1. Make a Single Line Copy for Computer Subject. 2

Total Page:16

File Type:pdf, Size:1020Kb

1. Make a Single Line Copy for Computer Subject. 2 ST.XAVIER’S SR.SEC SCHOOL SUBJECT – COMPUTER CLASS V GENERAL INSTRUCTION : 1. Make a single line copy for computer subject. 2. Use only blue gel pen to write questions and answers on the computer copy. 4.Leave a line after every question and answer. 5. Read the lesson at least once before writing the notes on your copy. 6.Write the objective type questions on your computer text book only. LESSON :1 Evolution of Computers ❖ Match the following. (Page .11 ) 1. Microprocessor --- Fourth generation computers 2. Artificial intelligence --- Fifth generation computers 3. Vacuum tube -- First generation computers 4. Transistor -- Second generation computers 5. Integrated circuit -- Third generation computers. ❖ Choose the correct options. (Page .14 ) 1. Under which category of devices does the Samsung Gear series fall? ans c)Wearable 2. Which of the following technologies is used by robots? ans b) AI 3. On which technology is JARVIS based? ans b) AI 4. Which of the following is developed by Apple? ans b) iPhone X 5. Which of the following devices is used as an activity tracker? ans. d) Wearable A. Choose the correct options. (Page .16 ) 1. In which year was the Pascaline invented? ans b) 1642 2. Under which generation of computers does ENIAC fall ? ans a) First 3.Which of the following devices displays information like a Smartphone without using hands. --- ans c) Google glasses 4. Which generation of computers relied on an assembly language? ans b) Second 5. Which of the following features was introduced by fourth - generation computers? ans d) GUI B. Write true or false. (Page .16 ) 1. The analytical engine was invented by Charles Babbage. ---True 2. First generation computers used transistors ---- False 3. UNIVAC is a type of third generation computer ----- False 4. Virtual reality is a technology that superimposes a computer generated image on a user’s view of the real world ------ True 5. A robot is an example of fourth generation computers ------ False 6. First generation computers used transistors as their chief component.--- False C. Fill in the blanks. (Page .16 ) 1. Magnetic drums was used for storage purposes in first generation computers. 2. The Analytical Engine was designed by Charles Babbage. 3. Second generation computers used transistors as chief component. 4. ENIAC is considered the first general purpose computer. 5. A robot is a example of artificial intelligence. 6. The period of third generation computers was from 1964 to 1971. QI. Answer the following questions in short :(To be written on the copy ) 1. Who is known as the father of computing ? Ans. Charles Babbage 2.Which is the earliest calculating device? Ans. Abacus 3.Which was the first electronic digital computer? Ans. ENIAC 4Name the machine developed by Wilhelm Gottfried Leibniz. Ans. Step Reckoner 5. Write about the inventions of Charles Babbage. ANS. Abacus, Difference Engine, Analytical Engine QII. Answer the following questions. 1 . Describe some of the early computing devices. Ans. a) Abacus --- It was one of the earliest calculating devices used to count large numbers and perform mathematical operations of addition and subtraction. b) Napier’s Bones --- John Napier a Scottish mathematician , invented a calculating device in 1614 , called Napier’s Bones ,for the multiplication of large numbers. c) Pascal’s Calculator ---Blaise Pascal was a French mathematician who invented a arithmetic machine in 1642. This calculating machine was known as Pascaline. d) Step Reckoner --- In 1674, Gottfried Wilhelm Leibniz built a calculator that could add, multiply, subtract, divide and even find square roots. He named the calculator ‘Step Reckoner’ as it used stepped drums. e )Jacquard’s Loom --- In 1801, Joseph Marie Jacquard, a French inventor, weaver, and merchant invented a power loom for weavers. It could weave fabric designs. 2. Compare first and second generation computers. Ans. First generation computers 1. First generation computers used vacuum tubes. 2. These computers were huge. 3. The instructions to computers were given using machine language. 4. UNIVAC, ENIAC, Mark 1, EDSAC and EDVAC are a few examples. Second generation computers 1. Second generation computers used transistors. 2. It is smaller, faster, more energy efficient and less expensive. 3. The instructions to computers were given using assembly language. 4.IBM 7094 series, IBM 1400 series, Honeywell 400, and CDC 164 are a few examples. 3. What were the input and output sources in third generation computers? Ans. Third generation computers used keyboards to give input and monitors to produce output. 4. What is the difference between virtual reality and augmented reality? Ans. Virtual reality 1. Virtual reality is a technology in which a scenario is generated by a computer that stimulates a real life experience. 