Preprint typeset in JHEP style - HYPER VERSION Classical Field Theory Gleb Arutyunova∗y a Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht, The Netherlands Abstract: The aim of the course is to introduce the basic methods of classical field theory and to apply them in a variety of physical models ranging from clas- sical electrodynamics to macroscopic theory of ferromagnetism. In particular, the course will cover the Lorentz-covariant formulation of Maxwell's electromagnetic the- ory, advanced radiation problems, elements of soliton theory. The students will get acquainted with the Lagrangian and Hamiltonian description of infinite-dimensional dynamical systems, the concept of global and local symmetries, conservation laws. A special attention will be paid to mastering the basic computation tools which include the Green function method, residue theory, Laplace transform, elements of group theory, orthogonal polynomials and special functions. Last Update 8.05.2011 ∗Email:
[email protected] yCorrespondent fellow at Steklov Mathematical Institute, Moscow. Contents 1. Classical Fields: General Principles 2 1.1 Lagrangian and Hamiltonian formalisms 3 1.2 Noether's theorem in classical mechanics 9 1.3 Lagrangians for continuous systems 11 1.4 Noether's theorem in field theory 15 1.5 Hamiltonian formalism in field theory 20 2. Electrostatics 21 2.1 Laws of electrostatics 21 2.2 Laplace and Poisson equations 26 2.3 The Green theorems 27 2.4 Method of Green's functions 29 2.5 Electrostatic problems with spherical symmetry 31 2.6 Multipole expansion for scalar potential 38 3. Magnetostatics 41 3.1 Laws of magnetostatics 41 3.2 Magnetic (dipole) moment 42 3.3 Gyromagnetic ratio.