Callogorgia Verticillata Biganmprete Copie

Total Page:16

File Type:pdf, Size:1020Kb

Callogorgia Verticillata Biganmprete Copie 1 Le corail noir verticillé Callogorgia verticillata (Pallas, 1766) Comment citer cette fiche : Noël P., 2016. Le corail noir verticillé Callogorgia verticillata (Pallas, 1766). in Muséum national d'Histoire naturelle [Ed.], 17 juin 2016. Inventaire national du Patrimoine naturel : 1- 8, site web http://inpn.mnhn.fr Contact de l'auteur : Pierre Noël, SPN et DMPA, Muséum national d'Histoire naturelle, 43 rue Buffon (CP 48), 75005 Paris ; e-mail [email protected] Figure 1. Callogorgia verticillata, in situ. (© Universidad de Málaga/INDEMARES-Alborán in Gofas & al. 2014) Classification (d’après WoRMS 2016) Phylum Cnidaria Hatscheck, 1888 > Classe Anthozoa Ehrenberg, 1834 > Sous-classe Octocorallia Haeckel, 1866 > Ordre Alcyonacea Lamouroux, 1812 > Sous-ordre Calcaxonia Grasshoff, 1999 > Famille Primnoidae Milne Edwards, 1857> Genre Callogorgia Gray, 1858. Synonymes usuels (Tortonese 1936 ; INPN 2016) Gorgonia verticillaris Linnaeus Gorgonia verticillata Pallas, 1766 Primnoa verticillaris Milne-Edwards, 1857 Primnoa verticillata Pallas, 1766 Primnoa Ellisii G. Koch, 1887 Nom principal : Corail noir . Noms vernaculaires en français et dans les principales langues étrangères. Français : gorgone verticillaire (Lamouroux 1816) ; corail noir. 2 Anglais : black coral. Cette espèce qui vit en profondeur sur substrats durs est mal connue. Description morphologique sommaire, taille La colonie est arborescente et formée de rameaux soutenus par un axe continu. L'axe est corné et mince. La matière organique qui le forme est plus ou moins mêlée de calcaire. Les ramifications sont pennées. Les polypes sont verticillés par 3 à 6 et portés sur une base qui est terminée par 8 lobes très calcifiés se rabattant sur le polype rétracté et se repliant alors vers l'axe (Perrier 1936 ; Tortonese 1936). La couleur des colonies est blanche ou orangée (Tortonese 1936 ; Fabri et al. 2014 ; Gofas & al. 2014). La taille des colonies peut atteindre 1 à 2 m (Bo et al. 2012 ; Fabri & al. 2014). Risques de confusion de Pourtalès (1868) signale de légères différences entre les spécimens de l'Atlantique oriental (Açores) et ceux de l'Atlantique occidental (Açores) mais ces différences ne justifient pas une séparation au niveau spécifique. Au niveau mondial, il y a 29 espèces dans le genre Callogorgia . Une seule espèce est présente en France métropolitaine (INPN 2016). Biologie - physiologie La biologie de cette espèce semble mal connue. Dans le même milieu, on trouve des poulpes, du corail jaune Dendrophyllia cornigera (Lamarck, 1816), des coraux solitaires Desmophyllum dianthus (Esper, 1794), du corail blanc Madrepora occulata Linnaeus, 1758, des antipathaires Leiopathes glaberrima (Esper, 1788), Antipathes sp., des vers Filograna, des poissons Benthocometes robustus (Goode & Bean, 1886), Lophius sp., Conger conger (Linnaeus, 1758), Scorpaena scrofa Linnaeus, 1758, des éponges, des gorgones Plexauridae, des pagures, des comatules Antedon sp., un cnidaire Gerardia sp.), un zoanthaire Isozoanthus primnoidus (Fabri & al. 2014). En épibiontes on peut rencontrer également gastéropodes, nudibranches, crustacés, actiniaires et zoanthaires (Pedel & al. 2013 ; Fabri & al. 2014), Pteria hirundo (Linnaeus, 1758) (Vafidis et al. 1994) et l'ophiure Ophiacantha setosa (Bruzelius, 1805) (Gofas & al. 2014). Les colonies sont orientées par rapport au courant dominant du site d'implantation (Sanchez & al. 2009). Le crabe Paramola cuvieri peut utiliser C. verticillata pour se camoufler (Tyler & Zibrowius 1992). Figure 2. Distribution du Callogorgia verticillata sur les côtes françaises de métropole. (© Pedel & al. 2013). 