The Next Generation Space Telescope

Total Page:16

File Type:pdf, Size:1020Kb

The Next Generation Space Telescope m^f. THE NEXT GENERATION SPACE TELESCOPE I Mr Simulated images Cover: Two simulated images by James Gunn illustrate the improvements in resolution and sensitivity that the NGST would give when compared to the Hubble Space Telescope. TELESCOPE iVJASA SCIENCE National Aeronautics and INSmUTE Space Administration THE NEXT GENERATION SPACE TELESCOPE Proceedings of a Workshop jointly sponsored by the National Aeronautics and Space Admnistration and the Space Telescope Science Institute and held at the Space Telescope Science Institute Baltimore, Maryland, 13-15 September 1989 Editors: Pierre-Yves Bely and Christopher J. Burrows Space Telescope Science Institute Garth D. Illingworth University of California, Santa Cruz Published and distributed by the Space Telescope Science Institute 3700 San Martin Drive, Baltimore, MD, 21218 CTK^ ' r-t J Scientific Organisation Committee: Garth D. Illingworth (Chair), University of California James Roger Angel, University of Arizona Jacques M. Beckers, European Southern Observatory James E. Gunn, Princeton University Donald N.B. Hall, University of Hawaii Malcolm Longair, Royal Observatory, Edinburgh Hervey S. (Peter) Stockman, Space Telescope Science Institute Edward J. Weiler, NASA Headquarters Local Organisation Committee: /4^r[^TrAav>^^i Lc\o^<^<' "^ Pierre Y. Bely (Chair) ^ 6?6 Burrows Christopher ^.g J ^^^^ _ ^ Barbara EUer . / Hervey S. (Peter) Stockman ' " 1 TABLE OF CONTENTS Foreword 1 Conclusions of the Workshop 5 Sage Advice 7 SESSION 1. INTRODUCTION AND PLANS Sumnciary of Space Science Board 1995-2015 Study, G. Field, CFA 11 Status and Future of NASA Astrophysics, E. Weiler, NASA Headquarters . 16 ESA Long Term Plans and Status, F. Macchetto, STScI 27 The Next Generation UV-Visible-IR Space Telescope G. Illingworth, UCSC . 31 SESSION 2. SCIENTIFIC POTENTIAL NGST and Distant Galaxies, J. Gunn, Princeton 39 Planetary Astronomy with a Large Space Telescope, R. Brown, STScI ... 44 Star Formation Studies with a Large Space Telescope, L. Blitz, U of Maryland 49 Quasi-stellar Objects and Active Galactic Nuclei: Prospects for a 10 meter Space Telescope, J. Miller, Lick Obs 54 Stellar Populations in Galaxies: the Scientific Potential for a 10-16 m Space Telescope, J. Gallagher, AURA 61 Quasar Absorption-line Studies with HST Successor, R. Green, NOAO ... 72 Use of 16m Telescope to Detect Earthlike Planets, R. Angel, Steward Obs. 81 SESSION 3. LARGE OPTICS: GROUND-BASED DEVELOPMENTS The Keck Telescope Project, J. Nelson, Lawrence Berkeley Lab., UCB ... 99 Stressed-lap Polishing, H.M. Martin and J.R.P Angel, Steward Obs. 101 Large Telescope 0-IR Astronomy from the Ground, N. Woolf, Steward Obs 110 SESSION 4. CURRENT PROPOSALS AND STUDIES Considerations for a Next Generation UV-Optical Space Telescope, M. Nein and S. H. Morgan, NASA MSFC 117 IBIS: An Interferometer-Based Imaging System for Detecting Extrasolar Planets with a Next Generation Space Telescope, D. Diner, JPL 133 The Large Deployable Reflector, P. Swanson, JPL 142 PAMELA: High Density Segmentation for Large, Ultra-light, High Performance Mirrors, J. Rather et al, Kaman Aerospace Corp. 147 Optical Interferometry from Space, R. Stachnik, NASA Headquarters .... 157 Direct IR Interferometric Detection of Extrasolar Planets, M. Shao, JPL . 160 SESSION 5. TECHNOLOGIES FOR lARGE, HIGH THROUGHPUT WIDEBAND OPTICAL SYSTEMS IN SPACE Design Concepts for Very Large Aperture, High-performance Telescopes, D. Korsch, Korsch Optics 171 The Lunar Configurable Array Telescope (LCAT), A. Meinel/M. Meinel, JPL 177 Large Optical Fabrication Considerations and Speculation about the Overall NGST Configuration, M. Krim, Perkin Elmer 182 Large Segmented Optics Fabrication and Wavefront Control, R. Vyce, Itek . 