accepted: 11 May 2021 as compared with production without artificial sea salt. These results indicate that Sphingomonas sp. Published: 14 May 2021 SG73 is an efficient producer of nostoxanthin, and the strain is ideal for carotenoid production using marine water because of its compatibility with sea salt. Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in Keywords: carotenoid; nostoxanthin; Sphingomonas; deep sea microorganism published maps and institutional affil- iations. 1. Introduction Carotenoids are isoprenoids, and these yellow to orange-red pigments are widely Copyright: © 2021 by the authors. distributed in nature [1]. They are predominantly synthesized by phototrophic organisms Licensee MDPI, Basel, Switzerland. and by some non-phototrophic fungi, bacteria, and archaea [1,2]. Carotenoids are used This article is an open access article commercially, especially astaxanthin, as a color enhancer for marine aquaculture resources distributed under the terms and such as salmon, and for dietary supplements, cosmetics, and pharmaceuticals because of conditions of the Creative Commons its high antioxidant activity [3,4]. Industrial demand for carotenoids has recently increased, Attribution (CC BY) license (https:// which has resulted in an increase in studies of carotenoid production, especially using creativecommons.org/licenses/by/ marine organisms [5–8]. 4.0/). Mar. Drugs 2021, 19, 274. https://doi.org/10.3390/md19050274 https://www.mdpi.com/journal/marinedrugs Mar. Drugs 2021, 19, x 2 of 10 The yellow carotenoid nostoxanthin ((2,3,2′,3′)-β,β-carotene-2,3,2′,3′-tetrol) (Figure 1) is biosynthesized from zeaxanthin by the addition of two hydroxyl groups [9]. On the basis of the chemical structure of nostoxanthin, it is expected to have a similar high anti- oxidative activity as that of zeaxanthin, but no study revealing the antioxidative activity of nostoxanthin has been reported. This carotenoid has been isolated from some prokary- otes including some species of Cyanobacteria: the bacteriochlorophyll-a containing bacte- rium Sandarakinorhabdus limnophila, photosynthetic bacteria, the non-marine Brevundimo- Mar. Drugs 2021, 19, 274 nas sp., and most Sphingomonas species [9–16]. However,2 of 10the concentration of nostoxan- thin in known nostoxanthin-producing bacteria is low [9]. TheIn yellow this carotenoid study, nostoxanthin we isolated ((2,3,2 0,3a0 )-microorganismβ,β-carotene-2,3,20,30-tetrol) from (Figure deep1 ) sea sediment that had been iscollected biosynthesized from from Suruga zeaxanthin Bay, by the Shizuoka, addition of two Japan hydroxyl (Tab groupsle 1) [9 ].and On thewe identified the chemical struc- basis of the chemical structure of nostoxanthin, it is expected to have a similar high antiox- idativeture activityof the as thatmain of zeaxanthin, carotenoid but no studyproduced revealing theby antioxidative the isolated activity microorganism. of This organism nostoxanthinshowed high has been nostoxanthin reported. This carotenoid composition has been isolated in total from some carotenoids, prokaryotes and we identified the bacte- including some species of Cyanobacteria: the bacteriochlorophyll-a containing bacterium Sandarakinorhabdusrial strain. Furthermore, limnophila, photosynthetic we characterized bacteria, the non-marine the saltBrevundimonas tolerancesp., and nostoxanthin productiv- and most Sphingomonas species [9–16]. However, the concentration of nostoxanthin in knownity by nostoxanthin-producing supplemention bacteria with isartificial low [9]. sea salt. FigureFigure 1. The 1. structureThe structure of nostoxanthin. of nostoxanthin. In this study, we isolated a microorganism from deep sea sediment that had been collectedTable 1. from Sampling Suruga Bay, spots Shizuoka, in the Japan Suruga (Table 1Bay.) and we identified the chemical structure of the main carotenoid produced by the isolated microorganism. This organism showed high nostoxanthin composition in total carotenoids, and we identified the bacterial strain. Furthermore, we characterized the salt tolerance and nostoxanthinLocation productivity by Water Depth supplementation withSpot artificial 1 sea salt. 34°8482′ N, 138°3589′ E 376 m Table 1. Sampling spotsSpot in the 2 Suruga Bay. 34°8526′ N, 138°3994′ E 691 m Spot 3 