297 — 15 September 2017 Editor: Bo Reipurth ([email protected]) List of Contents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born. -
Variable Stars Observer Bulletin
Amateurs' Guide to Variable Stars September-October 2013 | Issue #2 Variable Stars Observer Bulletin ISSN 2309-5539 Twenty new W Ursae Majoris-type eclipsing binaries from the Catalina Sky Survey Details for 20 new WUMa systems are presented, along with a preliminary The FU Orionis phenomenon model of the FU Orionis stars are pre-main-sequence totally eclipsing eruptive variables which appear to be a system GSC stage in the development of T Tauri 03090-00153. stars. Image: FU Orionis. Credit: ESO NSVS 5860878 = Dauban V 171 Carbon in the sky: A new Mira variable in Cygnus a few remarkable carbon stars The list of the most interesting and bright carbon stars for northern observers is presented. Right: TT Cygni. A carbon star. Credit & Copyright: H.Olofsson (Stockholm Nova Observatory) et al. Delphini 2013 Nova has reached magnitude 4.3 visual The "Heavenly Owl" on August 16 observatory: seeing above the Black Sea waterfront VS-COMPAS Project: variable stars research and data mining. More at http://vs-compas.belastro.net Variable Stars Observer Bulletin Amateurs' Guide to Variable Stars September-October 2013 | Issue #2 C O N T E N T S 04 NSVS 5860878 = Dauban V 171: a new Mira variable in Cygnus by Ivan Adamin, Siarhey Hadon A new Mira variable in the constellation of Cygnus is presented. The variability of the NSVS 5860878 source was detected in January of 2012. Lately, the object was identified as the Dauban V171. A revision is submitted to the VSX. 06 Twenty new W Ursae Majoris-type eclipsing binaries Credit: Justin Ng from the Catalina Sky Survey by Stefan Hümmerich, Klaus Bernhard, Gregor Srdoc 16 Nova Delphini 2013: a naked-eye visible flare in A short overview of eclipsing binary northern skies stars and their traditional by Andrey Prokopovich classification scheme is given, which concentrates on W Ursae Majoris On August 14, 2013 a new bright star (WUMa)-type systems. -
Dr. Aaron C. Rizzuto –
CV Aaron Rizzuto 1 Department of Astronomy The University of Texas at Austin T (512) 545 7582 B [email protected] Dr. Aaron C. Rizzuto https://aaronrizzuto23.wixsite.com/draaronrizzuto References A. Prof. Michael Ireland, Australian National University ([email protected]) Prof. Adam Kraus, University of Texas at Austin ([email protected]) A. Prof. Andrew Mann, University of North Carolina at Chapel Hill ([email protected]) Education 2011–2014 Ph.D, Astronomy & Astrophysics, Department of Astronomy, Macquarie University. thesis Characterising the Young Sco-Cen Association advisors A. Prof. Michael Ireland, Dr. Daniel Zucker 2010–2011 B.Sc., Honours Class 1 in Physics, Sydney Institute for Astronomy, University of Sydney. thesis The Membership and Multiplicity of Sco OB2 advisors A. Prof. Michael Ireland, Prof. Peter Tuthill, Dr. Gordon Robertson 2007–2009 B.Sc. (Advanced), Physics & Mathematics, University of Sydney. Employment June 2018– 51 Pegasi b Prize Postdoctoral Fellow, Department of Astronomy, The University of Texas at Austin. advisor A. Prof. Adam Kraus 2016–2018 Postdoctoral Fellow, Department of Astronomy, The University of Texas at Austin. advisor A. Prof. Adam Kraus 2011–2013 Physics Laboratory TA, Macquarie University 2011–2013 1st year Astronomy Marking, Macquarie University Telescope Time and Grants Received Since 2015, I received $1.3M AUD in research funding as a postdoctoral researcher. ≥ 2019 NASA Keck 2019B, 1 night, $14,000 (PI) Dynamical Masses of Young Stars with Non-Redundant Masking 2019 NASA -
Constraints on the Spin Evolution of Young Planetary-Mass Companions Marta L