198 Fabrication of Large and Fast Mirrors with Extroardinary Smooth Surfaces, D. Knohl, Carl Zeiss 209 Economical Production of Large Optics, D. Pileri and W. Prensky, Kodak . 217 Super Smooth Optics for Extrasolar Planet Detection, R.J. Terrile, JPL, and C. Ftaclas, Hughes 225 Sensing and Control for Large Opticcd Systems, A. Wissinger, Perkin Elmer . 232 Requirements for Diffraction Limited Optics, C. Burrows, STScI 241 Precision Segmented Reflectors (PSR), R. Lin, JPL 252 ASCIE: An Integrated Experiment to Study Control Structure Interaction in Large Segmented Optical Systems, J-N Aubrun and K. LoreU, LMSC . 256 Control Structure Interaction (CSI) Technology, W. Layman, JPL 263 Pointing Control System for a 10 meter Space Telescope, D. TenereUi, LMSC 270 Moving Target Tracking for a Next Generation Space Telescope, D. SkiUman, NASA GSFC 274 Passive Cooling of a 10 meter Space Telescope, P. Tulkoff, Swales 279 Cryogenics for Space Observatories: Technology, Requirements, Issues, H. Schember , JPL 285 Visible and UV Detectors for High Earth Orbit and Lunar Observatories, B. Woodgate, NASA GSFC 296 Infrared Detectors for a 10 m Space or Lunar Telescope, R. Thompson, Steward Obs 310 SESSION 6. SPACE LOGISTICS Advantages of High vs. Low Earth Orbit for SIRTF, P. Eisenhardt and M. Werner, NASA Ames 321 Orbital Sites Tradeoff Study, D. Neill, P. Bely, G. MiUer, and A. Spigler, STScI 333 The Moon as a Site for Astronomical Observatories, J. Burns, New Mexico State U 341 Required Technologies for a 10-16 m UV-Visible-IR Telescope on the Moon, S. Johnson and J. Wetzel, BDM Corp 348 Space Logistics: Launching Capabilities, R. Furnas, NASA Headquarters . 360 On-orbit Assembly and Maintenance, D. Soderblom, STScI 365 Technological Spinoff from the Next Generation, V. Trimble, UMD/UCI . 367 List of Participants 369 FOREWORD In Space Science in the Twenty-First Century, the Space Science Board of the Na- tional Research Council identified high-resolution interferometry and high-throughput instruments as the imperative new initiatives for NASA in astronomy for the two decades spanning 1995 to 2015. In the optical range, the study recommended an 8 to 16-meter space telescope, destined to be the successor of the Hubble Space Telescope (HST), and to complement the ground-based 8 to 10-meter-class telescopes presently under construction. It might seem too early to start planning for a successor to HST. In fact, we are late. The lead time for such major missions is typically 25 years, and HST has been in the making even longer with its inception dating back to the early 1960s. The maturity of space technology and a more substantial technological base may lead to a shorter time scale for the development of the Next Generation Space Telescope (NGST). Optimistically, one could therefore anticipate that NGST be flown as early as 2010. On the other hand, the planned lifetime of HST is 15 years. So, even under the best circumstances, there will be a five year gap between the end of HST and the start of NGST. The purpose of this first workshop dedicated to NGST was to survey its scientific po- tential and technical challenges. The three-day meeting brought together 130 astronomers and engineers from government, industry and universities. Participants explored the tech- nologies needed for building and operating the observatory, reviewed the current status and future prospects for astronomical instrumentation, and discussed the launch and space support capabihties likely to be available in the next decade. To focus discussion, the invited speakers were asked to base their presentations on two nominal concepts, a 10-meter telescope in space in high earth orbit, and a 16-meter telescope on the moon. Artist's view of these two concepts are shown in Figures 1 and 2, and their specifications are summarized in Table 1. The workshop closed with a panel