3 Ecologie, habitat L'espèce est plutôt ubiquiste, circalittorale et bathyale ; elle se rencontre habituellement sur le talus continental de -200 à -800 m (Roule 1895 ; Tortonese 1936 ; Carpine & Grasshoff 1975 ; Vafidis et al. 1994 ; Pedel & al. 2013 ; Gofas & al. 2014) avec comme valeurs extrêmes -60 et -1400 m (Tyler & Zibrowius 1992). Sa distribution bathymétrique peut remonter à la faveur d’écosystèmes particuliers (Philippot & al. 2015) : on peut par exemple la rencontrer au contact du coralligène et des roches profondes (Gofas & al. 2014). Figure 3. Localisation du canyon Bourcart dans le Golfe du Lion (© Fabri & al. 2014). Figure 4. Distribution de Callogorgia verticillata dans les zones sous juridiction française (© INPN 2016). 4 Distribution Callogorgia verticillata est une espèce atlantique et méditerranéenne. En France sa présence a été notée dans le Golfe de Gascogne (Roule 1895 ; Altuna 2010) ; elle a été signalée en Méditerranée sur les côtes de Provence (Laban 1963), dans les canyons Cassidaigne (Fabri et al. 2014), Planier, Sicié, Toulon, Stoéchades (Pedel & al. 2013 ; Fabri & al. 2014), dans le canyon Bourcart - Golfe du Lion (Pedel & al. 2013 ; Fabri et al. 2014) et en Corse (Anonyme 2016). Ailleurs en Atlantique européen, elle est connue des îles britanniques : Ecosse (Chaniotis & al. 2013), Irlande [Porcupine Bank] (Tyler & Zibrowius 1992), Portugal (Nobre 1931), Espagne (Gili 1987), Açores (Studer 1901) , îles du Cap Vert (Thomson 1927) (GBIF 2016 ; OBIS 2016 ; WoRMS 2016), et en Méditerranée elle a été trouvée aux Baléares, en Italie (Carus 1884), en Sicile, en Grèce et au Maroc (GBIF 2016 ; OBIS 2016 ; WoRMS 2016). Enfin elle a été signalée dans l'Atlantique américain au niveau du Golfe du Mexique et du bassin caraïbe en particulier dans les Petites Antilles françaises au large de la Martinique et de Saint-Barthélémy entre 250 et 350m de profondeur (Bayer 1962 ; Philippot 1987 ; Philippot & al. 2015 ; INPN 2016). Figure 5. Distribution européenne de Callogorgia verticillata (© OBIS 2016). Figure 6. Distribution mondiale de Callogorgia verticillata (© GBIF 2016). Menaces et Protection Cette espèce est menacée par les lignes de pêche et les chalutages profonds ; les palangres et 5 les filets restent parfois accrochés au substrat dur, causant parfois des dommages physiques aux colonies (Bo & al. 2012 ; Pedel & al. 2013 ; Fabri & al. 2014). En Italie, l'espèce a été évaluée "NT" en liste rouge selon les critères de l'UICN (Salvati & al. 2014). Figure 7. Evaluation de Callogorgia verticillata en Liste Rouge. Bibliographie, sitographie et autres sources documentaires Altuna A., 2010. Listado de los cnidarios bentónicos (Cnidaria) del Golfo de Vizcaya y zonas próximas (Atlántico NE) (42º N a 48º30’N y 10º W). Proyecto Fauna Ibérica, Museo Nacional de Ciencias Naturales, Madrid : 1-27. Altuna A., 1994. Observaciones biogeográficas