2. Users feel as if they are actually watching that in a real life. Whereas : Augmented reality 1. Augmented reality is a technology that integrates digital information with a user’s view of the real world, thus providing us a combined view. 2. With the AR technology, a user can manipulate with the real life objects without having to touch them. 5. Briefly explain any three latest technologies in computers. Ans. Smartphone’s --- A smart phone is a mobile phone that can also function as a handheld computer. It can perform a variety of functions besides making calls. Wearable Technology --- Wearable technology or wearables are smart electronic gadgets that can be worn on the body as accessories. Smart watches, fitness trackers, smart glasses and VR headsets are some of the most popular wearables. 3D Printers --- Three-dimensional printers are used to print 3D objects. These printers use the 3D printing technology to join material and create 3D objects. These 3D models are created using a computer aided design (CAD) package on a computer. 6. What were the disadvantages of first generation computers? Ans. Disadvantages of first generation computers are: 1. They were very big in size and required a large space for installation. 2. They generated a large amount of heat, and so air conditioning was required. 3. They were not very reliable. 4. They were programmed to use only machine language. Only people who knew machine language could operate them. 5. They could solve only one problem at a time. 6. They were very expensive and non-portable. xxxxxxxx .
Recommended publications
  • Computer History – the Pitfalls of Past Futures
    Research Collection Working Paper Computer history – The pitfalls of past futures Author(s): Gugerli, David; Zetti, Daniela Publication Date: 2019 Permanent Link: https://doi.org/10.3929/ethz-b-000385896 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library TECHNIKGESCHICHTE DAVID GUGERLI DANIELA ZETTI COMPUTER HISTORY – THE PITFALLS OF PAST FUTURES PREPRINTS ZUR KULTURGESCHICHTE DER TECHNIK // 2019 #33 WWW.TG.ETHZ.CH © BEI DEN AUTOREN Gugerli, Zetti/Computer History Preprints zur Kulturgeschichte der Technik #33 Abstract The historicization of the computer in the second half of the 20th century can be understood as the effect of the inevitable changes in both its technological and narrative development. What interests us is how past futures and therefore history were stabilized. The development, operation, and implementation of machines and programs gave rise to a historicity of the field of computing. Whenever actors have been grouped into communities – for example, into industrial and academic developer communities – new orderings have been constructed historically. Such orderings depend on the ability to refer to archival and published documents and to develop new narratives based on them. Professional historians are particularly at home in these waters – and nevertheless can disappear into the whirlpool of digital prehistory. Toward the end of the 1980s, the first critical review of the literature on the history of computers thus offered several programmatic suggestions. It is one of the peculiar coincidences of history that the future should rear its head again just when the history of computers was flourishing as a result of massive methodological and conceptual input.
    [Show full text]
  • Turing's Influence on Programming — Book Extract from “The Dawn of Software Engineering: from Turing to Dijkstra”
    Turing's Influence on Programming | Book extract from \The Dawn of Software Engineering: from Turing to Dijkstra" Edgar G. Daylight∗ Eindhoven University of Technology, The Netherlands [email protected] Abstract Turing's involvement with computer building was popularized in the 1970s and later. Most notable are the books by Brian Randell (1973), Andrew Hodges (1983), and Martin Davis (2000). A central question is whether John von Neumann was influenced by Turing's 1936 paper when he helped build the EDVAC machine, even though he never cited Turing's work. This question remains unsettled up till this day. As remarked by Charles Petzold, one standard history barely mentions Turing, while the other, written by a logician, makes Turing a key player. Contrast these observations then with the fact that Turing's 1936 paper was cited and heavily discussed in 1959 among computer programmers. In 1966, the first Turing award was given to a programmer, not a computer builder, as were several subsequent Turing awards. An historical investigation of Turing's influence on computing, presented here, shows that Turing's 1936 notion of universality became increasingly relevant among programmers during the 1950s. The central thesis of this paper states that Turing's in- fluence was felt more in programming after his death than in computer building during the 1940s. 1 Introduction Many people today are led to believe that Turing is the father of the computer, the father of our digital society, as also the following praise for Martin Davis's bestseller The Universal Computer: The Road from Leibniz to Turing1 suggests: At last, a book about the origin of the computer that goes to the heart of the story: the human struggle for logic and truth.