discussion focused mainly on the scientific case, siting, and the programmatic approach needed to bring NGST into being. The essential points of this panel discussion have been incorporated into a series of recommendations that represent the conclusions of the workshop. Speakers were asked to provide manuscripts of their presentation. Those received were reproduced here with only minor editorial changes. The few missing papers have been replaced by the presentation viewgraphs. The discussion that follows each speaker's paper was derived from the question and answer sheets, or if unavailable, from the tapes of the meeting. In the latter case, the editors have made every eflFort to faithfully represent the discussion. We are most thankful to all the speakers for their very thoughtful and valuable con- tributions. Their vast experience in science and engineering wiU be essential for the successful completion of a project of this scale. Thanks are due to Roger Angel, Jack Burns, Don Hall, Duccio Macchetto, Joe Miller, Jean OHvier, Peter Stockman, Dominick TenereUi, and Rodger Thompson for chairing the various sessions or for their participation in the panel. We would also Uke to thank John Bahcall who introduced the workshop by sharing some of his experiences with the HST project. His pertinent remarks about the dedication of those involved in the development of HST emphasized the deep and widespread commitment needed to bring about its successor. We would particularly Hke to thank Riccardo Giacconi for his keen interest and sup- port of the workshop. He had urged us for some time to think of the long-term needs of the astrophysics community and to explore the scientific potential and technical challenges of a successor to HST. We also greatly appreciate the support given by Peter Stockman. He contributed invaluable advice and assistance throughout, ensured that the appropriate Institute resources were available, and gave an excellent summary of the meeting. We would also Hke to extend our gratitude to Charles Pellerin for personally support- ing the meeting and providing NASA funding for the publication of these proceedings. This workshop is but an early step on the long journey to the completion of NGST. As evidenced by these proceedings, however, the spectacular views of the heavens to be provided by this telescope and a deeper understanding of our universe and its origin are a worthy destination for this complex and challenging journey. The Editors Table 1. Nominal Next Generation Space Telescope (NGST) orbit.
Recommended publications
  • ESA Missions AO Analysis
    ESA Announcements of Opportunity Outcome Analysis Arvind Parmar Head, Science Support Office ESA Directorate of Science With thanks to Kate Isaak, Erik Kuulkers, Göran Pilbratt and Norbert Schartel (Project Scientists) ESA UNCLASSIFIED - For Official Use The ESA Fleet for Astrophysics ESA UNCLASSIFIED - For Official Use Dual-Anonymous Proposal Reviews | STScI | 25/09/2019 | Slide 2 ESA Announcement of Observing Opportunities Ø Observing time AOs are normally only used for ESA’s observatory missions – the targets/observing strategies for the other missions are generally the responsibility of the Science Teams. Ø ESA does not provide funding to successful proposers. Ø Results for ESA-led missions with recent AOs presented: • XMM-Newton • INTEGRAL • Herschel Ø Gender information was not requested in the AOs. It has been ”manually” derived by the project scientists and SOC staff. ESA UNCLASSIFIED - For Official Use Dual-Anonymous Proposal Reviews | STScI | 25/09/2019 | Slide 3 XMM-Newton – ESA’s Large X-ray Observatory ESA UNCLASSIFIED - For Official Use Dual-Anonymous Proposal Reviews | STScI | 25/09/2019 | Slide 4 XMM-Newton Ø ESA’s second X-ray observatory. Launched in 1999 with annual calls for observing proposals. Operational. Ø Typically 500 proposals per XMM-Newton Call with an over-subscription in observing time of 5-7. Total of 9233 proposals. Ø The TAC typically consists of 70 scientists divided into 13 panels with an overall TAC chair. Ø Output is >6000 refereed papers in total, >300 per year ESA UNCLASSIFIED - For Official Use