sobre los cnidarios bentónicos de la Costa Vasca. Kobie (Serie Ciencias Naturales), Bilbao, 22: 41-57. Anonyme 2016. http://eqel.univ-corse.fr/Une-mission-avec-la-COMEX-pour-percer-le- mystere-des-atolls-de-coralligene-Le-projet-MEDATOLLS_a136.html Bayer F. M., 1962. Some new and old species of the primnoid genus Callogorgia Gray, with a revalidation of the related genus Fanellia Gray (Coelenterata: Anthozoa). Proceedings of the Biological Society of Washington, Washington D.C., 95 (1): 116- 160. Bo M., Cerrano C., Canese S., Salvati E., Angiolillo M., Santangelo G., Bavestrello G., 2014. The coral assemblages of an off-shore deep Mediterranean rocky bank (NW Sicily, Italy). Marine Ecology, 35 (3): 332-342. Bo M., Di Camillo C. G., Bertolino M., Povero P., Misic C., Castellano M., Covazzi Harriague A., Gasparini G. P., Borghini M., Schroeder K., Bavestrello G., 2010. The megabenthic assemblages of the Verticelli seamounts (North Tyrrhenian Sea). Biologia Marina Mediterranea, 17 (1): 94-97. Bosc L. A. G., 1801. Histoire naturelle des vers, contenant leur description et leurs moeurs ; avec figures dessinées d'après nature. An X (1801-1802). Paris, Déterville, vol. 3. Cairns S. D., Bayer F. M., 2009. A generic revision and phylogenetic analysis of the Primnoidae (Cnidaria:Octocorallia). Smithsonian Contributions to Zoology, Smithsonian Institution Press: Washington DC (USA). 629: 1-79. Carpine C., 1963. Contribution à la connaissance des gorgones Holaxinia de la Méditerranée occidentale. Bulletin de l'Institut Océanographique de Monaco, 60: 1-52. Carpine C., Grasshoff M., 1975. Les gorgonaires de la Méditerranée. Bulletin de l'Institut Océanographique de Monaco, 71: 1-140. Carreiro-Silva, M., Braga-Henriques, A., Sampaio, I., de Matos, V., Porteiro, F.M., Ocana, O., 2011. Isozoanthus primnoidus, a new species of zoanthid (Cnidaria: Zoantharia) associated with the gorgonian Callogorgia verticillata (Cnidaria: Alcyonacea). Ices Journal of Marine Science, 68, 408-415. 6 Carus J. V., 1884. Prodromus faunae mediterraneae sive descriptiones animalium Mare Mediterranei incolarum quam comparata silva rerum quatenus innotuit adiectis locis et nominibus vulgaribus eorumque auctoribus in commodum zoologorum, pars I : 1- 524. Chaniotis P., Henry L.-A., Roberts M., 2013. What lies beneath? Improving the classification of deep-water habitats around Scotland to support marine protected area planning. Joint Nature Conservation Committee, Aberdeen, JNCC : http://jncc.defra.gov.uk/pdf/Version1_IMPAC_block_colour_version_reduced.pdf Ellis J., 1776. On the Nature of the Gorgonia; That It is a Real Marine Animal, and Not of a Mixed Nature, between Animal and Vegetable. By John Ellis, Esq. FRS in a Letter to Daniel Solander, MDFRS. Philosophical Transactions of the Royal Society of London, 66: 1-17. EOL, 2016. Callogorgia verticillata (Pallas, 1766). Encyclopedia of Life (EOL) : http://eol.org/pages/322071/overview Consulté le 16 juin 2016. Fabri M. C., Pedel L., Beuck L., Galgani F., Hebbeln D., Freiwald A., 2014. Megafauna of vulnerable marine
Recommended publications
  • Checklist of Fish and Invertebrates Listed in the CITES Appendices