    [Show full text]
  • Analytical Engine, 1838 ALLAN G
    Charles Babbage’s Analytical Engine, 1838 ALLAN G. BROMLEY Charles Babbage commenced work on the design of the Analytical Engine in 1834 following the collapse of the project to build the Difference Engine. His ideas evolved rapidly, and by 1838 most of the important concepts used in his later designs were established. This paper introduces the design of the Analytical Engine as it stood in early 1838, concentrating on the overall functional organization of the mill (or central processing portion) and the methods generally used for the basic arithmetic operations of multiplication, division, and signed addition. The paper describes the working of the mechanisms that Babbage devised for storing, transferring, and adding numbers and how they were organized together by the “microprogrammed” control system; the paper also introduces the facilities provided for user- level programming. The intention of the paper is to show that an automatic computing machine could be built using mechanical devices, and that Babbage’s designs provide both an effective set of basic mechanisms and a workable organization of a complete machine. Categories and Subject Descriptors: K.2 [History of Computing]- C. Babbage, hardware, software General Terms: Design Additional Key Words and Phrases: Analytical Engine 1. Introduction 1838. During this period Babbage appears to have made no attempt to construct the Analytical Engine, Charles Babbage commenced work on the design of but preferred the unfettered intellectual exploration of the Analytical Engine shortly after the collapse in 1833 the concepts he was evolving. of the lo-year project to build the Difference Engine. After 1849 Babbage ceased designing calculating He was at the time 42 years o1d.l devices.
    [Show full text]
  • A Bibliography of Publications By, and About, Charles Babbage
    A Bibliography of Publications by, and about, Charles Babbage Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 08 March 2021 Version 1.24 Abstract -analogs [And99b, And99a]. This bibliography records publications of 0 [Bar96, CK01b]. 0-201-50814-1 [Ano91c]. Charles Babbage. 0-262-01121-2 [Ano91c]. 0-262-12146-8 [Ano91c, Twe91]. 0-262-13278-8 [Twe93]. 0-262-14046-2 [Twe92]. 0-262-16123-0 [Ano91c]. 0-316-64847-7 [Cro04b, CK01b]. Title word cross-reference 0-571-17242-3 [Bar96]. 1 [Bab97, BRG+87, Mar25, Mar86, Rob87a, #3 [Her99]. Rob87b, Tur91]. 1-85196-005-8 [Twe89b]. 100th [Sen71]. 108-bit [Bar00]. 1784 0 [Tee94]. 1 [Bab27d, Bab31c, Bab15]. [MB89]. 1792/1871 [Ynt77]. 17th [Hun96]. 108 000 [Bab31c, Bab15]. 108000 [Bab27d]. 1800s [Mar08]. 1800s-Style [Mar08]. 1828 1791 + 200 = 1991 [Sti91]. $19.95 [Dis91]. [Bab29a]. 1835 [Van83]. 1851 $ $ $21.50 [Mad86]. 25 [O’H82]. 26.50 [Bab51a, CK89d, CK89i, She54, She60]. $ [Enr80a, Enr80b]. $27.95 [L.90]. 28 1852 [Bab69]. 1853 [She54, She60]. 1871 $ [Hun96]. $35.00 [Ano91c]. 37.50 [Ano91c]. [Ano71b, Ano91a]. 1873 [Dod00]. 18th $45.00 [Ano91c]. q [And99a, And99b]. 1 2 [Bab29a]. 1947 [Ano48]. 1961 Adam [O’B93]. Added [Bab16b, Byr38]. [Pan63, Wil64]. 1990 [CW91]. 1991 Addison [Ano91c]. Addison-Wesley [Ano90, GG92a]. 19th [Ano91c]. Addition [Bab43a]. Additions [Gre06, Gre01, GST01].