    [Show full text]
  • Rendezvous and Proximity Operations of the Space Shuttle Source of Acquisition John L
    FROM :UNITED SfffCE RLL I FINE 281 212 6326 2005s 08-11 09: 34 #127 P. 05/21 Rendezvous and Proximity Operations of the Space Shuttle Source of Acquisition John L. Gooban' NASA JO~~SO~Space Center Uniied Space Albance, LLC, Hou.Wm. Texas: 77058 Spnce Shuttle rendmous missinns presented unique chalfengcs Clint were not fully recogni;ccd altea the Shutde WH~:deslgned. Rendezvous hrgcte could be passive (Le., no lights or Wnnrponders), and not designad 10 BcllIfate Shuttro rendezvous, praxlntlty operfirttlons and rclricval. Shuttls rendon control system ]ct plume lmplngetnent nn target spacccmfl prewnrcd Induced dynnmlcs, structoral loading and conhmlndon concerns. These Issues, along with fliiilfed forWard raction control system prupcllxnf drove II change from the GcmlniiApollo cuuillptlc profile heritage to a stnbte orbit proflle. and the development of new prorlmlly opcrntlons techniqucs. Multiple xckiitlfic and an-orbit servicing. tlssions; and crew exchanp, nsocmbly and rcplenlshment nigh& to Mir and io the InlernnBonnf Space S(Bfi0n dmve further pmfflc and pilnfing technique change%,lrcluding new rciative naviptlon senran gnd new ciwputcr generated piloting CPCS. Nomenclature the issucs with Shuffle rmdczvous md proximity operatiom had been f1.111~identified and resolved, which in N~Ircsultcd in complcx H Bar = unit vector along &e =get orbital angular illomcntum opmntionnl work-wounds. koposds for \chicle cepabiiitia vector competed for funding based on available budget, Bvaihbk schcduk, and criticality to Safety and mission success. Technical challenges in ix = LVLH +X axis vcctor $ = LTL~*Wrnk~CIOT ---b-uilding-~wsable~~~'~prt~.c~~-s~c~as propubion, &txid -tr- Lv&--i.Z-xiwe~oT---- _-- . protwtion.
    [Show full text]
  • Precollimator for X-Ray Telescope (Stray-Light Baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017
    Mindrum.com Precollimator for X-Ray Telescope (stray-light baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017 1 Overview Mindrum.com Precollimator •Past •Present •Future 2 Past Mindrum.com • Space X-Ray Telescopes (XRT) • Basic Structure • Effectiveness • Past Construction 3 Space X-Ray Telescopes Mindrum.com • XMM-Newton 1999 • Chandra 1999 • HETE-2 2000-07 • INTEGRAL 2002 4 ESA/NASA Space X-Ray Telescopes Mindrum.com • Swift 2004 • Suzaku 2005-2015 • AGILE 2007 • NuSTAR 2012 5 NASA/JPL/ASI/JAXA Space X-Ray Telescopes Mindrum.com • Astrosat 2015 • Hitomi (ASTRO-H) 2016-2016 • NICER (ISS) 2017 • HXMT/Insight 慧眼 2017 6 NASA/JPL/CNSA Space X-Ray Telescopes Mindrum.com NASA/JPL-Caltech Harrison, F.A. et al. (2013; ApJ, 770, 103) 7 doi:10.1088/0004-637X/770/2/103 Basic Structure XRT Mindrum.com Grazing Incidence 8 NASA/JPL-Caltech Basic Structure: NuSTAR Mirrors Mindrum.com 9 NASA/JPL-Caltech Basic Structure XRT Mindrum.com • XMM Newton XRT 10 ESA Basic Structure XRT Mindrum.com • XMM-Newton mirrors D. de Chambure, XMM Project (ESTEC)/ESA 11 Basic Structure XRT Mindrum.com • Thermal Precollimator on ROSAT 12 http://www.xray.mpe.mpg.de/ Basic Structure XRT Mindrum.com • AGILE Precollimator 13 http://agile.asdc.asi.it Basic Structure Mindrum.com • Spektr-RG 2018 14 MPE Basic Structure: Stray X-Rays Mindrum.com 15 NASA/JPL-Caltech Basic Structure: Grazing Mindrum.com 16 NASA X-Ray Effectiveness: Straylight Mindrum.com • Correct Reflection • Secondary Only • Backside Reflection • Primary Only 17 X-Ray Effectiveness Mindrum.com • The Crab Nebula by: ROSAT (1990) Chandra 18 S.