    JOINTS NATURE \=^ CONSERVATION COMMITTEE Checklist of fish and mvertebrates Usted in the CITES appendices JNCC REPORT (SSN0963-«OStl JOINT NATURE CONSERVATION COMMITTEE Report distribution Report Number: No. 238 Contract Number/JNCC project number: F7 1-12-332 Date received: 9 June 1995 Report tide: Checklist of fish and invertebrates listed in the CITES appendices Contract tide: Revised Checklists of CITES species database Contractor: World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge, CB3 ODL Comments: A further fish and invertebrate edition in the Checklist series begun by NCC in 1979, revised and brought up to date with current CITES listings Restrictions: Distribution: JNCC report collection 2 copies Nature Conservancy Council for England, HQ, Library 1 copy Scottish Natural Heritage, HQ, Library 1 copy Countryside Council for Wales, HQ, Library 1 copy A T Smail, Copyright Libraries Agent, 100 Euston Road, London, NWl 2HQ 5 copies British Library, Legal Deposit Office, Boston Spa, Wetherby, West Yorkshire, LS23 7BQ 1 copy Chadwick-Healey Ltd, Cambridge Place, Cambridge, CB2 INR 1 copy BIOSIS UK, Garforth House, 54 Michlegate, York, YOl ILF 1 copy CITES Management and Scientific Authorities of EC Member States total 30 copies CITES Authorities, UK Dependencies total 13 copies CITES Secretariat 5 copies CITES Animals Committee chairman 1 copy European Commission DG Xl/D/2 1 copy World Conservation Monitoring Centre 20 copies TRAFFIC International 5 copies Animal Quarantine Station, Heathrow 1 copy Department of the Environment (GWD) 5 copies Foreign & Commonwealth Office (ESED) 1 copy HM Customs & Excise 3 copies M Bradley Taylor (ACPO) 1 copy ^\(\\ Joint Nature Conservation Committee Report No.
    [Show full text]
  • Deep‐Sea Coral Taxa in the U.S. Gulf of Mexico: Depth and Geographical Distribution
    Deep‐Sea Coral Taxa in the U.S. Gulf of Mexico: Depth and Geographical Distribution by Peter J. Etnoyer1 and Stephen D. Cairns2 1. NOAA Center for Coastal Monitoring and Assessment, National Centers for Coastal Ocean Science, Charleston, SC 2. National Museum of Natural History, Smithsonian Institution, Washington, DC This annex to the U.S. Gulf of Mexico chapter in “The State of Deep‐Sea Coral Ecosystems of the United States” provides a list of deep‐sea coral taxa in the Phylum Cnidaria, Classes Anthozoa and Hydrozoa, known to occur in the waters of the Gulf of Mexico (Figure 1). Deep‐sea corals are defined as azooxanthellate, heterotrophic coral species occurring in waters 50 m deep or more. Details are provided on the vertical and geographic extent of each species (Table 1). This list is adapted from species lists presented in ʺBiodiversity of the Gulf of Mexicoʺ (Felder & Camp 2009), which inventoried species found throughout the entire Gulf of Mexico including areas outside U.S. waters. Taxonomic names are generally those currently accepted in the World Register of Marine Species (WoRMS), and are arranged by order, and alphabetically within order by suborder (if applicable), family, genus, and species. Data sources (references) listed are those principally used to establish geographic and depth distribution. Only those species found within the U.S. Gulf of Mexico Exclusive Economic Zone are presented here. Information from recent studies that have expanded the known range of species into the U.S. Gulf of Mexico have been included. The total number of species of deep‐sea corals documented for the U.S.