    [Show full text]
  • Women in Computing
    History of Computing CSE P590A (UW) PP190/290-3 (UCB) CSE 290 291 (D00) Women in Computing Katherine Deibel University of Washington [email protected] 1 An Amazing Photo Philadelphia Inquirer, "Your Neighbors" article, 8/13/1957 2 Diversity Crisis in Computer Science Percentage of CS/IS Bachelor Degrees Awarded to Women National Center for Education Statistics, 2001 3 Goals of this talk ! Highlight the many accomplishments made by women in the computing field ! Learn their stories, both good and bad 4 Augusta Ada King, Countess of Lovelace ! Translated and extended Menabrea’s article on Babbage’s Analytical Engine ! Predicted computers could be used for music and graphics ! Wrote the first algorithm— how to compute Bernoulli numbers ! Developed notions of looping and subroutines 5 Garbage In, Garbage Out The Analytical Engine has no pretensions whatever to originate anything. It can do whatever we know how to order it to perform. It can follow analysis; but it has no power of anticipating any analytical relations or truths. — Ada Lovelace, Note G 6 On her genius and insight If you are as fastidious about the acts of your friendship as you are about those of your pen, I much fear I shall equally lose your friendship and your Notes. I am very reluctant to return your admirable & philosophic 'Note A.' Pray do not alter it… All this was impossible for you to know by intuition and the more I read your notes the more surprised I am at them and regret not having earlier explored so rich a vein of the noblest metal.
    [Show full text]
  • The Early Mathematical Education of Ada Lovelace. Hollings, Martin And
    BSHM Bulletin: Journal of the British Society for the History of Mathematics ISSN: 1749-8430 (Print) 1749-8341 (Online) Journal homepage: http://www.tandfonline.com/loi/tbsh20 The early mathematical education of Ada Lovelace Christopher Hollings, Ursula Martin & Adrian Rice To cite this article: Christopher Hollings, Ursula Martin & Adrian Rice (2017): The early mathematical education of Ada Lovelace, BSHM Bulletin: Journal of the British Society for the History of Mathematics, DOI: 10.1080/17498430.2017.1325297 To link to this article: http://dx.doi.org/10.1080/17498430.2017.1325297 © 2017 British Society for the History of Mathematics Published online: 01 Jun 2017. Submit your article to this journal Article views: 226 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tbsh20 Download by: [the Bodleian Libraries of the University of Oxford] Date: 21 June 2017, At: 06:49 BSHM Bulletin, 2017 https://doi.org/10.1080/17498430.2017.1325297 The early mathematical education of Ada Lovelace CHRISTOPHER HOLLINGS and URSULA MARTIN University of Oxford, UK ADRIAN RICE Randolph-Macon College, USA Ada, Countess of Lovelace, is remembered for a paper published in 1843, which translated and considerably extended an article about the unbuilt Analytical Engine, a general-purpose computer designed by the mathematician and inventor Charles Babbage. Her substantial appendices, nearly twice the length of the original work, contain an account of the principles of the machine, along with a table often described as ‘the first computer program’. In this paper we look at Lovelace’s education before 1840, which encompassed older traditions of practical geometry; newer textbooks influenced by continental approaches; wide reading; and a fascination with machinery.