    [Show full text]
  • Congress of the United States Congressional Budget Office May 1988
    CONGRESS OF THE UNITED STATES CONGRESSIONAL BUDGET OFFICE MAY 1988 A SPECIAL STUDY THE NASA PROGRAM IN THE 1990s AND BEYOND The Congress of the United States Congresssional Budget Of'f'ice NOTES All costs are expressed in 1988 dollars of budget authority, unless otherwise noted. All years are fiscal years, except when applied to launch schedules. PREFACE The United States space program stands at a crossroads. The momentum of the National Aeronautics and Space Administration (NASA) program over the last 20 years has brought NASA to a point where new activities will require substantial increases in the agency's budget. Critics of the NASA program have called for even more ambi- tious goals, most prominently an expansion of manned space flight to the Moon or Mars. Fiscal concerns, however, may limit even the more modest set of activities envisioned by NASA. This special study, requested by the Senate Committee on Commerce, Science, and Trans- portation, examines the broad options for the U.S. space program in the 1990s. In keeping with the mandate of the Congressional Budget Office (CBO) to provide objective nonpartisan analysis, the report makes no recommendations. David H. Moore, of CBO's Natural Resources and Commerce Division, prepared the report under the supervision of Everett M. Ehrlich. Frances M. Lussier of CBO's National Security Division and Michael Sieverts of CBO's Budget Analysis Division provided valu- able comments and assistance. Many outside reviewers made useful comments and criticisms. Amanda Balestrieri edited the manuscript. Margaret Cromartie prepared early drafts of the report, and Kathryn Quattrone prepared the final draft for publication.
    [Show full text]
  • The Making of the Chandra X-Ray Observatory: the Project Scientist’S Perspective
    SPECIAL FEATURE: PERSPECTIVE The making of the Chandra X-Ray Observatory: The project scientist’s perspective Martin C. Weisskopf1 National Aeronautics and Space Administration/Marshall Space Flight Center, Huntsville, AL 35805 Edited by Harvey D. Tananbaum, Smithsonian Astrophysical Observatory, Cambridge, MA, and approved January 22, 2010 (received for review December 16, 2009) The history of the development of the Chandra X-Ray Observatory is reviewed from a personal perspective. This review is necessarily biased and limited by space because it attempts to cover a time span approaching five decades. historical perspective | x-ray astronomy t is sobering for me to realize that there arescientistswhoareworkingwithdata Ifrom this truly great observatory who were not even born when the founda- tion for what is now the Chandra X-Ray Observatory was laid. Thus, it may surprise many to know that the beginning was suc- cinctly and accurately outlined in a research proposal that Riccardo Giacconi and col- leagues wrote in 1963, a mere 9 months after he and his team’s discovery of the first ex- trasolar x-ray source Scorpius X-1. As im- portant, the data from this rocket flight also indicated the presence of the “diffuse x-ray background.” Fig. 1 illustrates the showpiece of this insightful proposal. It shows a ≈1-m diameter, 10-m focal length, grazing-incidence x-ray telescope. The telescope was of sufficient area and angular resolution to determine the nature of the unresolved x-ray background. We all owe Riccardo an enormous debt of gratitude for his insight, leadership, and, in my case (and I suspect for many others), inspiration.
    [Show full text]
  • The High Energy Astrophysics Division Newsletter
    SPRING 2017 The High Energy Astrophysics Division Newsletter In this Issue: View from the Chair — special advertising section — hidden black holes revealed, and others — second running — finding a path through spacetime — announcing mysteries under the ice — performance enhancements for Chandra — milestones for XMM — the hunt continues for Swift — ULXNS — on the trail of the wild neutrino with INTEGRAL — searching at home with Fermi — energetic electrons seen at the ISS — news from the cosmos — of scientific interest — a Universe of learning — NICER launch prep — SRG progress — the wisdom of Athena — the slant on IXPE — the XARM — building CTA — all-seeing Lynx — in memoriam From the Chair for the discovery of merging black hole binaries, and for beginning the new era of gravitational-wave astronomy. CHRIS REYNOLDS (U. MD) Prof. González will give the Rossi Prize Lecture at the All systems are go for our 16th Divisional meeting to 231st AAS meeting to be held at National Harbor, MD be held in Sun Valley, Idaho, 20-24 August 2017! Regis- in January 2018. Please join me in congratulating all of tration and abstract submission is now open and we’re this year’s HEAD prize winners. looking forward to an exciting scientific program cover- ing all aspects of high-energy astrophysics, kicked off by The past few months has been eventful in the world a total solar eclipse! of high-energy astrophysics missions. NICER and ISS- CREAM are at the Kennedy Space Center and ready for One of the most important aspects of these meet- launch to the International Space Station. Further in the ings is the chance to honor a new batch of HEAD future, NASA has formally selected the Imaging X-ray Po- prize winners.