Constraints on the Spin Evolution of Young Planetary-Mass Companions Marta L. Bryan1, Björn Benneke2, Heather A. Knutson2, Konstantin Batygin2, Brendan P. Bowler3 1Cahill Center for Astronomy and Astrophysics, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125, USA. 2Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA. 3McDonald Observatory and Department of Astronomy, University of Texas at Austin, Austin, TX 78712, USA. Surveys of young star-forming regions have discovered a growing population of planetary- 1 mass (<13 MJup) companions around young stars . There is an ongoing debate as to whether these companions formed like planets (that is, from the circumstellar disk)2, or if they represent the low-mass tail of the star formation process3. In this study we utilize high-resolution spectroscopy to measure rotation rates of three young (2-300 Myr) planetary-mass companions and combine these measurements with published rotation rates for two additional companions4,5 to provide a look at the spin distribution of these objects. We compare this distribution to complementary rotation rate measurements for six brown dwarfs with masses <20 MJup, and show that these distributions are indistinguishable. This suggests that either that these two populations formed via the same mechanism, or that processes regulating rotation rates are independent of formation mechanism. We find that rotation rates for both populations are well below their break-up velocities and do not evolve significantly during the first few hundred million years after the end of accretion. This suggests that rotation rates are set during late stages of accretion, possibly by interactions with a circumplanetary disk. -
Astronomy and Astrophysics Report for 2016
Astronomy and Astrophysics Report for 2016 Submitted to the Governing Board at its meeting on 1st March 2017 1.Research output and activities The primary research output of the section consists of peer-reviewed publications in the leading astronomical and astrophysical journals. The section has a green open-access publishing policy whereby all publications are placed as preprints on the freely accessible arXiv server. To this end DIAS supports arXiv with a modest financial contribution. During the calendar year seventy three papers were published, or posted as preprints on arXiv, and with at least one co-author from the section as well as six non-refereed papers. Full details can be found in the detailed bibliography at the end of this report (which replaces the former summary text). In some ways what is more interesting than the raw number of papers is the trend over time which shows considerable year on year fluctuations, but no major change over the last decade. Refereed Preprints Non-refereed 160 120 80 40 0 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Note that pre 2010 preprints were classified as non-refereed and not treated as a separate category. In addition to research papers, talks and conference presentations are an important means of communicating our research to our peers and a useful measure of the esteem in which we are held. During the year the following were delivered. Felix Aharonian: 1. Rome, Italy, workshop “Towards a large field-of-view TeV experiment” (14.01-15.01.2016) Evidence for a PeVatron in the Galactic Center: is it Sgr A*? 2. -
Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55 -
A Long-Term Photometric Study of the FU Orionis Star V 733 Cephei
A&A 515, A24 (2010) Astronomy DOI: 10.1051/0004-6361/201014092 & c ESO 2010 Astrophysics A long-term photometric study of the FU Orionis star V 733 Cephei S. P. Peneva1,E.H.Semkov1, U. Munari2, and K. Birkle3 1 Institute of Astronomy, Bulgarian Academy of Sciences, 72 Tsarigradsko Shose Blvd., 1784 Sofia, Bulgaria e-mail: [speneva;esemkov]@astro.bas.bg 2 INAF Osservatorio Astronomico di Padova, Sede di Asiago, 36032 Asiago (VI), Italy 3 Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany Received 18 January 2010 / Accepted 17 February 2010 ABSTRACT Context. The FU Orionis candidate V733 Cep was discovered by Roger Persson in 2004. The star is located in the dark cloud L1216 close to the Cepheus OB3 association. Because only a small number of FU Orionis stars have been detected to date, photometric and spectral studies of V733 Cep are of great interest. Aims. The studies of the photometrical variability of PMS stars are very important to the understanding of stellar evolution. The main purpose of our study is to construct a long-time light curve of V733 Cep. On the basis of BVRI monitoring we also study the photometric behavior of the star. Methods. We gather data from CCD photometry and archival photographic plates. The photometric BVRI data (Johnson-Cousins system) that we present were collected from June 2008 to October 2009. To facilitate transformation from instrumental measurements to the standard system, fifteen comparison stars in the field of V733 Cep were calibrated in BVRI bands. To construct a historical light curve of V733 Cep, a search for archival photographic observations in the Wide-Field Plate Database was performed. -