    [Show full text]
  • Lovelace & Babbage and the Creation of the 1843 'Notes'
    Lovelace & Babbage and the Creation of the 1843 ‘Notes’ John Fuegi and Jo Francis Flare/MITH Augusta Ada Lovelace worked with Charles Babbage to create a description of Babbage’s unbuilt invention, the Analytical Engine, a highly advanced mechanical calculator often considered a forerunner of the electronic calculating computers of the 20th century. Ada Lovelace’s “Notes,” describing the Analytical Engine, published in Taylor’s Scientific Memoirs in 1843, contained a ground-breaking description of the possibilities of programming the machine to go beyond number-crunching to “computing” in the wider sense in which we understand the term today. This article expands on research first presented by the authors in their documentary film, To Dream Tomorrow. What shall we do to get rid of Mr. Babbage and known to have crossed the intellectual thresh- his calculating Machine? Surely if completed it old between conceptualizing computing as would be worthless as far as science is con- only for calculation on the one hand, and on cerned? the other hand, computing as we know it —British Prime Minister Sir Robert Peel, 18421 today: with wider applications made possible by symbolic substitution. The Analytical Engine does not occupy common In an early background interview at the ground with mere ‘calculating machines.’ … In Science Museum (London) for the historical enabling mechanism to combine together gen- documentary film about collaboration between eral symbols, in successions of unlimited variety Lovelace and Babbage, To Dream Tomorrow,3 and extent, a uniting link is established between Babbage authority Doron Swade mentioned the operations of matter and the abstract mental that he thought Babbage and Lovelace had processes of the most abstract branch of mathe- “very different qualities of mind.” Swade’s matical science.
    [Show full text]
  • Charles Babbage?
    iCompute For more fun computing lessons and resources visit: Who was Charles Babbage? 8 He was an English mathematician Charles Babbage and inventor 8 He designed the world’s first computing machine Biography for children The story of important figures in the history of computing Charles Babbage (1791 – 1871) © iCompute 2015 www.icompute -uk.com iCompute Why is Charles Babbage important? 8 He believed that machines could be designed to do complicated calculations quickly 8 His ideas led to the world’s first programmable computing machines 8 His designs contain may of the parts that modern computers use today His early years 8 Born 26th December 1791 8 The son of a London banker 8 Charles was a sickly child, often too unwell to go to school 8 He was often taught by private tutors 8 One, from Oxford, helped his love of mathematics grow © iCompute 2015 www.icompute -uk.com iCompute 8 He went to Trinity College, Cambridge in 1810 8 Elected Fellow of the Royal Society in 1816 8 Helped found the Astronomical Society in 1820 8 In 1814 he married Georgiana Whitmore 8 They had eight children 8 Only four survived to adulthood 8 Charles’ son, Henry Prevost Babbage, built some pieces to his father’s design after his Charles’ death 8 One went to Harvard University and inspired the first ever electro-mechanical computer – The Harvard Mark 1 The Harvard Mark 1 Science Museum, London © iCompute 2015 www.icompute -uk.com iCompute Charles Babbage and Computers 8 He invented the Difference Engine in 1822 which was a machine for calculating tables 8 In 1834
    [Show full text]
  • Analytical Engine: the Orig- Inal Computer
    Chapter 2 Analytical Engine: The Orig- inal Computer As we learned in the fourth grade science course, back in 1801, a French man, Joseph Marie Jacquard, invented a power loom that could weave textiles, which had been done for a long time by hand. More interestingly, this machine can weave tex- tiles with patterns such as brocade, damask, and matelasse by controlling the operation with punched wooden cards, held together in a long row by rope. 1 How do these cards work? Each wooden card comes with punched holes, each row of which corresponds to one row of the design. In each position, if the needle needs to go through, there is a hole; other- wise, there is no hole. Multiple rows of holes are punched on each card and all the cards that compose the design of the textile are hooked together in order. 2 What do we get? With the control of such cards, needs go back and forth, moving from left to the right, row by row, and come up with something like the following: Although the punched card concept was based on some even earlier invention by Basile Bou- chon around 1725, “the Jacquard loom was the first machine to use punch cards to con- trol a sequence of operations”. Let’s check out a little demo as how Jacquard’s machine worked. 3 Why do we talk about a loom? With Jacquard loom, if you want to switch to a different pattern, you simply change the punched cards. By the same token, with a modern computer, if you want it to run a different application, you simply load it with a different program, which used to keep on a deck of paper based punched cards.