    [Show full text]
  • Primnoidae (Octocorallia: Calcaxonia) from the Emperor Seamounts, with Notes on Callogorgia Elegans (Gray, 1870)
    Primnoidae (Octocorallia: Calcaxonia) from the Emperor Seamounts, with Notes on Callogorgia elegans (Gray, 1870) Stephen D. Cairns, Robert P. Stone, Hye-Won Moon, Jong Hee Lee Pacific Science, Volume 72, Number 1, January 2018, pp. 125-142 (Article) Published by University of Hawai'i Press For additional information about this article https://muse.jhu.edu/article/683173 [ This content has been declared free to read by the pubisher during the COVID-19 pandemic. ] Primnoidae (Octocorallia: Calcaxonia) from the Emperor Seamounts, with Notes on Callogorgia elegans (Gray, 1870)1 Stephen D. Cairns,2,6 Robert P. Stone,3 Hye-Won Moon,4 and Jong Hee Lee 5 Abstract: Six primnoid species are reported from depths of 280 – 480 m from the southern Emperor Seamounts, including two new species (Callogorgia imperialis and Thouarella taylorae). Only the new species are fully described and illustrated. Also, Callogorgia elegans, which has a confused taxonomic history, is discussed and illustrated. Not unexpectedly, the Emperor Seamount primnoids have a strong affinity with the fauna of the Hawaiian Islands, an affinity that is expected to increase as more collecting is done in the region. The United Nations General Assembly nations around the world are developing pro- approved Resolution 61/105 in December tocol and policy on fishing encounters with 2006 ( United Nations General Assembly 2007) the sensitive biota (Durán Muñoz et al. 2012). that calls on States to directly, or through Here we report on collections made on fish- Regional Fisheries Management Organiza- ing vessels in the Emperor Seamounts, North tions, apply a precautionary ecosystem ap- Pacific Ocean, as part of a joint project be- proach to sustainably manage fish stocks and tween the United States and the Republic of protect vulnerable marine ecosystems ( VMEs) Korea.
    [Show full text]
  • The Earliest Diverging Extant Scleractinian Corals Recovered by Mitochondrial Genomes Isabela G
    www.nature.com/scientificreports OPEN The earliest diverging extant scleractinian corals recovered by mitochondrial genomes Isabela G. L. Seiblitz1,2*, Kátia C. C. Capel2, Jarosław Stolarski3, Zheng Bin Randolph Quek4, Danwei Huang4,5 & Marcelo V. Kitahara1,2 Evolutionary reconstructions of scleractinian corals have a discrepant proportion of zooxanthellate reef-building species in relation to their azooxanthellate deep-sea counterparts. In particular, the earliest diverging “Basal” lineage remains poorly studied compared to “Robust” and “Complex” corals. The lack of data from corals other than reef-building species impairs a broader understanding of scleractinian evolution. Here, based on complete mitogenomes, the early onset of azooxanthellate corals is explored focusing on one of the most morphologically distinct families, Micrabaciidae. Sequenced on both Illumina and Sanger platforms, mitogenomes of four micrabaciids range from 19,048 to 19,542 bp and have gene content and order similar to the majority of scleractinians. Phylogenies containing all mitochondrial genes confrm the monophyly of Micrabaciidae as a sister group to the rest of Scleractinia. This topology not only corroborates the hypothesis of a solitary and azooxanthellate ancestor for the order, but also agrees with the unique skeletal microstructure previously found in the family. Moreover, the early-diverging position of micrabaciids followed by gardineriids reinforces the previously observed macromorphological similarities between micrabaciids and Corallimorpharia as
    [Show full text]
  • Radiocarbon-Based Ages and Growth Rates of Hawaiian Deep-Sea Corals
    MARINE ECOLOGY PROGRESS SERIES Vol. 327: 1–14, 2006 Published December 7 Mar Ecol Prog Ser OPENPEN ACCESSCCESS FEATURE ARTICLE Radiocarbon-based ages and growth rates of Hawaiian deep-sea corals E. Brendan Roark1, 4,*, Thomas P. Guilderson2, 3, Robert B. Dunbar4, B. Lynn Ingram1, 5 1Department of Geography, University of California, Berkeley, California 94720-4740, USA 2Center for Accelerator Mass Spectrometry, LLNL, L-397 7000 East Avenue, Livermore, California 94551, USA 3Department of Ocean Sciences and Institute of Marine Sciences, University of California, Santa Cruz, California 95064, USA 4Geological and Environmental Sciences, Stanford University, Stanford, California 94305-2115, USA 5Department of Earth and Planetary Science, University of California, Berkeley, California 94720-4767, USA ABSTRACT: The radial growth rates and ages of 3 differ- ent groups of Hawaiian deep-sea ‘corals’ were deter- mined using radiocarbon measurements. Specimens of Corallium secundum, Gerardia sp., and Leiopathes glaberrima were collected from 450 ± 40 m depth at the Makapuu deep-sea coral bed off the southeast coast of Oahu, Hawaii, USA, using a submersible vessel (PISCES V). Specimens of Antipathes dichotoma were collected at 50 m depth off Lahaina, Maui, Hawaii. The primary source of carbon to the calcitic C. secundum skeleton is in situ dissolved inorganic carbon (DIC). Using ‘bomb 14C’ time markers we calculated radial growth rates of ~170 µm yr–1 and ages of 67 to 71 yr for specimens of C. secundum up to 28 cm tall. Gerardia sp., A. dichotoma, and L. glaberrima have proteinaceous skeletons, and la- bile particulate organic carbon (POC) is their primary Radiocarbon dating shows that deep-sea corals grow more source of architectural carbon.
