1 Population genetics of Narella versluysi (Octocorallia: 2 Alcyonacea, Primnoidae) in the Bay of Biscay (NE 3 Atlantic) 4 5 Chris Yesson1a, Erin Wright1 & Andreia Braga-Henriques2,3b 6 1 Institute of Zoology, Zoological Society of London, Regent’s Park, London, NW1 4RY, 7 UK 8 2 MARE – Marine and Environmental Sciences Centre, Estação de Biologia Marinha do 9 Funchal, Cais do Carvão, 9900–783 Funchal, Madeira Island, Portugal 10 3 ARDITI – Regional Agency for the Development of Research, Technology and Innovation, 11 Oceanic Observatory of Madeira (OOM), Madeira Tecnopolo, Caminho da Penteada, 12 9020–105 Funchal, Portugal 13 a email:
[email protected], phone: +442074496267, Orcid: 0000-0002-6731-4229 14 b Orcid: 0000-0001-6335-2554 15 16 Abstract 17 Octocoral species are globally distributed in all oceans and may form dense communities 18 known as vulnerable marine ecosystems. Despite their importance as deep-water habitats , 19 the underlying genetic structure and gene-flow patterns of most deep-water populations 20 remains largely unknown. Here, we evaluated genetic connectivity of the primnoid 21 octocoral Narella versluysi across the continental shelf of Bay of Biscay, spanning 360 km 22 (95 samples from submarine canyons, ranging from 709–1247 m depths). We report 12 23 novel microsatellite markers which were used to genotype 83 samples from six 24 populations. Sixteen samples were sequenced for three mitochondrial DNA regions 25 (Folmer region of COI with an adjacent intergenic region igr1, MT-ND2 gene, and mtMutS 26 homolog 1 region). All sequence haplotypes and genetic clusters were found in multiple 27 sites spanning more than 200 km.