Location34°9149′ N, 138°6507 Water Depth ′ E 1548 m Spot 1 34◦84820 N, 138◦35890 E 376 m Spot 2Spot 4 34◦85260 N, 138◦399434°91520 E′ N, 138°6534 691 m ′ E 1523 m Spot 3Spot 5 34◦91490 N, 138◦650734°18720 E′ N, 138°4220 1548 m ′ E 3595 m Spot 4 34◦91520 N, 138◦65340 E 1523 m Spot 5Spot 6 34◦18720 N, 138◦422034°27360 E′ N, 138°4813 3595 m ′ E 3233 m Spot 6 34◦27360 N, 138◦48130 E 3233 m Spot 7Spot 7 34◦78470 N, 138◦634534°78470 E′ N, 138°6345 1652 m ′ E 1652 m Spot 8 34◦98670 N, 138◦69670 E 1299 m Spot 9Spot 8 34◦24090 N, 138◦480334°98670 E′ N, 138°6967 3372 m ′ E 1299 m ◦ 0 ◦ 0 Spot 10Spot 9 34 7835 N, 138 617134°2409E′ N, 138°4803 1730 m ′ E 3372 m 2. Results and DiscussionSpot 10 34°7835′ N, 138°6171′ E 1730 m 2.1. Isolation of a Yellow Microorganism from Deep Sea Sediment Firstly, colored microorganisms were isolated from deep sea sediment. One isolate, strain2. Results SG73, from and the samplingDiscussion Spot 2 in Table1, showed accumulation of highly pure carotenoid at a retention time of approximately 3.8 min and three minor peaks at a retention time2.1. of Isolation 4 to 5 min (Figure of a 2YellowA). The three Microorganism minor peaks were detectedfrom Deep in the chromatographySea Sediment for HPLC and LC/MS (Supplemental Figure S1). The purity of the main carotenoid was 97% (area%).Firstly, These colored carotenoids microorganisms did not correspond to thewere peaks isolat of authenticed from standards deep sea sediment. One isolate, ofstrain astaxanthin, SG73,α-carotene, from ortheβ-carotene sampling (Figure Spot2B). The 2 major in Tabl carotenoide 1, fromshowed strain accumulation of highly pure SG73 was expected to have higher hydrophilicity than astaxanthin because of its faster retentioncarotenoid time. at a retention time of approximately 3.8 min and three minor peaks at a reten- tion time of 4 to 5 min (Figure 2A). The three minor peaks were detected in the chroma- tography for HPLC and LC/MS (Supplemental Figure S1). The purity of the main carote- noid was 97% (area%). These carotenoids did not correspond to the peaks of authentic standards of astaxanthin, α-carotene, or β-carotene (Figure 2B). The major carotenoid from strain SG73 was expected to have higher hydrophilicity than astaxanthin because of its faster retention time.
Recommended publications
  • Characterization of the Aerobic Anoxygenic Phototrophic Bacterium Sphingomonas Sp
    microorganisms Article Characterization of the Aerobic Anoxygenic Phototrophic Bacterium Sphingomonas sp. AAP5 Karel Kopejtka 1 , Yonghui Zeng 1,2, David Kaftan 1,3 , Vadim Selyanin 1, Zdenko Gardian 3,4 , Jürgen Tomasch 5,† , Ruben Sommaruga 6 and Michal Koblížek 1,* 1 Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 81 Tˇreboˇn,Czech Republic; [email protected] (K.K.); [email protected] (Y.Z.); [email protected] (D.K.); [email protected] (V.S.) 2 Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark 3 Faculty of Science, University of South Bohemia, 370 05 Ceskˇ é Budˇejovice,Czech Republic; [email protected] 4 Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 Ceskˇ é Budˇejovice,Czech Republic 5 Research Group Microbial Communication, Technical University of Braunschweig, 38106 Braunschweig, Germany; [email protected] 6 Laboratory of Aquatic Photobiology and Plankton Ecology, Department of Ecology, University of Innsbruck, 6020 Innsbruck, Austria; [email protected] * Correspondence: [email protected] † Present Address: Department of Molecular Bacteriology, Helmholtz-Centre for Infection Research, 38106 Braunschweig, Germany. Abstract: An aerobic, yellow-pigmented, bacteriochlorophyll a-producing strain, designated AAP5 Citation: Kopejtka, K.; Zeng, Y.; (=DSM 111157=CCUG 74776), was isolated from the alpine lake Gossenköllesee located in the Ty- Kaftan, D.; Selyanin, V.; Gardian, Z.; rolean Alps, Austria. Here, we report its description and polyphasic characterization. Phylogenetic Tomasch, J.; Sommaruga, R.; Koblížek, analysis of the 16S rRNA gene showed that strain AAP5 belongs to the bacterial genus Sphingomonas M. Characterization of the Aerobic and has the highest pairwise 16S rRNA gene sequence similarity with Sphingomonas glacialis (98.3%), Anoxygenic Phototrophic Bacterium Sphingomonas psychrolutea (96.8%), and Sphingomonas melonis (96.5%).