    [Show full text]
  • Solar System Exploration: a Vision for the Next Hundred Years
    IAC-04-IAA.3.8.1.02 SOLAR SYSTEM EXPLORATION: A VISION FOR THE NEXT HUNDRED YEARS R. L. McNutt, Jr. Johns Hopkins University Applied Physics Laboratory Laurel, Maryland, USA [email protected] ABSTRACT The current challenge of space travel is multi-tiered. It includes continuing the robotic assay of the solar system while pressing the human frontier beyond cislunar space, with Mars as an ob- vious destination. The primary challenge is propulsion. For human voyages beyond Mars (and perhaps to Mars), the refinement of nuclear fission as a power source and propulsive means will likely set the limits to optimal deep space propulsion for the foreseeable future. Costs, driven largely by access to space, continue to stall significant advances for both manned and unmanned missions. While there continues to be a hope that commercialization will lead to lower launch costs, the needed technology, initial capital investments, and markets have con- tinued to fail to materialize. Hence, initial development in deep space will likely remain govern- ment sponsored and driven by scientific goals linked to national prestige and perceived security issues. Against this backdrop, we consider linkage of scientific goals, current efforts, expecta- tions, current technical capabilities, and requirements for the detailed exploration of the solar system and consolidation of off-Earth outposts. Over the next century, distances of 50 AU could be reached by human crews but only if resources are brought to bear by international consortia. INTRODUCTION years hence, if that much3, usually – and rightly – that policy goals and technologies "Where there is no vision the people perish.” will change so radically on longer time scales – Proverbs, 29:181 that further extrapolation must be relegated to the realm of science fiction – or fantasy.
    [Show full text]
  • Space-VLBI Observations 1
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Space-VLBI observations 1 1999 Mon. Not. R. Astron. Soc. 000, 1{7 (2000) Space-VLBI observations of OH maser OH34.26+0.15: low interstellar scattering V.I. Slysh,1 M.A. Voronkov,1 V. Migenes,2 K.M. Shibata,3 T. Umemoto,3 V.I. Altunin,4 I.E. 1Astro Space Centre of Lebedev Physical Institute, Profsoyuznaya 84/32, 117810 Moscow, Russia 2University of Guanajuato, Department of Astronomy, Apdo Postal 144, Guanajuato, CP36000, GTO, Mexico 3National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181, Japan 4Jet Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, CA 91109, USA 5National Radio Astronomy Observatory, 520 Edgemont Rd., Charlottesville, VA 22903, USA 6Special Research Bureau, Moscow Power Engineering Institute, Krasnokazarmennaya st. 14, 111250 Moscow, Russia 7Dominion Radio Astrophysical Observatory, Herzberg Institute of Astrophysics, National Research Council, PO Box 248, Penticton, BC, Canada V2A 6K3 8Australia Telescope National Facility, PO Box 76, Epping, NSW 2121, Australia 9Shanghai Astronomical Observatory, 80 Nandan Rd, Shanghai 200080, China 10Institute of Applied Astronomy, Zhdanovskaya str. 8, 197042 St.Petersburg, Russia Received date; accepted date ABSTRACT We report on the first space-VLBI observations of the OH34.26+0.15 maser in two main line OH transitions at 1665 and 1667 MHz. The observations involved the space radiotelescope on board the Japanese satellite HALCA and an array of ground radio telescopes. The map of the maser region and images of individual maser spots were pro- duced with an angular resolution of 1 milliarcsec which is several times higher than the angular resolution available on the ground.