    [Show full text]
  • Habitat Suitability Mapping of the Black Coral Leiopathes Glaberrima to Support Conservation of Vulnerable Marine Ecosystems V
    www.nature.com/scientificreports OPEN Habitat suitability mapping of the black coral Leiopathes glaberrima to support conservation of vulnerable marine ecosystems V. Lauria1,4*, D. Massi1,4, F. Fiorentino1, G. Milisenda2 & T. Cillari3 The black coral Leiopathes glaberrima is an important habitat forming species that supports benthic biodiversity. Due to its high sensitivity to fshing activities, it has been classifed as indicator of Vulnerable Marine Ecosystems (VMEs). However, the information on its habitat selection and large- scale spatial distribution in the Mediterranean Sea is poor. In this study a thorough literature review on the occurrence of L. glaberrima across the Mediterranean Sea was undertaken. Predictive modelling was carried out to produce the frst continuous map of L. glaberrima suitable habitat in the central sector of the Mediterranean Sea. MaxEnt modeling was used to predict L. glaberrima probability of presence as a function of seven environmental predictors (bathymetry, slope, aspect North–South and East–West, kinetic energy due to currents at the seabed, seabed habitat types and sea bottom temperature). Our results show that bathymetry, slope and aspect are the most important factors driving L. glaberrima spatial distribution, while in less extent the other environmental variables. This study adds relevant information on the spatial distribution of vulnerable deep water corals in relation to the environmental factors in the Mediterranean Sea. It provides an important background for marine spatial planning especially for prioritizing areas for the conservation of VMEs. Leiopathes glaberrima (Esper, 1788) is a black coral species belonging to the family Leiopathidae, it is considered among the most important components of deep corals community of the rocky substrata on the platform and slope in the Mediterranean Sea 1,2.
    [Show full text]
  • Deep-Sea Coral Taxa in the U.S. Southeast Region: Depth and Geographic Distribution (V
    Deep-Sea Coral Taxa in the U.S. Southeast Region: Depth and Geographic Distribution (v. 2020) by Thomas F. Hourigan1, Stephen D. Cairns2, John K. Reed3, and Steve W. Ross4 1. NOAA Deep Sea Coral Research and Technology Program, Office of Habitat Conservation, Silver Spring, MD 2. National Museum of Natural History, Smithsonian Institution, Washington, DC 3. Cooperative Institute of Ocean Exploration, Research, and Technology, Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 4. Center for Marine Science, University of North Carolina, Wilmington This annex to the U.S. Southeast chapter in “The State of Deep-Sea Coral and Sponge Ecosystems in the United States” provides a list of deep-sea coral taxa in the Phylum Cnidaria, Classes Anthozoa and Hydrozoa, known to occur in U.S. waters from Cape Hatteras to the Florida Keys (Figure 1). Deep-sea corals are defined as azooxanthellate, heterotrophic coral species occurring in waters 50 meters deep or more. Details are provided on the vertical and geographic extent of each species (Table 1). This list is an update of the peer-reviewed 2017 list (Hourigan et al. 2017) and includes taxa recognized through 2019, including one newly described species. Taxonomic names are generally those currently accepted in the World Register of Marine Species (WoRMS), and are arranged by order, and alphabetically within order by family, genus, and species. Data sources (references) listed are those principally used to establish geographic and depth distribution. Figure 1. U.S. Southeast region delimiting the geographic boundaries considered in this work. The region extends from Cape Hatteras to the Florida Keys and includes the Jacksonville Lithoherms (JL), Blake Plateau (BP), Oculina Coral Mounds (OC), Miami Terrace (MT), Pourtalès Terrace (PT), Florida Straits (FS), and Agassiz/Tortugas Valleys (AT).