    [Show full text]
  • The Human Microbiome and Its Link in Prostate Cancer Risk and Pathogenesis Paul Katongole1,2* , Obondo J
    Katongole et al. Infectious Agents and Cancer (2020) 15:53 https://doi.org/10.1186/s13027-020-00319-2 REVIEW Open Access The human microbiome and its link in prostate cancer risk and pathogenesis Paul Katongole1,2* , Obondo J. Sande3, Moses Joloba3, Steven J. Reynolds4 and Nixon Niyonzima5 Abstract There is growing evidence of the microbiome’s role in human health and disease since the human microbiome project. The microbiome plays a vital role in influencing cancer risk and pathogenesis. Several studies indicate microbial pathogens to account for over 15–20% of all cancers. Furthermore, the interaction of the microbiota, especially the gut microbiota in influencing response to chemotherapy, immunotherapy, and radiotherapy remains an area of active research. Certain microbial species have been linked to the improved clinical outcome when on different cancer therapies. The recent discovery of the urinary microbiome has enabled the study to understand its connection to genitourinary malignancies, especially prostate cancer. Prostate cancer is the second most common cancer in males worldwide. Therefore research into understanding the factors and mechanisms associated with prostate cancer etiology, pathogenesis, and disease progression is of utmost importance. In this review, we explore the current literature concerning the link between the gut and urinary microbiome and prostate cancer risk and pathogenesis. Keywords: Prostate cancer, Microbiota, Microbiome, Gut microbiome, And urinary microbiome Introduction by which the microbiota can alter cancer risk and pro- The human microbiota plays a vital role in many life gression are primarily attributed to immune system processes, both in health and disease [1, 2]. The micro- modulation through mediators of chronic inflammation.
    [Show full text]
  • Sphingomonas Sp. Cra20 Increases Plant Growth Rate and Alters Rhizosphere Microbial Community Structure of Arabidopsis Thaliana Under Drought Stress
    fmicb-10-01221 June 4, 2019 Time: 15:3 # 1 ORIGINAL RESEARCH published: 05 June 2019 doi: 10.3389/fmicb.2019.01221 Sphingomonas sp. Cra20 Increases Plant Growth Rate and Alters Rhizosphere Microbial Community Structure of Arabidopsis thaliana Under Drought Stress Yang Luo1, Fang Wang1, Yaolong Huang1, Meng Zhou1, Jiangli Gao1, Taozhe Yan1, Hongmei Sheng1* and Lizhe An1,2* 1 Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China, 2 The College of Forestry, Beijing Forestry University, Beijing, China The rhizosphere is colonized by a mass of microbes, including bacteria capable of Edited by: promoting plant growth that carry out complex interactions. Here, by using a sterile Camille Eichelberger Granada, experimental system, we demonstrate that Sphingomonas sp. Cra20 promotes the University of Taquari Valley, Brazil growth of Arabidopsis thaliana by driving developmental plasticity in the roots, thus Reviewed by: Muhammad Saleem, stimulating the growth of lateral roots and root hairs. By investigating the growth Alabama State University, dynamics of A. thaliana in soil with different water-content, we demonstrate that Cra20 United States Andrew Gloss, increases the growth rate of plants, but does not change the time of reproductive The University of Chicago, transition under well-water condition. The results further show that the application of United States Cra20 changes the rhizosphere indigenous bacterial community, which may be due *Correspondence: to the change in root structure. Our findings provide new insights into the complex Hongmei Sheng [email protected] mechanisms of plant and bacterial interactions. The ability to promote the growth of Lizhe An plants under water-deficit can contribute to the development of sustainable agriculture.