    [Show full text]
  • The Most Dangerous Ieos in STEREO
    EPSC Abstracts Vol. 6, EPSC-DPS2011-682, 2011 EPSC-DPS Joint Meeting 2011 c Author(s) 2011 The most dangerous IEOs in STEREO C. Fuentes (1), D. Trilling (1) and M. Knight (2) (1) Northern Arizona University, Arizona, USA, (2) Lowell Observatory, Arizona, USA ([email protected]) Abstract (STEREO-B) which view the Sun-Earth line using a suite of telescopes. Each spacecraft moves away 1 from the Earth at a rate of 22.5◦ year− (Figure 1). IEOs (inner Earth objects or interior Earth objects) are ∼ potentially the most dangerous near Earth small body Our search for IEOs utilizes the Heliospheric Imager population. Their study is complicated by the fact the 1 instruments on each spacecraft (HI1A and HI1B). population spends all of its time inside the orbit of The HI1s are centered 13.98◦ from the Sun along the the Earth, giving ground-based telescopes a small win- Earth-Sun line with a square field of view 20 ◦ wide, 1 dow to observe them. We introduce STEREO (Solar a resolution of 70 arcsec pixel− , and a bandpass of TErrestrial RElations Observatory) and its 5 years of 630—730 nm [3]. Images are taken every 40 minutes, archival data as our best chance of studying the IEO providing a nearly continuous view of the inner solar population and discovering possible impactor threats system since early 2007. The nominal visual limit- ing magnitude of HI1 is 13, although the sensitivity to Earth. ∼ We show that in our current search for IEOs in varies somewhat with solar elongation, and asteroids STEREO data we are capable of detecting and char- fainter than 13 can be seen near the outer edges.
    [Show full text]
  • Orbital Debris: a Chronology
    NASA/TP-1999-208856 January 1999 Orbital Debris: A Chronology David S. F. Portree Houston, Texas Joseph P. Loftus, Jr Lwldon B. Johnson Space Center Houston, Texas David S. F. Portree is a freelance writer working in Houston_ Texas Contents List of Figures ................................................................................................................ iv Preface ........................................................................................................................... v Acknowledgments ......................................................................................................... vii Acronyms and Abbreviations ........................................................................................ ix The Chronology ............................................................................................................. 1 1961 ......................................................................................................................... 4 1962 ......................................................................................................................... 5 963 ......................................................................................................................... 5 964 ......................................................................................................................... 6 965 ......................................................................................................................... 6 966 ........................................................................................................................
    [Show full text]
  • New Publication: Commission A1 Annual Report 2016
    IAU Commission A1 - Astrometry Anthony Brown, Norbert Zacharias, Yoshiyuki Yamada, Jean Souchay, Alexandre Humberto Andrei, Dafydd Evans, Stephen Unwin Annual Report 2016 Gaia mission The first release of Gaia data (Gaia DR1, Gaia Collaboration et al 2016) took place on September 14 2016. This first Gaia catalogue consists of 1.1 billion sources to magnitude 20.7 for which positions are provided with typical uncertainties of 10 milliarcsec. For a subset of about 2 million sources from the Hipparcos and Tycho-2 catalogues proper motions and parallaxes are provided with a typical uncertainty of 1 milliarcsec/yr and 0.3 milliarcsec, respectively. Gaia DR1 represents a large step forward in the densification of the astrometric reference frame in the optical at faint magnitudes, and has consequently already been employed as the reference positional catalogue for several other large surveys (see below). The radio positions of around 2000 ICRF2 sources were compared to the optical positions from Gaia (Mignard et al 2016). No systematic differences larger than a few tenths of amilliarcsec were found. For most sources the true offsets are likely to be less than 1 mas. This is a very encouraging result in connection with the efforts to develop multi-wavelength realizations of the ICRS. The optical tracking of the position of Gaia on the sky was continued throughout 2016 by the GBOT (Ground Based Optical Tracking). The aim is to get an optimized position of the satellite with respect to the surrounding stars. The observations are made with the help of CCD frames taken at the focus of T1-2m class telescopes located at various places in the world.
    [Show full text]
  • Kibo HANDBOOK
    Kibo HANDBOOK September 2007 Japan Aerospace Exploration Agency (JAXA) Human Space Systems and Utilization Program Group Kibo HANDBOOK Contents 1. Background on Development of Kibo ............................................1-1 1.1 Summary ........................................................................................................................... 1-2 1.2 International Space Station (ISS) Program ........................................................................ 1-2 1.2.1 Outline.........................................................................................................................1-2 1.3 Background of Kibo Development...................................................................................... 1-4 2. Kibo Elements...................................................................................2-1 2.1 Kibo Elements.................................................................................................................... 2-2 2.1.1 Pressurized Module (PM)............................................................................................ 2-3 2.1.2 Experiment Logistics Module - Pressurized Section (ELM-PS)................................... 2-4 2.1.3 Exposed Facility (EF) .................................................................................................. 2-5 2.1.4 Experiment Logistics Module - Exposed Section (ELM-ES)........................................ 2-6 2.1.5 JEM Remote Manipulator System (JEMRMS)............................................................
    [Show full text]