    [Show full text]
  • A4.27. Communities of Mediterranean Lower Circalittoral Rock
    European Red List of Habitats - Marine: Mediterranean Sea Habitat Group A4.27. Communities of Mediterranean lower circalittoral rock Summary This habitat type is typical of the Mediterranan lower circalittoral rocky floor, and is mainly characterised by erect sponges, some black corals (Antipatharia sp), the yellow cup coral Dendrophylia cornigera and D. ramea and molluscs, among others. It is known that the biological structures of some species such as L. glaberrima act as a nursery area for commercial species and large predators (e.g. catsharks Scyliorhinus canicula and large groupers). The most significant damage of this type of fishing is the mechanical damage of the colonies, their smothering by the resuspension of nearby soft sediments. Corallium rubrum is still collected illegally using dredging devices. Sea floor drilling activities for oil exploration, land pollution, sedimentation and thermal anomalies have also been indicated as potential threats to the communities of this habitat. Basic knowledge on the habitat and its distribution in the Mediterranean, on species assemblages and biology (distribution, abundance, habitat preferences, life-cycles) and monitoring data on trends is needed to improve spatial planning in general, and strategic planning of human activities when there are competing demands in particular. Designation of Marine Protected Areas (MPAs) and Fisheries Restricted Areas (FRAs) especially the establishment of closed areas over part of the distribution of this habitat to protect juvenile and spawning fish and fragile benthic communities, regulation of artisanal fishing activities, such as benthic long lines, trammel and gillnets. Synthesis This is a very poorly studied habitat type that hosts several endangered species. There are only a few reports of its distribution with a description of the composing communities along some EU Mediterranean countries and almost none from non-EU countries.
    [Show full text]
  • The Evolution of the Mitochondrial Genomes of Calcareous Sponges and Cnidarians Ehsan Kayal Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2012 The evolution of the mitochondrial genomes of calcareous sponges and cnidarians Ehsan Kayal Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Evolution Commons, and the Molecular Biology Commons Recommended Citation Kayal, Ehsan, "The ve olution of the mitochondrial genomes of calcareous sponges and cnidarians" (2012). Graduate Theses and Dissertations. 12621. https://lib.dr.iastate.edu/etd/12621 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. The evolution of the mitochondrial genomes of calcareous sponges and cnidarians by Ehsan Kayal A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Ecology and Evolutionary Biology Program of Study Committee Dennis V. Lavrov, Major Professor Anne Bronikowski John Downing Eric Henderson Stephan Q. Schneider Jeanne M. Serb Iowa State University Ames, Iowa 2012 Copyright 2012, Ehsan Kayal ii TABLE OF CONTENTS ABSTRACT ..........................................................................................................................................