    [Show full text]
  • Characterization of Bacterial Communities Associated
    www.nature.com/scientificreports OPEN Characterization of bacterial communities associated with blood‑fed and starved tropical bed bugs, Cimex hemipterus (F.) (Hemiptera): a high throughput metabarcoding analysis Li Lim & Abdul Hafz Ab Majid* With the development of new metagenomic techniques, the microbial community structure of common bed bugs, Cimex lectularius, is well‑studied, while information regarding the constituents of the bacterial communities associated with tropical bed bugs, Cimex hemipterus, is lacking. In this study, the bacteria communities in the blood‑fed and starved tropical bed bugs were analysed and characterized by amplifying the v3‑v4 hypervariable region of the 16S rRNA gene region, followed by MiSeq Illumina sequencing. Across all samples, Proteobacteria made up more than 99% of the microbial community. An alpha‑proteobacterium Wolbachia and gamma‑proteobacterium, including Dickeya chrysanthemi and Pseudomonas, were the dominant OTUs at the genus level. Although the dominant OTUs of bacterial communities of blood‑fed and starved bed bugs were the same, bacterial genera present in lower numbers were varied. The bacteria load in starved bed bugs was also higher than blood‑fed bed bugs. Cimex hemipterus Fabricus (Hemiptera), also known as tropical bed bugs, is an obligate blood-feeding insect throughout their entire developmental cycle, has made a recent resurgence probably due to increased worldwide travel, climate change, and resistance to insecticides1–3. Distribution of tropical bed bugs is inclined to tropical regions, and infestation usually occurs in human dwellings such as dormitories and hotels 1,2. Bed bugs are a nuisance pest to humans as people that are bitten by this insect may experience allergic reactions, iron defciency, and secondary bacterial infection from bite sores4,5.
    [Show full text]
  • Sphingopyxis Italica, Sp. Nov., Isolated from Roman Catacombs 1 2
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE IJSEM Papers in Press. Published December 21, 2012 as doi:10.1099/ijs.0.046573-0 provided by Digital.CSIC 1 Sphingopyxis italica, sp. nov., isolated from Roman catacombs 2 3 Cynthia Alias-Villegasª, Valme Jurado*ª, Leonila Laiz, Cesareo Saiz-Jimenez 4 5 Instituto de Recursos Naturales y Agrobiologia, IRNAS-CSIC, 6 Apartado 1052, 41080 Sevilla, Spain 7 8 * Corresponding author: 9 Valme Jurado 10 Instituto de Recursos Naturales y Agrobiologia, IRNAS-CSIC 11 Apartado 1052, 41080 Sevilla, Spain 12 Tel. +34 95 462 4711, Fax +34 95 462 4002 13 E-mail: [email protected] 14 15 ª These authors contributed equally to this work. 16 17 Keywords: Sphingopyxis italica, Roman catacombs, rRNA, sequence 18 19 The sequence of the 16S rRNA gene from strain SC13E-S71T can be accessed 20 at Genbank, accession number HE648058. 21 22 A Gram-negative, aerobic, motile, rod-shaped bacterium, strain SC13E- 23 S71T, was isolated from tuff, the volcanic rock where was excavated the 24 Roman Catacombs of Saint Callixtus in Rome, Italy. Analysis of 16S 25 rRNA gene sequences revealed that strain SC13E-S71T belongs to the 26 genus Sphingopyxis, and that it shows the greatest sequence similarity 27 with Sphingopyxis chilensis DSMZ 14889T (98.72%), Sphingopyxis 28 taejonensis DSMZ 15583T (98.65%), Sphingopyxis ginsengisoli LMG 29 23390T (98.16%), Sphingopyxis panaciterrae KCTC12580T (98.09%), 30 Sphingopyxis alaskensis DSM 13593T (98.09%), Sphingopyxis 31 witflariensis DSM 14551T (98.09%), Sphingopyxis bauzanensis DSM 32 22271T (98.02%), Sphingopyxis granuli KCTC12209T (97.73%), 33 Sphingopyxis macrogoltabida KACC 10927T (97.49%), Sphingopyxis 34 ummariensis DSM 24316T (97.37%) and Sphingopyxis panaciterrulae T 35 KCTC 22112 (97.09%).