Astronomers Reveal New Insights Into Physical Properties of the Young Star System Roxs 12 30 August 2017, by Tomasz Nowakowski
Astronomers reveal new insights into physical properties of the young star system ROXs 12 30 August 2017, by Tomasz Nowakowski companion of ROXs 12 A, but very little is known about its physical parameters. Given that ROXs 12 B is separated from ROXs 12 A by more than 100 AU, it makes it one of only a handful of young, very low-mass companions at wide orbital distances from their hosts. Therefore, ROXs 12 B offers a valuable opportunity to study the atmosphere of a young substellar object that occupies the mass range between the heaviest gas giant planets and the lightest stars. In order to get more details about ROXs 12 and its mysterious companion, a team of researchers led by Brendan Bowler of the University of Texas at Austin has conducted moderate-resolution near- infrared spectroscopic observations of ROXs 12 B. For their observational campaign, the astronomers used several spectrographs, including the Near- Infrared Integral Field Spectrometer (NIFS) at Gemini-North 8.1 m telescope in Hawaii, and the Overview of the ROXs 12 triple system. Image credit: OH-Suppressing InfraRed Imaging Spectrograph Bowler et al., 2017. (OSIRIS) at the Keck I telescope, also in Hawaii. These observations allowed the team to carry out a comprehensive analysis of ROXs 12, revealing Astronomers have disclosed new information about more insights about this system. the young star system ROXs 12 as a result of near- infrared spectroscopic observations of one of the "Here we present near-infrared integral-field system's components. The findings, presented spectroscopy of the substellar companion to ROXs Aug. -
Exoplanet.Eu Catalog Page 1 Star Distance Star Name Star Mass
exoplanet.eu_catalog star_distance star_name star_mass Planet name mass 1.3 Proxima Centauri 0.120 Proxima Cen b 0.004 1.3 alpha Cen B 0.934 alf Cen B b 0.004 2.3 WISE 0855-0714 WISE 0855-0714 6.000 2.6 Lalande 21185 0.460 Lalande 21185 b 0.012 3.2 eps Eridani 0.830 eps Eridani b 3.090 3.4 Ross 128 0.168 Ross 128 b 0.004 3.6 GJ 15 A 0.375 GJ 15 A b 0.017 3.6 YZ Cet 0.130 YZ Cet d 0.004 3.6 YZ Cet 0.130 YZ Cet c 0.003 3.6 YZ Cet 0.130 YZ Cet b 0.002 3.6 eps Ind A 0.762 eps Ind A b 2.710 3.7 tau Cet 0.783 tau Cet e 0.012 3.7 tau Cet 0.783 tau Cet f 0.012 3.7 tau Cet 0.783 tau Cet h 0.006 3.7 tau Cet 0.783 tau Cet g 0.006 3.8 GJ 273 0.290 GJ 273 b 0.009 3.8 GJ 273 0.290 GJ 273 c 0.004 3.9 Kapteyn's 0.281 Kapteyn's c 0.022 3.9 Kapteyn's 0.281 Kapteyn's b 0.015 4.3 Wolf 1061 0.250 Wolf 1061 d 0.024 4.3 Wolf 1061 0.250 Wolf 1061 c 0.011 4.3 Wolf 1061 0.250 Wolf 1061 b 0.006 4.5 GJ 687 0.413 GJ 687 b 0.058 4.5 GJ 674 0.350 GJ 674 b 0.040 4.7 GJ 876 0.334 GJ 876 b 1.938 4.7 GJ 876 0.334 GJ 876 c 0.856 4.7 GJ 876 0.334 GJ 876 e 0.045 4.7 GJ 876 0.334 GJ 876 d 0.022 4.9 GJ 832 0.450 GJ 832 b 0.689 4.9 GJ 832 0.450 GJ 832 c 0.016 5.9 GJ 570 ABC 0.802 GJ 570 D 42.500 6.0 SIMP0136+0933 SIMP0136+0933 12.700 6.1 HD 20794 0.813 HD 20794 e 0.015 6.1 HD 20794 0.813 HD 20794 d 0.011 6.1 HD 20794 0.813 HD 20794 b 0.009 6.2 GJ 581 0.310 GJ 581 b 0.050 6.2 GJ 581 0.310 GJ 581 c 0.017 6.2 GJ 581 0.310 GJ 581 e 0.006 6.5 GJ 625 0.300 GJ 625 b 0.010 6.6 HD 219134 HD 219134 h 0.280 6.6 HD 219134 HD 219134 e 0.200 6.6 HD 219134 HD 219134 d 0.067 6.6 HD 219134 HD -
GEORGE HERBIG and Early Stellar Evolution
GEORGE HERBIG and Early Stellar Evolution Bo Reipurth Institute for Astronomy Special Publications No. 1 George Herbig in 1960 —————————————————————– GEORGE HERBIG and Early Stellar Evolution —————————————————————– Bo Reipurth Institute for Astronomy University of Hawaii at Manoa 640 North Aohoku Place Hilo, HI 96720 USA . Dedicated to Hannelore Herbig c 2016 by Bo Reipurth Version 1.0 – April 19, 2016 Cover Image: The HH 24 complex in the Lynds 1630 cloud in Orion was discov- ered by Herbig and Kuhi in 1963. This near-infrared HST image shows several collimated Herbig-Haro jets emanating from an embedded multiple system of T Tauri stars. Courtesy Space Telescope Science Institute. This book can be