    [Show full text]
  • Author's Personal Copy ARTICLE in PRESS
    Author's personal copy ARTICLE IN PRESS Deep-Sea Research II 57 (2010) 412–430 Contents lists available at ScienceDirect Deep-Sea Research II journal homepage: www.elsevier.com/locate/dsr2 Biodiversity of the white coral bank off Cape Santa Maria di Leuca (Mediterranean Sea): An update F. Mastrototaro a,Ã, G. D’Onghia a, G. Corriero a, A. Matarrese a, P. Maiorano a, P. Panetta a, M. Gherardi a, C. Longo a, A. Rosso b, F. Sciuto b, R. Sanfilippo b, C. Gravili c, F. Boero c, M. Taviani d, A. Tursi a a ULR CoNISMa, Dipartimento di Biologia Animale ed Ambientale, Universita degli Studi di Bari, Via Orabona, 4, 70125 Bari, Italy b ULR CoNISMa, Dipartimento di Scienze Geologiche, Universita di Catania, Corso Italia, 55, 95129 Catania, Italy c ULR CoNISMa, Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Universita del Salento, Via Prov.le Lecce, Monteroni, 73100 Lecce, Italy d ISMAR, CNR, Via Gobetti, 101, 40129 Bologna, Italy article info abstract Available online 1 September 2009 The biodiversity of the Santa Maria di Leuca (SML) coral bank is summarized and its description is Keywords: updated using data collected by means of underwater video systems, benthic samplers and fishing White coral gears. A total of 222 living species have been recorded within the coral bank area in the depth range Biodiversity 280–1121 m. The most abundant benthic taxa recorded are Porifera (36 species) followed by Mollusca Mediterranean Sea (35) and Cnidaria (31). The scleractinian corals Madrepora oculata and Lophelia pertusa are the main Lophelia pertusa colonial species in the structure of the SML bank.
    [Show full text]
  • A Perspective for Best Governance of the Bari Canyon Deep-Sea Ecosystems
    water Article A Perspective for Best Governance of the Bari Canyon Deep-Sea Ecosystems Lorenzo Angeletti 1,* , Gianfranco D’Onghia 2,3, Maria del Mar Otero 4, Antonio Settanni 5, Maria Teresa Spedicato 6 and Marco Taviani 1,7 1 ISMAR-CNR, Via Gobetti 101, 40129 Bologna, Italy; [email protected] 2 Dipartimento di Biologia, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; [email protected] 3 CoNISMa, Piazzale Flaminio 9, 00196 Roma, Italy 4 IUCN—Centre for Mediterranean Cooperation, C/Marie Curie No. 22 (PTA), 29590 Málaga, Spain; [email protected] 5 Strada Statale 16 Sud Complanare Ovest 92, 70126 Bari, Italy; [email protected] 6 COISPA Tecnologia & Ricerca, Stazione Sperimentale per lo Studio delle Risorse del Mare, Via dei Trulli 18/20, 70126 Bari, Italy; [email protected] 7 Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy * Correspondence: [email protected]; Tel.: +39-051-639-8936 Abstract: There is growing awareness of the impact of fishery activities on fragile and vulnerable deep-sea ecosystems, stimulating actions devoted to their protection and best management by national and international organizations. The Bari Canyon in the Adriatic Sea represents a good case study of this, since it hosts vulnerable ecosystems, threatened species, as well as valuable commercial species, but virtually lacks substantial management plans for the sustainable use of resources. This study documents the high level of biodiversity of the Bari Canyon and the impact of Citation: Angeletti, L.; D’Onghia, G.; human activities by analyzing remotely operated vehicle surveys and benthic lander deployments.
    [Show full text]
  • Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources
    Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources http://www.dnr.sc.gov/marine/sertc/ Southeastern Regional Taxonomic Center Invertebrate Literature Library (updated 9 May 2012, 4056 entries) (1958-1959). Proceedings of the salt marsh conference held at the Marine Institute of the University of Georgia, Apollo Island, Georgia March 25-28, 1958. Salt Marsh Conference, The Marine Institute, University of Georgia, Sapelo Island, Georgia, Marine Institute of the University of Georgia. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Caprellidea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Gammaridea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1981). Stomatopods. FAO species identification sheets for fishery purposes. Eastern Central Atlantic; fishing areas 34,47 (in part).Canada Funds-in Trust. Ottawa, Department of Fisheries and Oceans Canada, by arrangement with the Food and Agriculture Organization of the United Nations, vols. 1-7. W. Fischer, G. Bianchi and W. B. Scott. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume II. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume III. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico.
    [Show full text]