    [Show full text]
  • Evolutionary Genomics of an Ancient Prophage of the Order Sphingomonadales
    GBE Evolutionary Genomics of an Ancient Prophage of the Order Sphingomonadales Vandana Viswanathan1,2, Anushree Narjala1, Aravind Ravichandran1, Suvratha Jayaprasad1,and Shivakumara Siddaramappa1,* 1Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City, Bengaluru, Karnataka, India 2Manipal University, Manipal, Karnataka, India *Corresponding author: E-mail: [email protected]. Accepted: February 10, 2017 Data deposition: Genome sequences were downloaded from GenBank, and their accession numbers are provided in table 1. Abstract The order Sphingomonadales, containing the families Erythrobacteraceae and Sphingomonadaceae, is a relatively less well-studied phylogenetic branch within the class Alphaproteobacteria. Prophage elements are present in most bacterial genomes and are important determinants of adaptive evolution. An “intact” prophage was predicted within the genome of Sphingomonas hengshuiensis strain WHSC-8 and was designated Prophage IWHSC-8. Loci homologous to the region containing the first 22 open reading frames (ORFs) of Prophage IWHSC-8 were discovered among the genomes of numerous Sphingomonadales.In17genomes, the homologous loci were co-located with an ORF encoding a putative superoxide dismutase. Several other lines of molecular evidence implied that these homologous loci represent an ancient temperate bacteriophage integration, and this horizontal transfer event pre-dated niche-based speciation within the order Sphingomonadales. The “stabilization” of prophages in the genomes of their hosts is an indicator of “fitness” conferred by these elements and natural selection. Among the various ORFs predicted within the conserved prophages, an ORF encoding a putative proline-rich outer membrane protein A was consistently present among the genomes of many Sphingomonadales. Furthermore, the conserved prophages in six Sphingomonas sp. contained an ORF encoding a putative spermidine synthase.
    [Show full text]
  • Occurrence of Sphingomonas Sp. Bacteria in Cold Climate Drinking
    Occurrence of Sphingomonas sp. bacteria in cold climate Water Science and Technology: Supply drinking water supply system biofilms P. Vuoriranta, M. Männistö and H. Soranummi Tampere University of Technology, Institute of Environmental Engineering and Biotechnology, P.O. Box 541, FIN-3310 Tampere, Finland (E-mail: pertti.vuoriranta@tut.fi) Abstract Members of the bacterial genus Sphingomonas (recently split into four genera), belonging to α-4-subclass of Proteobacteria, were isolated and characterised from water distribution network biofilms. Water temperature in the studied network, serving 200,000 people, is less than 5°C for about five months every winter. Sphingomonads, characterised using fluorescent oligonucleotide probes and fatty acid composition analysis (FAME), were a major group of bacteria among the distribution network biofilm isolates. Intact biofilms, grown on steel slides in a biofilm reactor fed with tap water, were detected in situ using fluorescence labelled oligonucleotide probes (FISH). Hybridisation with probes targeted on α- Vol 3 No 1–2 pp 227–232 proteobacteria and sphingomonads was detected, but FISH on intact biofilms suffered from non-specific hybridisation and intensive autofluorescence, possibly due to extracellular material around the bacterial cells attached to biofilm. These preliminary results indicate that bacteria present in the distribution network biofilms in this study phylogenetically differ from those detected in more temperate regions. Keywords Drinking water; FAME; FISH; proteobacteria; Sphingomonas Introduction Water supply systems, e.g. water treatment plants, distribution networks, water towers or © IWA Publishing 2003 respective constructions, and finally installations serving single households or enterprises, offer a variety of ecological niches for microbes and their predators (Kalmbach et al., 1997).
    [Show full text]
  • A Review of the Source and Function of Microbiota in Breast Milk
    68 A Review of the Source and Function of Microbiota in Breast Milk M. Susan LaTuga, MD, MSPH1 Alison Stuebe, MD, MSc2,3 Patrick C. Seed, MD, PhD4 1 Department of Pediatrics, Division of Neonatology, Albert Einstein Address for correspondence M. Susan LaTuga, MD, MSPH, Albert College of Medicine, Bronx, New York Einstein College of Medicine, 1601 Tenbroeck Ave, 2nd floor, Bronx, NY 2 Department of Obstetrics and Gynecology, University of North 10461 (e-mail: mlatuga@montefiore.org). Carolina School of Medicine 3 Department of Maternal and Child Health, Gillings School of Global Public Health, Chapel Hill, North Carolina 4 Department of Pediatrics, Division of Infectious Diseases, Duke University, Durham, North Carolina Semin Reprod Med 2014;32:68–73 Abstract Breast milk contains a rich microbiota composed of viable skin and non-skin bacteria. The extent of the breast milk microbiota diversity has been revealed through new culture-independent studies using microbial DNA signatures. However, the extent to which the breast milk microbiota are transferred from mother to infant and the function of these breast milk microbiota for the infant are only partially understood. Here, we appraise hypotheses regarding the formation of breast milk microbiota, including retrograde infant-to-mother transfer and enteromammary trafficking, and we review current knowledge of mechanisms determining the extent of breast milk microbiota transfer from mother to infant. We highlight known functions of constituents in the breast milk microbiota—to enhance immunity, liberate nutrients, synergize with breast Keywords milk oligosaccharides to enhance intestinal barrier function, and strengthen a functional ► enteromammary gut–brain axis. We also consider the pathophysiology of maternal mastitis with respect trafficking to a dysbiosis or abnormal shift in the breast milk microbiota.