referenced as follows: Reipurth, B. 2016, http://ifa.hawaii.edu/SP1 i FOREWORD I first learned about George Herbig’s work when I was a teenager. I grew up in Denmark in the 1950s, a time when Europe was healing the wounds after the ravages of the Second World War. Already at the age of 7 I had fallen in love with astronomy, but information was very hard to come by in those days, so I scraped together what I could, mainly relying on the local library. At some point I was introduced to the magazine Sky and Telescope, and soon invested my pocket money in a subscription. Every month I would sit at our dining room table with a dictionary and work my way through the latest issue. In one issue I read about Herbig-Haro objects, and I was completely mesmerized that these objects could be signposts of the formation of stars, and I dreamt about some day being able to contribute to this field of study. -
Andrew Vanderburg 77 Massachusetts Avenue • Mcnair Building (MIT Building 37) • Cambridge, MA 02139 [email protected] •
Andrew Vanderburg 77 Massachusetts Avenue • McNair Building (MIT Building 37) • Cambridge, MA 02139 [email protected] • https://avanderburg.github.io Appointments Assistant Professor of Physics at the Massachusetts Institute of Technology July 2021 - present Assistant Professor of Astronomy at The University of Wisconsin-Madison August 2020 - August 2021 Research Associate at the Smithsonian Astrophysical Observatory September 2017 - present NASA Sagan Postdoctoral Fellow at The University of Texas at Austin September 2017 - August 2020 Postdoctoral Associate at Harvard University July 2017 - September 2017 Education Harvard University Cambridge, MA Ph.D. Astronomy and Astrophysics (2017) August 2013 - May 2017 A.M. Astronomy and Astrophysics (2015) University of California, Berkeley Berkeley, CA B.A. Physics and Astrophysics (2013) August 2009 - May 2013 Research Interests • Searching for and studying small planets orbiting other stars • Determining detailed physical properties of terrestrial planets • Learning about the origins and evolution of planetary systems • Testing theories of planetary migration by studying the architecture of planetary systems • Measuring the prevalence of planets in different galactic environments • Developing and using new data analysis techniques in astronomy, including machine learning and deep learning. Awards • 2021 Wisconsin Undergraduate Research Scholars Exceptional Mentorship Award • 2020 Scialog Fellow • 2018 NASA Exceptional Public Achievement Medal • 2017 NASA Sagan Fellow • 2016 Publications of the -
A Long-Term Photometric Study of the FU Orionis Star V 733 Cep Tronomer Roger Persson in 2004 (Persson 2004)
Astronomy & Astrophysics manuscript no. 14092 c ESO 2018 October 10, 2018 A long-term photometric study of the FU Orionis star V 733 Cep S. P. Peneva1, E. H. Semkov1, U. Munari2, and K. Birkle3 1 Institute of Astronomy, Bulgarian Academy of Sciences, 72 Tsarigradsko Shose blvd., BG-1784 Sofia, Bulgaria e-mail: [email protected] 2 INAF Osservatorio Astronomico di Padova, Sede di Asiago, I-36032 Asiago (VI), Italy 3 Max-Planck-Institut f¨ur Astronomie, K¨onigstuhl 17, D-69117 Heidelberg, Germany Received ; accepted ABSTRACT Context. The FU Orionis candidate V733 Cep was discovered by Roger Persson in 2004. The star is located in the dark cloud L1216 close to the Cepheus OB3 association. Because only a small number of FU Orionis stars have been detected to date, photometric and spectral studies of V733 Cep are of great interest. Aims. The studies of the photometrical variability of PMS stars are very important to the understanding of stellar evolution. The main purpose of our study is to construct a long-time light curve of V733 Cep. On the basis of BVRI monitoring we also study the photometric behavior of the star. Methods. We gather data from CCD photometry and archival photographic plates. The photometric BVRI data (Johnson-Cousins system) that we present were collected from June 2008 to October 2009. To facilitate transformation from instrumental measurements to the standard system, fifteen comparison stars in the field of V733 Cep were calibrated in BVRI bands. To construct a historical light curve of V733 Cep, a search for archival photographic observations in the Wide-Field Plate Database was performed.