    [Show full text]
  • Ada and the First Computer
    Ada and the First Computer The collaboration between Ada, countess of Lovelace, and computer pioneer Charles Babbage resulted in a landmark publication that described how to program the world’s first computer by Eugene Eric Kim and Betty Alexandra Toole eople called Augusta Ada King’s father “mad and bad” for his wild ways, but he was better known as Lord Byron, the poet. Ada inherited her famous father’s P way with words and his zest for life. She was a beautiful, flirtatious woman who hobnobbed with England’s elite and who died at the youthful age of 36, the same age at which her father died. And like Byron, Ada is best known for something she wrote. In 1843 she published an influential set of notes that described Charles Babbage’s An- alytical Engine, the first automatic, general-purpose computing machine ever designed. Although the Analytical Engine was never built—largely because Babbage could not raise the funds for its construction—Ada’s notes included a program for using it to com- pute a series of figures called Bernoulli numbers [see box on page 78]. Ada’s notes established her importance in computer science, but her fascinating life and lineage—and her role as a female pioneer in a field in which women have always been notoriously underrepresented—have lately turned her into an icon. In addition to numerous biographies, she has inspired plays and novels written by the likes of such lu- minaries as Tom Stoppard and Arthur C. Clarke. Conceiving Ada, a movie loosely based on her life, was released by Fox Lorber in February.
    [Show full text]
  • Famous People in Computer History
    Famous People in Computer History Charles Babbage Ada Lovelace George Boole 1791 - 1871 1815 - 1852 1815 - 1864 Babbage is often regarded as Lovelace is credited with the Boole invented the prototype the “Father of Computing”. title “the first programmer”. of what is now called Boolean He created the first Difference She worked with Charles logic, which is the basis of the Engine, the first programmable Babbage’s Analytical Engine to modern digital computer. computer in history and even develop what is recognised as Boole is often regarded in drew up plans for the first the first algorithm intended to hindsight as a founder of the printer. Babbage died before be processed by a machine. field of computer science. any of his designs could be She was the daughter of poet Boolean logic is based around the principle of AND, OR completed. Lord Byron. and NOT. Tommy Flowers Grace Hopper Alan Turing 1905 - 1998 1906 - 1992 1912 - 1954 Flowers created the worlds Hopper was a computer Turing is most famous for first electronic programmable scientist and US Navy Admiral. helping break the German computer - Colossus. She was the first to use the Enigma Code during WW2. He Colossus was used by British term “debugging” for fixing created the Bombe, a machine codebreaker in WW2 to computer problems. Hopper to decipher the Enigma code. decipher German code developed the first working He came up with the Turing messages. His work was not compiler and developed Test, a method to test artificial acknowledged until the 1970s. COBOL, a programming intelligence. language still used today.
    [Show full text]
  • Intro to Computers Where Did They Come From? Part 1 - Pre-1940S Define Computer
    Intro to Computers Where did they come from? Part 1 - Pre-1940s Define Computer Man vs. Machine Define Computer 1600’s Definition: -Someone who makes calculations. Late 1800’s Definition: -A machine that makes calculations. Modern Definition: -An electronic device used for storing and processing data Lets go back to the beginning! Computers exist because of math. One of the earliest “calculators” is called the Abacus. -Been around for 1000s of years Online Abacus https://www.online-calculator.com/full-screen-abacus/ The Next Big Step! Gottfried Wilhelm Leibniz invented the Stepped Reckoner in 1672. Stepped Reckoner -Made calculations using a gear mechanism called the Leibniz Wheel. -The first machine that could add, subtract, multiply, and divide Leibniz Wheel -or stepped drum is a cylinder with a set of teeth of incremental lengths -Was used for over 200 years in calculating Machines. -Even into the 1970s And then came this guy... Charles Babbage -Babbage saw a better way of crunching numbers -In 1823 he began construction on the Difference Engine -A machine able to do complex calculations and output tables of numbers. Difference Engine -Babbage used a loan from the British government to make the Difference Engine -Due to the inability to make precise metal parts for cheap, Babbage never fully constructed the Difference Engine and the project was abandoned. -In 2000, a Difference Engine was fully built to celebrate Babbage’s 200th birthday. The machine actually worked! This settled the debate on whether his idea would really operate. Difference Engine Analytical Engine -While attempting to construct the Difference Engine, Babbage designed an even more complex machine called the Analytical Engine -This machine was never built, but was the first design of a machine that had memory and could be programmed, thus, making it the first computer as we think of them today.
    [Show full text]