    [Show full text]
  • Novosphingobium Pentaromativorans US6-1
    Biodegradation of Polycyclic Aromatic Hydrocarbons by Novosphingobium pentaromativorans US6-1 Yihua Lyu1,2, Wei Zheng1,2, Tianling Zheng1,2, Yun Tian1,2* 1 Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, China, 2 State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China Abstract Novosphingobium pentaromativorans US6-1, a marine bacterium isolated from muddy sediments of Ulsan Bay, Republic of Korea, was previously shown to be capable of degrading multiple polycyclic aromatic hydrocarbons (PAHs). In order to gain insight into the characteristics of PAHs degradation, a proteome analysis of N. pentaromativorans US6-1 exposed to phenanthrene, pyrene, and benzo[a]pyrene was conducted. Several enzymes associated with PAHs degradation were identified, including 4-hydroxybenzoate 3-monooxygenase, salicylaldehyde dehydrogenase, and PAH ring-hydroxylating dioxygenase alpha subunit. Reverse transcription and real-time quantitative PCR was used to compare RHDa and 4- hydroxybenzoate 3-monooxygenase gene expression, and showed that the genes involved in the production of these two enzymes were upregulated to varying degrees after exposing the bacterium to PAHs. These results suggested that N. pentaromativorans US6-1 degraded PAHs via the metabolic route initiated by ring-hydroxylating dioxygenase, and further degradation occurred via the o-phthalate pathway or salicylate pathway. Both pathways subsequently entered the tricarboxylic acid (TCA) cycle, and were mineralized to CO2. Citation: Lyu Y, Zheng W, Zheng T, Tian Y (2014) Biodegradation of Polycyclic Aromatic Hydrocarbons by Novosphingobium pentaromativorans US6-1. PLoS ONE 9(7): e101438. doi:10.1371/journal.pone.0101438 Editor: Stephen J. Johnson, University of Kansas, United States of America Received February 26, 2014; Accepted June 5, 2014; Published July 9, 2014 Copyright: ß 2014 Lyu et al.
    [Show full text]
  • Sphingopyxis Chilensis Sp. Nov., a Chlorophenol-Degrading Bacterium
    International Journal of Systematic and Evolutionary Microbiology (2003), 53, 473–477 DOI 10.1099/ijs.0.02375-0 Note Sphingopyxis chilensis sp. nov., a chlorophenol-degrading bacterium that accumulates polyhydroxyalkanoate, and transfer of Sphingomonas alaskensis to Sphingopyxis alaskensis comb. nov. F. Godoy,1 M. Vancanneyt,2 M. Martı´nez,1 A. Steinbu¨chel,3 J. Swings2 and B. H. A. Rehm3 Correspondence 1Departamento de Microbiologı´a, Facultad de Ciencias Biolo´gicas, Universidad de Concepcio´n, B. H. A. Rehm Casilla 160-C Concepcio´n, Chile [email protected] 2BCCM/LMG Bacteria Collection, University of Ghent, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium 3Institut fu¨r Mikrobiologie der Westfa¨lischen, Wilhelms–Universita¨t Mu¨nster, Corrensstrasse 3, D-48149 Mu¨nster, Germany The taxonomic position of a chlorophenol-degrading bacterium, strain S37T, was investigated. The 16S rDNA sequence indicated that this strain belongs to the genus Sphingopyxis, exhibiting high sequence similarity to the 16S rDNA sequences of Sphingomonas alaskensis LMG 18877T (98?8 %), Sphingopyxis macrogoltabida LMG 17324T (98?2 %), Sphingopyxis terrae IFO 15098T (95 %) and Sphingomonas adhaesiva GIFU 11458T (92 %). These strains (except Sphingopyxis terrae IFO 15098T, which was not investigated) and the novel isolate accumulated polyhydroxy- alkanoates consisting of 3-hydroxybutyric acid and 3-hydroxyvaleric acid from glucose as carbon source. The G+C content of the DNA of strain S37T was 65?5 mol%. The major cellular fatty acids of this strain were octadecenoic acid (18 : 1o7c), heptadecenoic acid (17 : 1o6c) and hexadecanoic acid (16 : 0). The results of DNA–DNA hybridization experiments and its physiological characteristics clearly distinguished the novel isolate from all known Sphingopyxis species and indicated that the strain represents a novel Sphingopyxis species.
    [Show full text]
  • Novosphingobium Humi Sp. Nov., Isolated from Soil of a Military Shooting Range
    TAXONOMIC DESCRIPTION Hyeon et al., Int J Syst Evol Microbiol 2017;67:3083–3088 DOI 10.1099/ijsem.0.002089 Novosphingobium humi sp. nov., isolated from soil of a military shooting range Jong Woo Hyeon,1† Kyungchul Kim,2† Ah Ryeong Son,1 Eunmi Choi,3 Sung Kuk Lee2,3,* and Che Ok Jeon1,* Abstract A Gram-stain-negative, strictly aerobic bacterium, designated R1-4T, was isolated from soil from a military shooting range in the Republic of Korea. Cells were non-motile short rods, oxidase-positive and catalase-negative. Growth of R1-4T was observed at 15–45 C (optimum, 30 C) and pH 6.0–9.0 (optimum, pH 7.0). R1-4T contained summed feature 8 (comprising C18 : 1!7c/C18 : 1!6c), summed feature 3 (comprising C16 : 1!7c/C16 : 1!6c), cyclo-C19 : 0!8c and C16 : 0 as the major fatty acids and ubiquinone-10 as the sole isoprenoid quinone. Phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, sphingoglycolipid, phosphatidylcholine, an unknown glycolipid and four unknown lipids were detected as polar lipids. The major polyamine was spermidine. The G+C content of the genomic DNA was 64.4 mol%. The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that R1-4T formed a tight phylogenetic lineage with Novosphingobium sediminicola HU1-AH51T within the genus Novosphingobium. R1-4T was most closely related to N. sediminicola HU1-AH51T with a 98.8 % 16S rRNA gene sequence similarity. The DNA–DNA relatedness between R1-4T and the type strain of N. sediminicola was 37.8±4.2 %. On the basis of phenotypic, chemotaxonomic and molecular properties, it is clear that R1-4T represents a novel species of the genus Novosphingobium, for which the name Novosphingobium humi sp.
    [Show full text]
  • Characterization of the Bacterial Community Naturally
    Int. J. Environ. Res. Public Health 2015, 12, 10171-10197; doi:10.3390/ijerph120810171 OPEN ACCESS International Journal of Environmental Research and Public Health ISSN 1660-4601 www.mdpi.com/journal/ijerph Article Characterization of the Bacterial Community Naturally Present on Commercially Grown Basil Leaves: Evaluation of Sample Preparation Prior to Culture-Independent Techniques Siele Ceuppens 1, Stefanie Delbeke 1, Dieter De Coninck 2, Jolien Boussemaere 1, Nico Boon 3 and Mieke Uyttendaele 1,* 1 Faculty of Bioscience Engineering, Department of Food Safety and Food Quality, Laboratory of Food Microbiology and Food Preservation (LFMFP), Ghent University, Ghent 9000, Belgium; E-Mails: [email protected] (S.C.); [email protected] (S.D.); [email protected] (J.B.) 2 Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology (LabFBT), Ghent University, Ghent 9000, Belgium; E-Mail: [email protected] 3 Faculty of Bioscience Engineering, Department of Biochemical and Microbial Technology, Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Ghent 9000, Belgium; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +32-92-646-178; Fax: +32-92-255-510. Academic Editor: Paul B. Tchounwou Received: 7 July 2015 / Accepted: 19 August 2015 / Published: 21 August 2015 Abstract: Fresh herbs such as basil constitute an important food commodity worldwide. Basil provides considerable culinary and health benefits, but has also been implicated in foodborne illnesses. The naturally occurring bacterial community on basil leaves is currently unknown, so the epiphytic bacterial community was investigated using the culture-independent techniques denaturing gradient gel electrophoresis (DGGE) and next-generation sequencing (NGS).
    [Show full text]